## DHS WORKING PAPERS

## Examining the Association between Anemia and Early Childhood Development in 9 Low- and Middle-income Countries

Rukundo K. Benedict Sara Riese
Thomas W. Pullum
Erin Milner

DEMOGRAPHIC

This document was produced for review by the United States Agency for International Development.

DHS Working Paper No. 188

# Examining the Association between Anemia and Early Childhood Development in 9 Low- and Middle-income Countries 

Rukundo K. Benedict ${ }^{1,2}$<br>Sara Riese ${ }^{1,2}$<br>Thomas W. Pullum ${ }^{1,2}$<br>Erin Milner ${ }^{3}$<br>ICF<br>Rockville, Maryland, USA

September 2022
${ }^{1}$ ICF
${ }^{2}$ The DHS Program
${ }^{3}$ USAID

## Editor: Margaret Reeves

Document Production: Natalie Shattuck, Joan Wardell, and Chris Gramer
The DHS Working Papers series is a prepublication series of papers reporting on research in progress that is based on Demographic and Health Surveys (DHS) data.

This study was carried out with support provided by the United States Agency for International Development (USAID) through The DHS Program (\#720-OAA-18C-00083). The views expressed are those of the authors and do not necessarily reflect the views of USAID or the United States Government.

The DHS Program assists countries worldwide in the collection and use of data to monitor and evaluate population, health, and nutrition programs. Additional information about The DHS Program can be obtained from ICF, 530 Gaither Road, Suite 500, Rockville, MD 20850 USA; telephone: +1 301-407-6500, fax: +1 301-407-6501, email: info@DHSprogram.com, internet: www.DHSprogram.com.

## Recommended citation:

Benedict, Rukundo K., Sara Riese, Thomas W. Pullum, and Erin Milner. 2022. Examining the Association between Anemia and Early Childhood Development in 9 Low- and Middle-income Countries. DHS Working Papers No. 188. Rockville, Maryland, USA: ICF.

## CONTENTS

TABLES ..... V
FIGURES ..... vii
ABSTRACT ..... ix
ACRONYMS AND ABBREVIATIONS ..... xi
1 INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 Conceptual Framework ..... 2
2 DATA AND METHODS ..... 5
2.1 Data. ..... 5
2.2 Methods ..... 6
2.2.1 Measures ..... 6
2.2.2 Statistical analysis ..... 9
3 RESULTS ..... 11
3.1 Percentage of Children with Anemia ..... 11
3.2 Early Childhood Development Index and Domain Scores ..... 12
3.3 Regression Results ..... 14
4 DISCUSSION ..... 17
4.1 Strengths and Limitations ..... 18
4.2 Conclusions ..... 19
REFERENCES ..... 21
APPENDIX ..... 25

## TABLES

Table 1 Unweighted number of cases in the ten DHS surveys with measurement of combinations of anemia and ECD data for children age 36-59 months ..... 5
Table 2 ECDI index domains, items, and scoring ..... 6
Table $3 \quad$ Variables used in analysis ..... 7
Table 4 Odds ratios for the effect of anemia on on-track early childhood development domains and overall index among children age 36-59 months across all countries ..... 15
Appendix Table A1 Adjusted odds ratios for on-track early childhood development among children age 36-59 months across all countries ..... 25
Appendix Table A2 Adjusted odds ratios for on-track literacy-numeracy development among children age 36-59 months across all countries ..... 27
Appendix Table A3 Adjusted odds ratios for on-track physical development among children age 36-59 months across all countries ..... 29
Appendix Table A4 Adjusted odds ratios for on-track for social-emotional development among children age 36-59 months across all countries ..... 31
Appendix Table A5 Adjusted odds ratios for on-track learning development among children age 36-59 months across all countries ..... 33

## FIGURES

Figure $1 \quad \begin{aligned} & \text { Conceptual framework of the relationship between anemia status and early } \\ & \text { childhood development .................................................................................... } 3\end{aligned}$
Figure 2 Percentage of children age 36-59 months with anemia by severity ....................... 11
Figure $3 \quad \begin{aligned} & \text { Percentage of children age 36-59 months developmentally on-track by } \\ & \text { country ................................................................................................................ } 12\end{aligned}$
Figure $4 \quad \begin{array}{ll}\text { Percentage of children age 36-59 months on-track for the Physical, Social- } \\ & \text { Emotional, Learning, and Literacy-Numeracy ECDI domains by country ............... } 13\end{array}$

## ABSTRACT

Anemia is a significant public health problem in many low- and middle-income countries (LMICs), with young children being especially vulnerable. Iron deficiency is a leading cause of anemia and prior studies have shown associations between low iron status/iron deficiency anemia and poor child development outcomes. In LMICs, $43 \%$ of children under the age of 5 years are at risk of not meeting their developmental potential. However, few studies have examined associations between anemia status and early childhood development (ECD) in large population-based surveys. We examined the associations between severe or moderate anemia and ECD domains (literacy-numeracy, physical, social-emotional, and learning) and an overall ECD index among children age 36-59 months. Demographic and Health Survey (DHS) data from the last phase of The DHS Program (DHS-7) that included the ECD module and hemoglobin testing in children under age 5 were used. Bivariate and multivariate logistic regressions were run for each of the five outcomes. Multivariate models controlled for early learning/interaction variables, child, maternal, and paternal characteristics, and socio-economic and household characteristics. Results showed almost no significant associations between anemia and ECD domains or the overall ECD index except for socialemotional development in Benin $(A O R=1.00 \quad p<.05)$ and physical development in Maldives (AORs $=0.97 p<.05$ ). Attendance at an early childhood education program was also significantly associated with the outcomes in many of the countries. Our findings reinforce the importance of the Nurturing Care Framework which describes a multi-sectoral approach to promote ECD in LMICs.

Key words: early childhood development, anemia, iron deficiency anemia

## ACRONYMS AND ABBREVIATIONS

| DHS | Demographic and Health Survey |
| :--- | :--- |
| ECD | early childhood development |
| ECDI | Early Childhood Development Index |
| LMIC | low- and middle-income country |
| MICS | Multiple Indicator Cluster Surveys |
| SDG | Sustainable Development Goal |

## 1 INTRODUCTION

### 1.1 Background

Early childhood is a critical time for the development of children, setting the foundation for their futures. The process of childhood development is complex. It begins at conception with rapid brain development through age three years and is shaped by stimulation and interaction with social and physical environments, the availability of good nutrition, and other genetic factors (Britto et al. 2017; Grantham-McGregor et al. 2007). During this process children build their motor, cognitive, social, emotional, language and selfregulation skills (Black et al. 2017; Grantham-McGregor et al. 2007). Children who meet their developmental potential, achieving key developmental milestones, are more likely to continue to increase their learning capacities, achieve academically, and in later life increase their economic productivity.

Global momentum on early childhood development (ECD) has expanded the need for appropriate metrics. The United Nations Children's Fund (UNICEF) released one of the first sets of global indicators for ECD in 2006 to address the lack of population level indicators in low- and middle-income countries (LMICs) (Loizillon et al. 2017). The indicators have gone through several rounds of revision and in 2009 the 10 -item Early Childhood Development Index (ECDI) was released. The ECDI covers four domains of development literacy-numeracy, physical, social-emotional, and learning (Loizillon et al. 2017). Since its release, the ECDI has been widely used in population-based surveys such the Multiple Indicator Cluster Surveys (MICS) and The Demographic and Health Surveys (DHS). Currently, in the Sustainable Development Goal (SDG) era, ECD is included as an SDG target and the ECDI was recently updated in 2021 as a primary tool for measuring progress towards the SDG target.

In 2010 43\% of children under the age of 5 years in LMICs were estimated to be at risk of not meeting their developmental potential (Lu, Black, and Richter 2016). Further analyses show that almost one-third of preschool aged children are not achieving key cognitive and or social and emotional developmental milestones (McCoy et al. 2016). Children in LMICs are often exposed to multiple risk factors for poor childhood development (Wachs and Rahman 2013). These include structural factors such as poverty and poor environmental conditions, physiological and social factors such as non-responsive parenting and poor parental mental health, and individual level risk factors such as infection and inflammation, stunting, and micronutrient deficiencies (Black et al. 2017; Bradley and Putnick 2012; Britto et al. 2017; Singla, Kumbakumba, and Aboud 2015; Walker et al. 2007; Walker et al. 2011).

Anemia, defined as a low concentration of hemoglobin, is a significant public health problem in several LMICs, especially among young children and women of reproductive age (Stevens et al. 2013). While anemia can be caused by a variety of factors including micronutrient deficiencies, malaria, infections, chronic inflammation, and genetic disorders, iron deficiency is a major cause (WHO 2017). Iron deficiency is estimated to be responsible for over one billion cases of anemia globally and iron deficiency anemia is a top contributor to morbidity in LMICs (GBD 2016 Disease and Injury Incidence and Prevalence Collaborators 2017). Young children in LMICs who are most vulnerable to anemia are also at greatest risk of developmental delays.

For young children, iron is important for tissue oxygen delivery, tissue growth, and brain development (John, Black, and Nelson 2017; Lozoff 2007). There are critical time points in the neonatal, infancy, and toddler periods during which there are higher iron demands to support brain development (Lozoff 2007; Wachs et al. 2014). From 6 months to 3 years of age, iron is needed for myelin, frontal cortex, and basal ganglia development and these brain areas play an important role in neurobehavioral development (Lozoff 2007; Wachs et al. 2014). Studies examining the links between ECD and iron deficiency anemia in infants and young children have reported that iron deficiency anemia is associated with poor neurodevelopment outcomes including decreased social-emotional, cognitive, and motor development (Britto et al. 2017; Grantham-McGregor and Ani 2001; Lozoff 2007). In addition, iron supplementation interventions among young children demonstrate mixed results with some reviews reporting benefits in cognitive, mental, and motor development among children of varying ages with and without anemia or iron deficiency anemia (De-Regil et al. 2011; Larson, Phiri, and Pasricha 2017; Sachdev, Gera, and Nestel 2005). However, most of these studies focused on children under age 2 years.

Studies using nationally representative surveys like the DHS found significant associations between suboptimal motor, cognitive, and social-emotional development and poor nutritional status (Kang et al. 2018; McCoy et al. 2016; Miller et al. 2016) and suboptimal literacy-numeracy development and poor dietary intake among children age 3-4 years (Bliznashka et al. 2021). However, few if any studies, have examined associations between anemia status and ECD in population-based surveys among children age 3-4 years. DHS surveys routinely collect hemoglobin data among children under 5 years and since 2011 have collected the ECDI in several LMICs (Pullum et al. 2017). Leveraging existing DHS surveys that include both ECDI and hemoglobin data, our analyses examine the association between anemia status and ECDI domains as well as the overall ECDI index.

### 1.2 Conceptual Framework

The conceptual framework for this study is shown in Figure 1. It is informed by two existing frameworks. The Larson et al. 2017 framework describes a biological pathway linking anemia, diet, nutritional status, illness and interactions with others and the environment to ECD outcomes (Larson, Phiri, and Pasricha 2017). The Nurturing Care Framework takes a social ecological approach (Black et al. 2017) . It describes the role of the social context in ECD, with the family environment at the center, and highlights knowledge, attitudes, and behaviors across health, nutrition, security and safety, responsive caregiving, and early learning sectors (Black et al. 2017; Britto et al. 2017).

Our conceptual framework shows potential pathways between anemia and ECD mediated by brain development as well as potential confounders. Early learning interventions and interactions with others are positively associated with ECD outcomes (Britto et al. 2017). Poor nutritional status and child illness directly and indirectly affect ECD and are negatively associated with ECD outcomes (Kang et al. 2018; Larson, Martorell, and Bauer 2018; McCoy et al. 2016; Miller et al. 2016; Olney et al. 2009; Prado et al. 2017; Sudfeld et al. 2015). Other important confounders include characteristics of the child, mother, father, household, and environment (Ngure et al. 2014; Prado et al. 2017).

Figure 1 Conceptual framework of the relationship between anemia status and early childhood development


## 2 DATA AND METHODS

### 2.1 Data

The study used data from recent DHS surveys in 10 countries: Benin 2017-18, Burundi 2016-17, Cambodia 2014, Haiti 2016-17, Jordan 2017-18, Maldives 2016-17, Myanmar 2015-17, Rwanda 2019-20, Senegal 2017, and Uganda 2016. These countries were selected based on the availability of the ECD questions and anemia testing for children as well as their recent implementation (in the seventh phase of The DHS Program). DHS surveys are population-based household surveys which use a two-stage cluster sampling design to draw a sample that is representative of the country as a whole, for the next administrative level (for example, regions, states, or provinces), and for urban and rural areas. In the first stage of sampling, clusters or enumeration areas are selected from the country's most recent census sampling frame with probability proportional to the population size of clusters. In the second stage, a systematic sample of households is interviewed in each of the selected clusters. Within each household, eligible women age 1549 answered questions about reproduction, maternal and child health and nutrition, and ECD, among other topics. For some surveys, within each or a sub-sample of households, eligible men answer similar questions to the women, but without a detailed reproductive history or questions on maternal and child health. Height and weight measurements and anemia testing are also collected from eligible men, women, and children. Since children age 6-59 months were tested for anemia and youngest children age 36-59 months were asked about in the ECD module, the analytical sample is therefore limited to children age 36-59 months.

Table 1 presents information about the sample sizes of children age 36-59 months included for anemia testing and ECD in each dataset.

Table 1 Unweighted number of cases in the ten DHS surveys with measurement of combinations of anemia and ECD data for children age 36-59 months

|  |  |  | Sample of children <br> 36-59 months with <br> Sample of children <br> anemia testing <br> data | Sample of children <br> 36-59 <br> months with <br> ECD index data | Sample of children <br> 36-59 months with <br> Eoth anemia and <br> ECD index data |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Country | Year | 4,855 | 2,337 | 4,244 | 2,168 |
| Benin | $2017-18$ | 4,847 | 2,329 | 4,717 | 2,327 |
| Burundi | $2016-17$ | 2,679 | 1,636 | 2,610 | 1,627 |
| Cambodia | 2014 | 2,403 | 2,128 | 1,433 | 1,412 |
| Haiti | $2016-17$ | 4,184 | 3,877 | 2,137 | 1,996 |
| Jordan | $2017-18$ | 1,285 | 907 | 1,264 | 906 |
| Maldives | $2016-17$ | 1,842 | 1,608 | 0 | 0 |
| Myanmar | $2015-17$ | 3,067 | 1,449 | 2,926 | 1,448 |
| Rwanda | $2019-20$ | 4,594 | 4,079 | 4,268 | 4,044 |
| Senegal | 2017 | 5,781 | 1,628 | 5,049 | 1,610 |
| Uganda | 2016 |  |  |  |  |

The first data column of Table 1 shows the unweighted numbers of children age 36-59 months. This number ranges from 1,285 in Maldives to 5,781 in Uganda and largely reflects the overall survey sample size. The second column gives the number of children age $36-59$ months for whom a valid measurement of hemoglobin concentration was obtained. This number is often substantially less than the number of children because of subsampling. In Benin, Burundi, and Rwanda, half of households were randomly selected for hemoglobin testing. In Cambodia and Uganda, a third of the households were selected. In the surveys with
subsampling, the hemoglobin testing was confined to the households selected for the men's survey. The third column gives the number of children age 36-59 months for whom valid scores were obtained on the ECD index items. In Jordan there was subsampling of households for the ECD questions; for half of the women, one child per woman (the youngest child age 3-4 years) was selected for the ECD questions. In Haiti, one child age 0-4 years per woman was selected for the ECD questions. In addition, further reductions in the sample sizes for anemia data and ECD data are due to subsampling; these sample sizes are reduced due to the child not residing in the same household as the mother, which is a requirement for both hemoglobin testing and the ECD indicators.

As shown in Table 1, the Myanmar 2015-16 survey did not include the ten components necessary to construct the ECD domains or index and had to be dropped. Therefore, only nine countries were included in the analytic sample for this study.

### 2.2 Methods

### 2.2.1 Measures

Measures were selected for inclusion based on the conceptual framework above outlining the pathway between anemia status and ECD. Definitions and categorization of each measure included in the analysis are described below.

## Outcome variables

The outcome variables were measured using the ECDI, a summary measure based on 10 items responded to by the mother or caregiver of children 36-59 months (Loizillon et al. 2017). The questions cover four domains of child development: physical, social-emotional, learning, and literacy-numeracy.

Table 2 ECDI index domains, items, and scoring

| Domain | Items | On-track score |
| :---: | :---: | :---: |
| Physical | 1. child can pick up small objects with two fingers, like a stick or a rock from the ground <br> 2. child is not sometimes too sick to play. | 2 of 2 items |
| Social-emotional | 3. child gets along well with other children <br> 4. child does not kick, bite or hit other children <br> 5. child does not get distracted easily | 1 of 3 items |
| Learning | 6. child can follow simple directions on how to do something correctly <br> 7. when given something to do, the child is able to do it independently | 2 of 2 items |
| Literacy-numeracy | 8. child can read at least four simple, popular words <br> 9. can identify/name at least ten letters of the alphabet <br> 10. knows the name and recognizes the symbols of all numbers $1-10$. | 1 of 2 items |
| Overall (ECDI) |  | 3 of 4 domains |

The ECDI was calculated by domain as a binary (yes/no) variable to indicate that a child is on-track in that domain, and overall as a binary ( $\mathrm{yes} / \mathrm{no}$ ) variable to indicate that a child is on-track with their overall development.

## Independent variables

The key independent variable of interest for this study was anemia, which was defined using the WHO recommended cutoffs for hemoglobin concentrations (WHO 2011). Children were defined as not anemic
when their hemoglobin level was at or above 11.0 grams per deciliter ( $\mathrm{g} / \mathrm{dL}$ ), adjusted for altitude in enumeration areas that are above 1,000 meters. Anemia was then categorized into severe (hemoglobin level below $7.0 \mathrm{~g} / \mathrm{dL}$ ), moderate (hemoglobin level between $7.0-9.9 \mathrm{~g} / \mathrm{dL}$ ), and mild (hemoglobin level between $10.0-10.9 \mathrm{~g} / \mathrm{dL}$ ). Hemoglobin concentrations were measured using capillary blood in the HemoCue ${ }^{\circledR}$ machine (Pullum et al. 2017).

For the purposes of our study, we explored all categorizations of anemia, but for the analyses presented here, the classification is reduced to 1 : severe or moderate; 0 : mild or not anemic. Severe or moderate anemia were hypothesized to be more strongly associated with the outcomes based on evidence from studies linking severity of iron deficiency anemia and ECD (Lozoff 2007; Stoltzfus et al. 2001).

Other covariates included in the model are described in Table 3.

## Table $3 \quad$ Variables used in analysis

| Variable | Definition | Categories | Binary variable constructed |
| :---: | :---: | :---: | :---: |
| Early learning/interaction |  |  |  |
| Early childhood education | Youngest children age 3-4 years living with interviewed mother who attend any organized learning or early childhood education program, such as a private or government facility, including kindergarten or community child care | Yes/No | Yes/No |
| Availability of books | Number of children's books or picture books available for youngest child age 04 years living with interviewed mother | - Continuous 0-9 <br> - 10+ | Child has 3 or more books available to them |
| Availability of playthings | Youngest children age 0-4 years living with interviewed mother who have toys available | - homemade toys or other toys made at home <br> - toys from a shop or manufactured toys <br> - household objects or objects found outside | Child has toys from at least 2 categories available to them |
| Support for learning | Youngest children age 0-4 years living with interviewed mother who engage in activities with household members over the age of 15 in the past 3 days | - read books to or looked at picture books with child <br> - told stories to child <br> - sang songs to or with child <br> - took child outside the home, compound, yard, or enclosure <br> - played with the child <br> - named, counted, or drew things with child | Child engaged in any (1 or more) activities with an adult household member |
| Adequate care | Number of times youngest children age $0-4$ years living with interviewed mother were left alone for more than an hour or left in the care of another child less than 10 years of age for more than an hour | Continuous 0-7 | Child was not left alone or in the care of another child less than 10 years of age for more than an hour at any time in the past week |

Table 3-Continued

| Variable | Definition | Categories | Binary variable constructed |
| :---: | :---: | :---: | :---: |
| Physical growth |  |  |  |
| Nutritional status | Children under 5 in the household who were not any of the following: stunted, underweight, overweight, or wasted ${ }^{\text {a }}$ | Yes/No | Yes/No |
| Wellness |  |  |  |
| Wellness | Children under 5 in the household whose mothers report that the child had not had diarrhea, fever, or cough in the past 2 weeks | Yes/No | Yes/No |
| Other covariates |  |  |  |
| Age of child | Age of child in months | Continuous |  |
| Maternal height | Maternal height in cm | - Short maternal stature ( $<145 \mathrm{~cm}$ ) <br> - No short maternal stature (>145 cm) | Short maternal stature (Yes/No) |
| Maternal work status | Mother worked in the last 7 days | Yes/No | Yes/No |
| Maternal education | Highest educational level of the mother | - No education <br> - Primary (ref) <br> - Secondary <br> - Higher |  |
| Paternal education | Highest educational level of the father | - No education <br> - Primary (ref) <br> - Secondary <br> - Higher |  |
| Wealth index | Composite measure of a household's cumulative living standard divided into quintiles. | - Lowest <br> - Second <br> - Middle <br> - Fourth <br> - Highest |  |
| Place of residence | Country census definitions were used to characterize rural and urban residence | Rural/urban | Rural/urban |
| Region | Country's first administrative level | First administrative level designations according to country |  |
| Number of adults age 15 or above in the household | Number of adults age 15 or above in the household | - 2 or fewer de jure residents over age 15 <br> - 3+ de jure residents over age 15 | 2 or fewer/3+ de jure residents over age 15 |
| Number of children under 5 in the household | Number of children under 5 in the household | - 2 or fewer children under age 5 <br> - $3+$ children under age 5 | 2 or fewer/3+ children under age 5 |
| Availability of improved sanitation and improved water source in the household | Improved sanitation includes: Include any non-shared toilet of the following types: flush/pour flush toilets to piped sewer systems and pit latrines, ventilated improved pit (VIP) latrines, and pit latrines with slabs. <br> Improved water source includes: piped water, protected springs, and rainwater. Households that use bottled water for drinking are classified as using an improved source only if the water they use for cooking and hand washing comes from an improved source | - No improved water source, no improved toilet <br> - No improved water source, improved toilet <br> - Improved water source, no improved toilet <br> - Improved water source, improved toilet |  |

Note: Maternal height was not collected in Senegal 2017. Child nutritional status was not included in Jordan 2017-18 due to data quality concerns.
${ }^{\text {a }}$ Stunted, underweight, overweight, or wasted were categorized as follows: children under 5 in the household were categorized as underweight, or normal according to the weight-for-age $\boldsymbol{z}$ score, categorized as stunted or normal according to the height-for-age $\boldsymbol{z}$ score, and categorized as wasted, normal, or overweight according to the weight-for-height z score in comparison to the mean on the WHO Child Growth Standards scale.

### 2.2.2 Statistical analysis

We examined the association between anemia status, the overall ECDI, and individual ECDI domains among children age 36-59 months. The statistical analysis was performed in Stata, using the generalized linear models (glm) set of estimation commands. Each survey was analyzed separately and not pooled because the relationships appear to differ from one survey to another. The models were adjusted for the weights and sample design (with strata and clusters) of each survey. Statistical significance was indicated, using $p<.05, .01$, and .001 criteria. The sample sizes varied considerably across the selected surveys, so there was variation in the power of the surveys to detect associations that exist in the reference populations. If a test statistic is not statistically significant, we cannot conclude that there is no association.

Model 1 examines the effect of anemia on ECD outcomes with no other covariates. Model 2 adds to Model 1 several child, family, and household covariates: child's age, wellness, and nutritional status; the mother's work status, education, and height; the father's education; the household wealth quintile; improved water and sanitation; place of residence; and region (Table 3). This model is important for identifying the effects of anemia on ECD net of the control variables. Finally Model 3 adds to Model 2 covariates on early learning/interaction variables (Table 3). Model 2 and Model 3 are important for identifying the effects of anemia on ECD net of the control variables and control plus early learning/interaction variables. To make the results easier to review, the results for each model were limited to an adjusted odds ratio for the effect of anemia on the ECD domains and overall index.

## 3 RESULTS

### 3.1 Percentage of Children with Anemia

More than $40 \%$ of children age $36-59$ months had any anemia in 7 out of 9 countries and the prevalence of any anemia ranged from $26 \%$ in Rwanda to $62 \%$ in Benin (Figure 2). The percentage of children with mild anemia ranged from $17 \%$ in Rwanda to $31 \%$ in Haiti and Cambodia. The prevalence of moderate anemia ranged from $8 \%$ in Jordan to $32 \%$ in Benin, and the prevalence of severe anemia ranged from less than $1 \%$ in Cambodia, Jordan, and Rwanda to 3\% in Burundi and Senegal (Figure 2).

Figure 2 Percentage of children age 36-59 months with anemia by severity


### 3.2 Early Childhood Development Index and Domain Scores

The percentage of children who were developmentally on-track for at least three of the four ECDI domains ranged from $41 \%$ in Burundi to $93 \%$ in Maldives (Figure 3).

Figure 3 Percentage of children age 36-59 months developmentally on-track by country


Most children were developmentally on-track for the physical domain, ranging from $91 \%$ in Uganda to $99 \%$ in Maldives (Figure 4). For the social-emotional domain the percentage of children on-track ranged from $60 \%$ in Burundi to $95 \%$ in Rwanda, and for the learning domain the percentage of children on-track ranged from $63 \%$ in Burundi to $96 \%$ in Maldives. The literacy-numeracy domain had the lowest percentages of children developmentally on-track overall, with 8 out of 9 countries showing less than $36 \%$ of children on track. Percentages ranged from $4 \%$ in Senegal to $85 \%$ in Maldives (Figure 4).
Figure 4 Percentage of children age 36-59 months on-track for the physical, social-emotional, learning, and literacy-numeracy ECDI domains by
 country

## Literacy-Numeracy



### 3.3 Regression Results

In Model 1, having moderate or severe anemia was significantly associated with lower odds of being developmentally on-track for several domains and the overall index in many countries, but the magnitude of the associations were very small ranging from an odds ratio $(O R)$ of 0.99 to 1.0 , and thus may not be clinically meaningful (Table 4). In Benin, Burundi, Haiti, Senegal, and Uganda having moderate or severe anemia was associated with lower odds of on-track literacy-numeracy development (all ORs $=0.99$ $p<.05)$. In Benin, Burundi, Jordan, Rwanda, and Senegal, having moderate or severe anemia was associated with lower odds of on-track learning development (ORs $=0.99 p<.05$ in Jordan and Rwanda and $O R s=1.00 p<.05$ in Benin, Burundi, and Senegal). Having moderate or severe anemia was associated with lower odds of on-track physical development in Haiti and Uganda (ORs $=0.99 p<.05$ ); and lower odds of on-track social-emotional development in Benin and Senegal ( $O R s=1.00 p<.05$ ). For the overall index, negative associations among children with moderate or severe anemia were found in Benin, Burundi, Rwanda and Senegal ( $O R=0.99 p<.05$ in Rwanda and $O R=1.00 p<.05$ in Benin, Burundi and Senegal) (Table 4).

When adjusted with child, family, and household characteristics (Model 2) and early learning/interaction variables (Model 3), most of the significant findings disappeared (Table 4). In Model 2, there were significant associations between having moderate or severe anemia and lower odds of on-track physical development in Haiti ( $A O R=0.99 p<.05$ ), learning development in Jordan ( $A O R=0.99 p<0.05$ ), and social-emotional development and overall index in Benin ( $A O R s=1.00 p<.05$ ). With the addition of the early learning/interaction variables to the model (Model 3), having moderate or severe anemia was only associated with lower odds of on-track social-emotional development in Benin $(A O R=1.00 p<.05)$ and physical development in Maldives ( $A O R s=0.97 p<.05$ ).

In the fully adjusted models (Model 3), several covariates were significantly associated with ECD domains and the overall index, but results varied by country (Appendix Tables A1-A5). Attendance at an early childhood education program was consistently associated with on-track development for the overall ECDI in six out of nine countries, literacy-numeracy in all nine countries, learning in six countries, and socialemotional and physical development in one country each. Small and mostly positive associations were observed between child's age and being on-track for the overall ECDI in five out of nine countries, literacynumeracy development in eight countries, learning development in four countries, and physical development in two countries. Wealth was associated with being on-track for the overall ECDI, literacynumeracy, social-emotional, and physical developments in four countries each, and learning development in two countries, but the direction of association varied across countries. For availability of books, playthings, support for learning, adequate care, mother's education, employment, father's education, child nutritional status, wellness, WASH, and residence, significant results were found with some ECD outcomes in fewer countries, but the direction of the associations were not consistent (Appendix Tables A1-A5).
Table 4 Odds ratios for the effect of anemia on on-track early childhood development domains and overall index among children age 3659 months across all countries

| Survey | ECD Domain/Index | Model ${ }^{\text {a }}$ |  |  |  | Model ${ }^{\text {b }}$ |  |  |  | Model 3 ${ }^{\text {c }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value |
| Benin 2017-18 | Literacy-numeracy | 0.99 | 0.99 | 1.00 | . 004 | 1.00 | 0.99 | 1.01 | . 880 | 1.00 | 0.99 | 1.01 | . 924 |
|  | Physical | 1.00 | 1.00 | 1.00 | . 390 | 1.00 | 1.00 | 1.01 | . 354 | 1.00 | 1.00 | 1.01 | . 358 |
|  | Social-emotional | 1.00 | 1.00 | 1.00 | . 042 | 1.00 | 0.99 | 1.00 | . 021 | 1.00 | 0.99 | 1.00 | . 023 |
|  | Learning | 1.00 | 0.99 | 1.00 | . 001 | 1.00 | 1.00 | 1.00 | . 507 | 1.00 | 1.00 | 1.00 | . 637 |
|  | ECDI | 1.00 | 0.99 | 1.00 | . 000 | 1.00 | 1.00 | 1.00 | . 043 | 1.00 | 1.00 | 1.00 | . 063 |
| Burundi 2016-17 | Literacy-numeracy | 0.99 | 0.99 | 1.00 | . 005 | 1.00 | 0.99 | 1.00 | . 722 | 1.00 | 1.00 | 1.01 | . 715 |
|  | Physical | 1.00 | 0.99 | 1.00 | . 165 | 1.00 | 0.99 | 1.00 | . 853 | 1.00 | 0.99 | 1.00 | . 855 |
|  | Social-emotional | 1.00 | 1.00 | 1.00 | . 258 | 1.00 | 1.00 | 1.00 | . 549 | 1.00 | 1.00 | 1.00 | . 469 |
|  | Learning | 1.00 | 1.00 | 1.00 | . 030 | 1.00 | 1.00 | 1.00 | . 360 | 1.00 | 1.00 | 1.00 | . 482 |
|  | ECDI | 1.00 | 1.00 | 1.00 | . 007 | 1.00 | 1.00 | 1.00 | . 175 | 1.00 | 1.00 | 1.00 | . 353 |
| Cambodia 2014 | Literacy-numeracy | 1.00 | 0.99 | 1.00 | . 343 | 1.00 | 1.00 | 1.01 | . 723 | 1.00 | 1.00 | 1.01 | . 487 |
|  | Physical | 0.99 | 0.99 | 1.00 | . 260 | 0.99 | 0.98 | 1.00 | . 100 | 0.99 | 0.98 | 1.00 | . 099 |
|  | Social-emotional | 1.00 | 0.99 | 1.00 | . 541 | 1.00 | 0.99 | 1.00 | . 227 | 1.00 | 0.99 | 1.00 | . 261 |
|  | Learning | 1.00 | 0.99 | 1.01 | . 938 | 1.00 | 1.00 | 1.01 | . 751 | 1.00 | 1.00 | 1.01 | . 662 |
|  | ECDI | 1.00 | 0.99 | 1.00 | . 337 | 1.00 | 0.99 | 1.00 | . 447 | 1.00 | 0.99 | 1.00 | . 548 |
| Haiti 2016-17 | Literacy-numeracy | 0.99 | 0.99 | 1.00 | . 000 | 0.99 | 0.99 | 1.00 | . 101 | 0.99 | 0.99 | 1.00 | . 133 |
|  | Physical | 0.99 | 0.98 | 1.00 | . 001 | 0.99 | 0.98 | 1.00 | . 038 | 0.99 | 0.98 | 1.00 | . 052 |
|  | Social-emotional | 1.00 | 1.00 | 1.00 | . 796 | 1.00 | 1.00 | 1.01 | . 602 | 1.00 | 1.00 | 1.01 | . 465 |
|  | Learning | 1.00 | 1.00 | 1.00 | . 832 | 1.00 | 1.00 | 1.01 | . 515 | 1.00 | 1.00 | 1.01 | . 374 |
|  | ECDI | 1.00 | 0.99 | 1.00 | . 129 | 1.00 | 1.00 | 1.01 | . 543 | 1.00 | 1.00 | 1.01 | . 393 |
| Jordan 2017-18 | Literacy-numeracy | 1.00 | 0.99 | 1.00 | . 102 | 1.00 | 0.99 | 1.00 | . 490 | 1.00 | 0.99 | 1.00 | . 547 |
|  | Physical | 1.00 | 0.98 | 1.01 | . 745 | 1.00 | 0.98 | 1.01 | . 707 | 1.00 | 0.98 | 1.01 | . 686 |
|  | Social-emotional | 1.00 | 1.00 | 1.01 | . 286 | 1.00 | 1.00 | 1.01 | . 480 | 1.00 | 1.00 | 1.01 | . 428 |
|  | Learning | 0.99 | 0.99 | 1.00 | . 011 | 0.99 | 0.99 | 1.00 | . 041 | 0.99 | 0.99 | 1.00 | . 100 |
|  | ECDI | 1.00 | 0.99 | 1.00 | . 064 | 1.00 | 0.99 | 1.00 | . 155 | 1.00 | 0.99 | 1.00 | . 215 |
| Maldives 2016-17 | Literacy-numeracy | 1.00 | 0.99 | 1.00 | . 466 | 1.00 | 0.98 | 1.01 | . 603 | 1.00 | 0.98 | 1.01 | . 532 |
|  | Physical | 0.99 | 0.98 | 1.00 | . 220 | 0.98 | 0.95 | 1.00 | . 095 | 0.97 | 0.95 | 0.98 | . 001 |
|  | Social-emotional | 1.00 | 0.99 | 1.01 | . 746 | 1.00 | 0.99 | 1.00 | . 281 | 1.00 | 0.99 | 1.01 | . 565 |
|  | Learning | 1.01 | 1.00 | 1.02 | . 208 | 1.01 | 0.99 | 1.02 | . 436 | 1.01 | 0.99 | 1.02 | . 422 |
|  | ECDI | 1.00 | 0.99 | 1.01 | . 996 | 1.00 | 0.99 | 1.02 | . 480 | 1.01 | 0.99 | 1.02 | . 330 |
| Rwanda 2019-20 | Literacy-numeracy | 1.00 | 0.99 | 1.00 | . 541 | 1.00 | 0.99 | 1.01 | . 690 | 1.00 | 0.99 | 1.01 | . 997 |
|  | Physical | 1.01 | 1.00 | 1.02 | . 140 | 1.01 | 1.00 | 1.03 | . 124 | 1.01 | 1.00 | 1.03 | . 120 |
|  | Social-emotional | 1.00 | 0.99 | 1.00 | . 366 | 1.00 | 0.99 | 1.01 | . 829 | 1.00 | 0.99 | 1.01 | . 741 |
|  | Learning | 0.99 | 0.99 | 1.00 | . 007 | 1.00 | 0.99 | 1.00 | . 472 | 1.00 | 0.99 | 1.00 | . 328 |
|  | ECDI | 0.99 | 0.99 | 1.00 | . 027 | 1.00 | 1.00 | 1.01 | . 913 | 1.00 | 0.99 | 1.00 | . 889 |
| Senegal 2017 | Literacy-numeracy | 0.99 | 0.98 | 0.99 | . 000 | 1.00 | 0.99 | 1.00 | . 146 | 1.00 | 0.99 | 1.00 | . 419 |
|  | Physical | 1.00 | 0.99 | 1.00 | . 254 | 1.00 | 0.99 | 1.00 | . 814 | 1.00 | 0.99 | 1.00 | . 402 |
|  | Social-emotional | 1.00 | 1.00 | 1.00 | . 031 | 1.00 | 1.00 | 1.00 | . 744 | 1.00 | 1.00 | 1.00 | . 421 |
|  | Learning | 1.00 | 0.99 | 1.00 | . 000 | 1.00 | 1.00 | 1.00 | . 567 | 1.00 | 1.00 | 1.00 | . 649 |
|  | ECDI | 1.00 | 0.99 | 1.00 | . 000 | 1.00 | 1.00 | 1.00 | . 441 | 1.00 | 1.00 | 1.00 | . 297 |
| Uganda 2016 | Literacy-numeracy | 0.99 | 0.99 | 1.00 | . 000 | 1.00 | 1.00 | 1.01 | . 578 | 1.00 | 1.00 | 1.01 | . 316 |
|  | Physical | 0.99 | 0.99 | 1.00 | . 000 | 1.00 | 0.99 | 1.00 | . 400 | 1.00 | 0.99 | 1.00 | . 294 |
|  | Social-emotional | 1.00 | 1.00 | 1.00 | . 439 | 1.00 | 1.00 | 1.01 | . 154 | 1.00 | 1.00 | 1.01 | . 173 |
|  | Learning | 1.00 | 0.99 | 1.00 | . 463 | 1.00 | 1.00 | 1.01 | . 229 | 1.00 | 1.00 | 1.01 | . 242 |
|  | ECDI | 1.00 | 0.99 | 1.00 | . 091 | 1.00 | 1.00 | 1.01 | . 114 | 1.00 | 1.00 | 1.01 | . 099 |

OR = odds ratio; $A O R$ = adjusted odds ratio; LB = lower bound of confidence interval; UB = upper bound of confidence interval
${ }^{\text {a }}$ Model 1: bivariate model with child anemia (moderate or severe) : adjusted for child nutritional status, child wellness, age of child, maternal height, education, employment, paternal education, number of adults age $15+$ in household, number of children under age 5 in household, improved sanitation, improved water source, wealth index, residence, region. In Jordan, child nutritional status was not included and in Senegal,

[^0]
## 4 DISCUSSION

This study examined associations between child anemia and ECD outcomes in population-based surveys in nine low- and middle-income countries. In most of the countries, anemia was a serious public health problem, and more than half of children were developmentally on-track, but there was variation across countries. Significant associations with several developmental outcomes were observed in bivariate analyses, but ORs were very close to 1 . In adjusted analyses, most associations were attenuated. There were only two statistically significant findings with social-emotional and physical development in Benin and Maldives, respectively. Both associations were small.

The unadjusted association between having anemia and early childhood development showed that children with moderate or severe anemia were less likely to be on-track developmentally for literacy-numeracy, physical, social emotional, learning, and the overall index in several countries. However, these associations were very small and have limited clinical significance, and it is also plausible that some could be spurious. Nevertheless, the direction of the associations were consistent for all developmental domains and the index across all countries. Our finding agrees with our hypothesized pathway between anemia and early childhood development and is supported by studies showing poorer cognitive, motor, and social-emotional development associated with iron deficiency anemia in young children under age 2 years in LMICs (Lozoff 2007). Further, other studies have reported significant associations with modest effect sizes between higher hemoglobin concentrations and better language, motor, and cognitive development in children under two years in LMICs (Larson, Martorell, and Bauer 2018; Prado et al. 2017). Given that we used moderate or severe anemia status as a proxy for iron deficiency anemia in our study, the limited significant associations and ORs very close to 1 are not surprising. Furthermore, it is possible for children to be iron deficient without anemia and this may also account for the small associations observed.

In adjusted regressions, we found a lack of association between anemia and ECD outcomes except for small associations with social-emotional and physical development in two countries. Our finding is contrary to other literature from baseline or endline assessments of micronutrient and lipid supplement interventions that show a complex relationship between anemia and ECD (Larson, Martorell, and Bauer 2018; Olney et al. 2009; Prado et al. 2017). In Ghana and Malawi, authors reported weak but direct associations between hemoglobin/iron status and language development among children 6-18 months, and stronger (direct) associations between hemoglobin/iron status and motor development among children 9-18 months in Burkina Faso (Prado et al. 2017). Among Zanzibari children age 15-19 months, direct associations were reported between hemoglobin concentration and motor development, and in India, weak direct and indirect associations between hemoglobin concentration, language, social and cognitive development were reported among children 12-18 months (Larson, Martorell, and Bauer 2018; Olney et al. 2009). There are a few explanations for our findings. Compared to our study, researchers in previous studies used different and more direct and specific measures of childhood development such as the Developmental Milestones Checklist-II, vocabulary checklists, and task tests which may partly explain our null results (Larson, Martorell, and Bauer 2018; Olney et al. 2009; Prado et al. 2017). Such assessments involve interviews and direct observations for a variety of domains based on age-specific milestones (Abubakar et al. 2008; Diamond 1985; Fenson et al. 2007; Prado et al. 2014). In addition, the prior studies used data from supplement trials and children who received the interventions may be more likely to show associations with ECD outcomes. Another reason is that anemia generally peaks around 12-24 months of age, a critical time
for brain development, and most studies examining the effects of iron deficiency anemia have focused on children under 2 years (Larson, Martorell, and Bauer 2018; Lozoff 2007; Olney et al. 2009; Prado et al. 2017). Most brain development also takes place before age three years and therefore, assessing children 36-59 months may not represent the most sensitive period to find associations (Grantham-McGregor et al. 2007) . By exploring relationships among older children, we may have potentially missed the biologically relevant window and thus our analyses find no associations. Another potential explanation is that we assessed current anemia status which may not reflect chronicity. The duration of anemia/iron deficiency anemia has been associated with worse cognitive and motor development in young children in Chile and Guatemala (Lozoff 2007). The effects of anemia on ECD may not be immediate and these cross-sectional analyses do not allow for understanding whether anemia was experienced before developmental delays.

Our analyses also controlled for several covariates highlighting the importance of early childhood education, age in months, and wealth status on early childhood development. Our finding that in most countries, attendance of an early childhood education program was strongly associated with on-track early childhood development outcomes is consistent with other reports among young children in LMICs (Appendix A1-5). Two reviews found positive effects of early childhood education programs on literacy, psychosocial and other cognitive development measures among preschool aged children and children under age 2 in LMICs (Engle et al. 2011; Rao et al. 2014) and recent studies found similar results for language, psychosocial, and motor development among young children ranging from age 12 to 59 months in LMICs (Bliznashka et al. 2021; Larson, Martorell, and Bauer 2018; Prado et al. 2017). We also observed small positive associations with age and in general children from wealthier households were more likely to be on-track developmentally (Appendix A1-5). Both variables likely have some interaction with early childhood education, but findings for wealth are consistent with others showing disparities in early childhood development by socioeconomic status (Engle et al. 2011; Prado et al. 2017). Overall, as evidenced by the Nurturing Care Framework, many factors contribute to a child's development and anemia is only one potential adverse exposure a child could have.

### 4.1 Strengths and Limitations

To our knowledge this was the first study to examine the association between anemia and ECD using population-based survey data in LMICs. Although our results did not show strong or consistent results across countries, they are representative of entire populations. Further, the adjusted models reinforce the importance of the multi-sectoral Nurturing Care Framework for policy and programmatic approaches that address country-specific social and environmental contexts.

Our study is not without limitations. The cross-sectional nature of the data means we cannot infer causality and thus the direction of associations is not certain. However, given the consistency of our few results with other studies on the direction of association, provides some reassurance. We already discussed several challenges related to the key variable of interest-that is, anemia as a proxy representing current status, and temporality and how this may have contributed to the null findings and weak associations. In addition, anemia was calculated as a binary variable. We could have used hemoglobin concentration as a continuous variable, but the effect is unlikely linear. Additionally, we considered using only severe anemia, but that would have limited our sample size. Inclusion of markers of iron deficiency could have strengthened the analysis, but these are not collected in DHS surveys. We controlled for several confounders based on conceptual relevance because we wanted to examine the effect of anemia in context, but these variables
likely attenuated our already weak associations. Path or mediation analyses could be conducted to better understand the pathways and examine direct and indirect contributions of anemia. Another limitation is our outcome. Although we analyzed each development domain and the overall index separately, the literacynumeracy and physical domains have been criticized (Bliznashka et al. 2021; Grantham-McGregor et al. 2007; McCoy et al. 2016) . The literacy-numeracy domain includes items that are too advanced for children age 36-59 months, and the physical domain includes items that are basic functionalities for most children age 36-59 months (McCoy et al. 2016). Another criticism is that the ECDI is missing domains or items that capture other relevant cognitive functions which develop between 36-59 months such as increased attention span and processing speed (Bliznashka et al. 2021; Grantham-McGregor et al. 2007). The ECDI was also not intended to be used for domain-specific analyses. The new ECDI 2030 overcomes many of the challenges with the ECDI, but at the time of these surveys was not available. The ECDI is also based on caregiver recall and therefore is subject to recall bias and not as rigorous as direct child observations.

### 4.2 Conclusions

Our study found virtually no associations between severe or moderate anemia and ECD domains and the overall ECD index among children age $36-59$ months. Positive associations were observed for early learning/interaction variables and a few demographic variables. Multi-sectoral interventions that target children early and address disparities are important to promote ECD in LMICs. Future research could replicate these analyses with the new ECDI 2030 or direct developmental assessments which address some of the limitations of the ECDI, and longitudinal studies with younger children could also address temporality issues. Additionally, studies unpacking the complex pathways between nutrition indicators and all domains of nurturing care, and early childhood development outcomes in different contexts could inform targeted ECD policies and programs. Alone, effects of nutrition and health interventions on early childhood development can be modest, but in tandem with interventions from other sectors, they can contribute to promoting ECD.

## REFERENCES

Abubakar, A., P. Holding, A. van Baar, C. R. Newton, and F. J. van de Vijver. 2008. "Monitoring Psychomotor Development in a Resource-Limited Setting: An Evaluation of the Kilifi Developmental Inventory." Annals of Tropical Paediatrics 28 (3): 217-26. https://www.ncbi.nlm.nih.gov/pubmed/18727851

Black, M. M., S. P. Walker, L. C. H. Fernald, C. T. Andersen, A. M. DiGirolamo, C. Lu, D. C. McCoy, et al. 2017. "Early Childhood Development Coming of Age: Science through the Life Course." The Lancet 389 (10064): 77-90.

Bliznashka, L., I. E. Udo, C. R. Sudfeld, W. W. Fawzi, and A. K. Yousafzai. 2021. "Associations between Women's Empowerment and Child Development, Growth, and Nurturing Care Practices in SubSaharan Africa: A Cross-Sectional Analysis of Demographic and Health Survey Data." PLoS Medicine 18 (9): e1003781. https://www.ncbi.nlm.nih.gov/pubmed/34529666

Bradley, R. H., and D. L. Putnick. 2012. "Housing Quality and Access to Material and Learning Resources within the Home Environment in Developing Countries." Child Development 83 (1): 76-91. https://www.ncbi.nlm.nih.gov/pubmed/22277008

Britto, P. R., S. J. Lye, K. Proulx, A. K. Yousafzai, S. G. Matthews, T. Vaivada, R. Perez-Escamilla, et al. 2017. "Nurturing Care: Promoting Early Childhood Development." The Lancet 389 (10064): 91-102.

De-Regil, L. M., M. E. Jefferds, A. C. Sylvetsky, and T. Dowswell. 2011. "Intermittent Iron Supplementation for Improving Nutrition and Development in Children under 12 Years of Age." Cochrane Database of Systematic Reviews (12): CD009085.
https://www.ncbi.nlm.nih.gov/pubmed/22161444
Diamond, A. 1985. "Development of the Ability to Use Recall to Guide Action, as Indicated by Infants' Performance on AB." Child Development 56 (4).

Engle, P. L., L. C. H. Fernald, H. Alderman, J. Behrman, C. O’Gara, A. Yousafzai, M. C. de Mello, et al. 2011. "Strategies for Reducing Inequalities and Improving Developmental Outcomes for Young Children in Low-Income and Middle-Income Countries." The Lancet 378 (9799): 1339-1353.

Fenson, L., V. A. Marchman, D. Thal, P. S. Dale, J. S. Reznick, and E. Bates. 2007. Macarthur-Bates Communicative Development Inventories User's Guide and Technical Manual. Second Edition ed. Baltimore: Paul H. Brookes Publishing Co.

GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. 2017. "Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016." The Lancet 390 (10100): 1211-1259.

Grantham-McGregor, S., and C. Ani. 2001. "A Review of Studies on the Effect of Iron Deficiency on Cognitive Development in Children." The Journal of Nutrition 131 (2S-2): 649S-666S; discussion 666S668S. https://www.ncbi.nlm.nih.gov/pubmed/11160596

Grantham-McGregor, S., Y. B. Cheung, S. Cueto, P. Glewwe, L. Richter, and B. Strupp. 2007. "Developmental Potential in the First 5 Years for Children in Developing Countries." The Lancet 369 (9555): 60-70.

John, C. C., M. M. Black, and C. A. Nelson, 3rd. 2017. "Neurodevelopment: The Impact of Nutrition and Inflammation During Early to Middle Childhood in Low-Resource Settings." Pediatrics 139 (Suppl 1): S59-S71. https://www.ncbi.nlm.nih.gov/pubmed/28562249

Kang, Y., V. M. Aguayo, R. K. Campbell, and K. P. West, Jr. 2018. "Association between Stunting and Early Childhood Development among Children Aged 36-59 Months in South Asia." Maternal \& Child Nutrition 14 Suppl 4: e12684. https://www.ncbi.nlm.nih.gov/pubmed/30499257

Larson, L. M., R. Martorell, and P. J. Bauer. 2018. "A Path Analysis of Nutrition, Stimulation, and Child Development among Young Children in Bihar, India." Child Development 89 (5): 1871-1886. https://www.ncbi.nlm.nih.gov/pubmed/29529358

Larson, L. M., K. S. Phiri, and S. R. Pasricha. 2017. "Iron and Cognitive Development: What Is the Evidence?" Annals of Nutrition \& Metabolism 71 Suppl 3: 25-38.
https://www.ncbi.nlm.nih.gov/pubmed/29268256
Loizillon, A., N. Petrowski, P. Britto, and C. Cappa. 2017. Development of the Early Childhood Development Index in Mics Surveys. MICS Methodological Papers, No. 6. New York: Data and Analytics Section, Division of Data, Research and Policy, UNICEF. https://mics.unicef.org/files?job=W1siZiIsIjIwMTcvMDkvMTUvMjEvMTUvNDMvMzc4L01JQ1NfTW V0aG9kb2xvZ2ljYWxfUGFwZXJfNi5wZGYiXV0\&sha=85c096f0b2c5b0c8

Lozoff, B. 2007. "Iron Deficiency and Child Development." Food \& Nutrition Bulletin 28 (4 Suppl): S560-71. https://www.ncbi.nlm.nih.gov/pubmed/18297894

Lu, C., M. M. Black, and L. M. Richter. 2016. "Risk of Poor Development in Young Children in LowIncome and Middle-Income Countries: An Estimation and Analysis at the Global, Regional, and Country Level." The Lancet Global Health 4 (12): e916-e922.

McCoy, D. C., E. D. Peet, M. Ezzati, G. Danaei, M. M. Black, C. R. Sudfeld, W. Fawzi, and G. Fink. 2016. "Early Childhood Developmental Status in Low- and Middle-Income Countries: National, Regional, and Global Prevalence Estimates Using Predictive Modeling." PLoS Medicine 13 (6): e1002034. https://www.ncbi.nlm.nih.gov/pubmed/27270467

Miller, A. C., M. B. Murray, D. R. Thomson, and M. C. Arbour. 2016. "How Consistent Are Associations between Stunting and Child Development? Evidence from a Meta-Analysis of Associations between Stunting and Multidimensional Child Development in Fifteen Low- and Middle-Income Countries." Public Health Nutrition 19 (8): 1339-47. https://www.ncbi.nlm.nih.gov/pubmed/26355426

Ngure, F. M., B. M. Reid, J. H. Humphrey, M. N. Mbuya, G. Pelto, and R. J. Stoltzfus. 2014. 'Water, Sanitation, and Hygiene (WASH), Environmental Enteropathy, Nutrition, and Early Child Development: Making the Links." Annals of the New York Academy of Sciences 1308 (1): 118-28.
http://www.ncbi.nlm.nih.gov/pubmed/24571214

Olney, D. K., P. K. Kariger, R. J. Stoltzfus, S. S. Khalfan, N. S. Ali, J. M. Tielsch, S. Sazawal, et al. 2009. "Development of Nutritionally at-Risk Young Children Is Predicted by Malaria, Anemia, and Stunting in Pemba, Zanzibar." The Journal of Nutrition 139 (4): 763-72.
https://www.ncbi.nlm.nih.gov/pubmed/19225131

Prado, E. L., S. Abbeddou, S. Adu-Afarwuah, M. Arimond, P. Ashorn, U. Ashorn, J. Bendabenda, et al. 2017. "Predictors and Pathways of Language and Motor Development in Four Prospective Cohorts of Young Children in Ghana, Malawi, and Burkina Faso." Journal of Child Psychology and Psychiatry, and Allied Disciplines 58 (11): 1264-1275. https://www.ncbi.nlm.nih.gov/pubmed/28543426

Prado, E. L., A. A. Abubakar, S. Abbeddou, E. Y. Jimenez, J. W. Some, and J. B. Ouedraogo. 2014. "Extending the Developmental Milestones Checklist for Use in a Different Context in Sub-Saharan Africa." Acta Paediatrica 103 (4): 447-54. https://www.ncbi.nlm.nih.gov/pubmed/24354938

Pullum, T., D. K. Collison, S. Namaste, and D. Garrett. 2017. Hemoglobin Data in DHS Surveys: Intrinsic Variation and Measurement Error. DHS Methodological Reports. Rockville, Maryland: ICF.

Rao, N., J. Sun, J. M. S. Wong, B. Weekes, P. Ip, S. Shaeffer, M. Young, et al. 2014. Early Childhood Development and Cognitive Development in Developing Countries: A Rigorous Literature Review. London: Department for International Development. http://eppi.ioe.ac.uk/cms/Default.aspx?tabid=3465

Sachdev, H., T. Gera, and P. Nestel. 2005. "Effect of Iron Supplementation on Mental and Motor Development in Children: Systematic Review of Randomised Controlled Trials." Public Health Nutrition 8 (2): 117-32. https://www.ncbi.nlm.nih.gov/pubmed/15877905

Singla, D. R., E. Kumbakumba, and F. E. Aboud. 2015. "Effects of a Parenting Intervention to Address Maternal Psychological Wellbeing and Child Development and Growth in Rural Uganda: A CommunityBased, Cluster-Randomised Trial." The Lancet Global Health 3 (8): e458-e469.

Stevens, G. A., M. M. Finucane, L. M. De-Regil, C. J. Paciorek, S. R. Flaxman, F. Branca, J. P. PeñaRosas, Z. A. Bhutta, and M. Ezzati. 2013. "Global, Regional, and National Trends in Haemoglobin Concentration and Prevalence of Total and Severe Anaemia in Children and Pregnant and Non-Pregnant Women for 1995-2011: A Systematic Analysis of Population-Representative Data." The Lancet Global Health 1 (1): e16-e25.

Stoltzfus, R. J., J. D. Kvalsvig, H. M. Chwaya, A. Montresor, M. Albonico, J. M. Tielsch, L. Savioli, and E. Pollitt. 2001. "Effects of Iron Supplementation and Anthelmintic Treatment on Motor and Language Development of Preschool Children in Zanzibar: Double Blind, Placebo Controlled Study." BMJ 323 (7326): 1389-93. https://www.ncbi.nlm.nih.gov/pubmed/11744561

Sudfeld, C. R., D. C. McCoy, G. Fink, A. Muhihi, D. C. Bellinger, H. Masanja, E. R. Smith, et al. 2015. "Malnutrition and Its Determinants Are Associated with Suboptimal Cognitive, Communication, and Motor Development in Tanzanian Children." The Journal of Nutrition 145 (12): 2705-14.
https://www.ncbi.nlm.nih.gov/pubmed/26446481
Wachs, T. D., M. Georgieff, S. Cusick, and B. S. McEwen. 2014. "Issues in the Timing of Integrated Early Interventions: Contributions from Nutrition, Neuroscience, and Psychological Research." Annals of the New York Academy of Sciences 1308: 89-106. https://www.ncbi.nlm.nih.gov/pubmed/24354763

Wachs, T. D., and A. Rahman. 2013. "The Nature and Impact of Risk and Protective Influences on Children's Development in Low-Income Countries." In Handbook of Early Childhood Development Research and Its Impact on Global Policy, edited by P. Britto, P. L. Engle and C. M. Super, 85-122. New York, NY: Oxford University Press.

Walker, S. P., T. D. Wachs, S. Grantham-McGregor, M. M. Black, C. A. Nelson, S. L. Huffman, H. Baker-Henningham, et al. 2011. "Inequality in Early Childhood: Risk and Protective Factors for Early Child Development." The Lancet 378 (9799): 1325-1338.

Walker, S. P., T. D. Wachs, J. Meeks Gardner, B. Lozoff, G. A. Wasserman, E. Pollitt, and J. A. Carter. 2007. "Child Development: Risk Factors for Adverse Outcomes in Developing Countries." The Lancet 369 (9556): 145-157.

WHO. 2011. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Geneva: Vitamin and Mineral Nutrition Information System WHO. http://www.who.int/vmnis/indicators/haemoglobin.pdf

WHO. 2017. Nutritional Anaemias: Tools for Effective Prevention and Control. Geneva: WHO. https://www.who.int/publications/i/item/9789241513067
APPENDIX

|  |  |
| :---: | :---: |
| Smememememm |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 隹 |  |
|  |  |
|  |  |
|  |  |
| , beam |  |
|  |  |
| cisum |  |

Appendix Table A1—Continued

| Variable | Maldives 2016-17 |  |  |  | Rwanda 2019--20 |  |  |  | Senegal 2017 |  |  |  | Uganda 2016 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | p value |
| Severe or moderate anemia | 1.01 | 0.99 | 1.02 | . 330 | 1.00 | 0.99 | 1.00 | . 889 | 1.00 | 1.00 | 1.00 | . 297 | 1.00 | 1.00 | 1.01 | . 099 |
| Early child education | 2.60 | 0.97 | 6.99 | . 059 | 2.18 | 1.43 | 3.33 | . 000 | 2.02 | 1.37 | 2.98 | . 000 | 3.37 | 2.19 | 5.19 | . 000 |
| Availability of books | 0.95 | 0.36 | 2.53 | . 925 | 1.56 | 0.29 | 8.27 | . 603 | 4.64 | 0.98 | 21.96 | . 053 | 3.98 | 0.72 | 22.02 | . 113 |
| Availability of playthings | 0.38 | 0.15 | 1.01 | . 051 | 1.08 | 0.75 | 1.57 | . 675 | 0.83 | 0.62 | 1.12 | . 225 | 0.99 | 0.70 | 1.41 | . 973 |
| Adequate care | 2.20 | 0.77 | 6.32 | . 140 | 1.22 | 0.84 | 1.78 | . 301 | 0.75 | 0.59 | 0.95 | . 017 | 1.12 | 0.82 | 1.53 | . 487 |
| Support for learning | 0.56 | 0.17 | 1.87 | . 344 | 0.99 | 0.89 | 1.10 | . 883 | 0.86 | 0.80 | 0.93 | . 000 | 1.06 | 0.96 | 1.16 | . 239 |
| Age in months (36-59) | 1.08 | 1.00 | 1.16 | . 050 | 1.02 | 1.00 | 1.04 | . 106 | 1.02 | 1.01 | 1.04 | . 007 | 0.99 | 0.97 | 1.02 | . 612 |
| No illness past 2 weeks | 0.38 | 0.12 | 1.13 | . 081 | 1.25 | 0.87 | 1.79 | . 237 | 0.92 | 0.72 | 1.18 | . 535 | 1.07 | 0.77 | 1.48 | . 706 |
| Not malnourished ${ }^{\text {a }}$ | 0.46 | 0.18 | 1.13 | . 089 | 1.05 | 0.75 | 1.48 | . 765 | 1.02 | 0.80 | 1.29 | . 881 | 0.99 | 0.72 | 1.38 | . 973 |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 2.72 | 0.22 | 33.26 | . 432 | 0.73 | 0.45 | 1.20 | . 219 | 0.74 | 0.56 | 0.98 | . 034 | 1.25 | 0.80 | 1.95 | . 335 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 5.71 | 1.80 | 18.12 | . 003 | 1.67 | 0.86 | 3.25 | . 128 | 0.64 | 0.38 | 1.09 | . 100 | 1.19 | 0.70 | 2.03 | . 509 |
| Higher | 8.09 | 1.86 | 35.23 | . 006 | 1.16 | 0.30 | 4.57 | . 826 | 4.48 | 1.20 | 16.78 | . 026 | 1.04 | 0.33 | 3.28 | . 950 |
| Mother working | 1.12 | 0.41 | 3.04 | . 823 | 1.45 | 0.96 | 2.18 | . 078 | 1.09 | 0.85 | 1.41 | . 484 | 1.06 | 0.69 | 1.64 | . 789 |
| Mother's height <145 cm | 0.58 | 0.15 | 2.18 | . 419 | 1.20 | 0.42 | 3.40 | . 733 |  |  |  |  | 0.34 | 0.08 | 1.45 | . 144 |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 1.19 | 0.23 | 6.20 | . 839 | 0.96 | 0.57 | 1.61 | . 866 | 0.78 | 0.58 | 1.06 | . 111 | 1.19 | 0.63 | 2.23 | . 594 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.33 | 0.39 | 4.59 | . 646 | 0.84 | 0.44 | 1.58 | . 582 | 1.04 | 0.64 | 1.68 | . 874 | 1.09 | 0.69 | 1.71 | . 706 |
| Higher | 1.71 | 0.40 | 7.32 | . 468 | 0.77 | 0.20 | 2.95 | . 705 | 1.38 | 0.61 | 3.11 | . 437 | 1.27 | 0.61 | 2.65 | . 521 |
| $3+$ adults in household | 1.55 | 0.50 | 4.77 | . 444 | 0.80 | 0.55 | 1.16 | . 247 | 0.90 | 0.61 | 1.31 | . 577 | 1.02 | 0.72 | 1.45 | . 909 |
| $3+$ children under 5 in household | 0.26 | 0.06 | 1.01 | . 051 | 0.61 | 0.34 | 1.07 | . 086 | 0.77 | 0.59 | 1.01 | . 056 | 1.38 | 0.86 | 2.22 | . 186 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- |  |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Water-, toilet+ |  |  |  |  | 1.29 | 0.71 | 2.34 | . 410 | 1.00 | 0.60 | 1.68 | . 991 | 1.93 | 0.72 | 5.15 | . 188 |
| Water+, toilet- |  |  |  |  | 1.54 | 0.88 | 2.72 | . 132 | 1.04 | 0.71 | 1.51 | . 857 | 0.82 | 0.50 | 1.35 | . 432 |
| Water+, toilet+ |  |  |  |  | 1.64 | 0.94 | 2.85 | . 079 | 1.60 | 1.06 | 2.43 | . 026 | 1.31 | 0.73 | 2.34 | . 364 |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 2.98 | 0.89 | 9.96 | . 076 | 1.51 | 0.96 | 2.36 | . 071 | 0.81 | 0.59 | 1.12 | . 201 | 1.11 | 0.69 | 1.78 | . 666 |
| Middle | 1.70 | 0.53 | 5.51 | . 373 | 2.31 | 1.35 | 3.97 | . 002 | 0.60 | 0.39 | 0.93 | . 021 | 1.65 | 1.00 | 2.72 | . 049 |
| Richer | 0.99 | 0.25 | 3.91 | . 989 | 2.92 | 1.60 | 5.34 | . 001 | 0.74 | 0.44 | 1.24 | . 258 | 0.85 | 0.48 | 1.50 | . 575 |
| Richest | 1.00 |  |  |  | 1.82 | 0.85 | 3.89 | . 124 | 0.69 | 0.33 | 1.44 | . 324 | 1.41 | 0.65 | 3.04 | . 380 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 0.40 | 0.08 | 2.08 | . 272 | 1.34 | 0.77 | 2.33 | . 297 | 1.20 | 0.84 | 1.73 | . 316 | 0.71 | 0.41 | 1.24 | . 231 |

[^1]Appendix Table A2 Adjusted odds ratios for on-track literacy-numeracy development among children age 36-59 months across all countries

| Variable | Benin 2017-18 |  |  |  | Burundi 2016-17 |  |  |  | Cambodia 2014 |  |  |  | Haiti 2016-17 |  |  |  | Jordan 2017-18 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $\stackrel{p}{p}$ | AOR | LB | UB | $\underset{\text { value }}{p}$ | AOR | LB | UB | $\underset{\text { value }}{p}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | value |
| Severe or moderate anemia | 1.00 | 0.99 | 1.01 | . 924 | 1.00 | 1.00 | 1.01 | . 715 | 1.00 | 1.00 | 1.01 | . 487 | 0.99 | 0.99 | 1.00 | . 133 | 1.00 | 0.99 | 1.00 | . 547 |
| Early child education | 7.92 | 4.55 | 13.77 | . 000 | 5.24 | 2.77 | 9.91 | . 000 | 4.34 | 2.60 | 7.26 | . 000 | 2.54 | 1.36 | 4.75 | . 004 | 3.10 | 1.71 | 5.61 | . 000 |
| Availability of books | 2.50 | 0.98 | 6.40 | . 055 | 4.06 | 0.68 | 24.23 | . 124 | 1.09 | 0.43 | 2.74 | . 854 | 3.72 | 1.70 | 8.14 | . 001 | 2.31 | 1.42 | 3.76 | . 001 |
| Availability of playthings | 1.92 | 1.05 | 3.49 | . 034 | 1.34 | 0.82 | 2.19 | . 236 | 1.24 | 0.80 | 1.92 | . 328 | 0.90 | 0.52 | 1.55 | . 712 | 1.68 | 1.11 | 2.53 | . 014 |
| Adequate care | 0.86 | 0.49 | 1.51 | . 603 | 1.00 | 0.60 | 1.66 | . 992 | 1.12 | 0.65 | 1.91 | . 686 | 1.00 | 0.54 | 1.88 | . 988 | 1.02 | 0.69 | 1.50 | . 938 |
| Support for learning | 0.97 | 0.84 | 1.12 | . 651 | 0.98 | 0.84 | 1.14 | . 778 | 1.12 | 1.01 | 1.26 | . 038 | 1.14 | 0.98 | 1.33 | . 095 | 1.02 | 0.89 | 1.18 | . 775 |
| Age in months (36-59) | 1.10 | 1.06 | 1.14 | . 000 | 1.04 | 1.01 | 1.07 | . 009 | 1.05 | 1.03 | 1.08 | . 000 | 1.12 | 1.08 | 1.17 | . 000 | 1.04 | 1.02 | 1.06 | . 000 |
| No illness past 2 weeks | 0.87 | 0.48 | 1.57 | . 637 | 1.04 | 0.68 | 1.60 | . 848 | 1.31 | 0.85 | 2.01 | . 226 | 1.05 | 0.62 | 1.77 | . 870 | 0.93 | 0.60 | 1.47 | . 767 |
| Not malnourished ${ }^{\text {a }}$ | 1.41 | 0.74 | 2.68 | . 300 | 1.43 | 0.92 | 2.21 | . 112 | 1.14 | 0.80 | 1.62 | . 466 | 2.08 | 0.94 | 4.60 | . 071 |  |  |  |  |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.63 | 0.32 | 1.25 | . 186 | 0.46 | 0.28 | 0.75 | . 002 | 0.62 | 0.32 | 1.20 | . 155 | 0.61 | 0.27 | 1.37 | . 228 | 0.28 | 0.09 | 0.82 | . 021 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 0.83 | 0.44 | 1.58 | . 570 | 3.61 | 1.52 | 8.58 | . 004 | 1.49 | 0.99 | 2.25 | . 055 | 0.72 | 0.37 | 1.40 | . 329 | 0.55 | 0.27 | 1.13 | . 102 |
| Higher | 1.02 | 0.14 | 7.57 | . 983 | 2.34 | 0.23 | 23.21 | . 468 | 2.14 | 0.58 | 7.85 | . 251 | 0.30 | 0.06 | 1.47 | . 136 | 0.70 | 0.32 | 1.54 | . 375 |
| Mother working | 1.53 | 0.70 | 3.32 | . 286 | 0.67 | 0.38 | 1.20 | . 178 | 1.35 | 0.91 | 2.01 | . 138 | 1.09 | 0.65 | 1.84 | . 736 | 1.10 | 0.63 | 1.95 | . 731 |
| Mother's height <145 cm | 2.72 | 0.58 | 12.87 | . 206 | 1.00 |  |  |  | 0.88 | 0.44 | 1.75 | . 712 | 1.48 | 0.10 | 22.09 | . 774 | 1.03 | 0.32 | 3.25 | . 965 |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.56 | 0.25 | 1.24 | . 152 | 0.75 | 0.43 | 1.29 | . 295 | 1.28 | 0.69 | 2.35 | . 433 | 1.14 | 0.55 | 2.34 | . 725 | 0.38 | 0.13 | 1.11 | . 076 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.11 | 0.54 | 2.30 | . 777 | 0.59 | 0.24 | 1.46 | . 252 | 1.18 | 0.76 | 1.85 | . 458 | 1.96 | 0.96 | 3.99 | . 064 | 1.05 | 0.58 | 1.89 | . 865 |
| Higher | 2.48 | 0.90 | 6.80 | . 078 | 0.62 | 0.13 | 2.98 | . 547 | 2.19 | 0.94 | 5.08 | . 069 | 2.92 | 0.97 | 8.83 | . 057 | 1.33 | 0.65 | 2.70 | . 437 |
| $3+$ adults in household | 0.97 | 0.57 | 1.64 | . 902 | 1.28 | 0.78 | 2.13 | . 329 | 0.86 | 0.61 | 1.21 | . 382 | 1.00 | 0.61 | 1.66 | . 988 | 1.34 | 0.87 | 2.05 | . 180 |
| $3+$ children under 5 in household | 1.15 | 0.57 | 2.32 | . 698 | 0.52 | 0.26 | 1.06 | . 070 | 0.73 | 0.39 | 1.36 | . 320 | 1.79 | 0.81 | 3.95 | . 146 | 1.20 | 0.80 | 1.81 | . 381 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |  |  |  |  |
| Water-, toilet+ | 0.91 | 0.28 | 3.04 | . 884 | 0.55 | 0.16 | 1.91 | . 343 | 1.34 | 0.58 | 3.12 | . 492 | 1.02 | 0.30 | 3.43 | . 974 |  |  |  |  |
| Water+, toilet- | 0.69 | 0.29 | 1.65 | . 408 | 0.82 | 0.35 | 1.89 | . 636 | 1.02 | 0.49 | 2.11 | . 964 | 0.85 | 0.38 | 1.93 | . 698 |  |  |  |  |
| Water+, toilet+ | 0.92 | 0.36 | 2.34 | . 866 | 0.71 | 0.27 | 1.85 | . 486 | 1.82 | 0.83 | 3.96 | . 132 | 0.52 | 0.22 | 1.21 | . 131 |  |  |  |  |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 1.25 | 0.30 | 5.14 | . 756 | 0.71 | 0.32 | 1.59 | . 404 | 0.92 | 0.50 | 1.70 | . 786 | 1.95 | 0.75 | 5.07 | . 171 | 1.51 | 0.96 | 2.36 | . 075 |
| Middle | 2.06 | 0.46 | 9.18 | . 344 | 1.06 | 0.50 | 2.23 | . 880 | 1.15 | 0.61 | 2.17 | . 668 | 3.01 | 1.24 | 7.30 | . 015 | 1.03 | 0.61 | 1.76 | . 909 |
| Richer | 2.60 | 0.63 | 10.79 | . 188 | 1.08 | 0.51 | 2.28 | . 839 | 1.04 | 0.54 | 1.97 | . 916 | 3.20 | 1.11 | 9.28 | . 032 | 0.95 | 0.51 | 1.75 | . 866 |
| Richest | 5.18 | 1.13 | 23.84 | . 035 | 0.73 | 0.20 | 2.68 | . 637 | 0.88 | 0.38 | 2.04 | . 759 | 5.44 | 1.61 | 18.32 | . 006 | 1.17 | 0.53 | 2.59 | . 697 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 0.85 | 0.49 | 1.47 | . 558 | 0.75 | 0.30 | 1.82 | . 520 | 1.33 | 0.81 | 2.18 | . 261 | 1.03 | 0.55 | 1.94 | . 921 | 0.72 | 0.46 | 1.11 | . 133 |

Appendix Table A2-Continued

| Variable | Maldives 2016-17 |  |  |  | Rwanda 2019-20 |  |  |  | Senegal 2017 |  |  |  | Uganda 2016 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value |
| Severe or moderate anemia | 1.00 | 0.98 | 1.01 | . 532 | 1.00 | 0.99 | 1.01 | . 997 | 1.00 | 0.99 | 1.00 | . 419 | 1.00 | 1.00 | 1.01 | . 316 |
| Early child education | 3.61 | 1.69 | 7.69 | . 001 | 3.32 | 2.14 | 5.15 | . 000 | 1.96 | 1.02 | 3.75 | . 042 | 21.58 | 13.33 | 34.96 | . 000 |
| Availability of books | 1.09 | 0.51 | 2.35 | . 823 | 1.87 | 0.63 | 5.51 | . 258 | 8.40 | 2.86 | 24.64 | . 000 | 1.92 | 0.62 | 5.94 | . 257 |
| Availability of playthings | 0.45 | 0.19 | 1.06 | . 069 | 1.05 | 0.68 | 1.63 | . 816 | 1.49 | 0.77 | 2.88 | . 231 | 1.72 | 1.02 | 2.93 | . 044 |
| Adequate care | 0.51 | 0.07 | 3.88 | . 516 | 0.91 | 0.57 | 1.46 | . 702 | 0.64 | 0.27 | 1.55 | . 324 | 1.32 | 0.83 | 2.09 | . 237 |
| Support for learning | 0.85 | 0.44 | 1.66 | . 639 | 1.10 | 0.97 | 1.25 | . 123 | 1.73 | 1.41 | 2.13 | . 000 | 1.05 | 0.95 | 1.17 | . 352 |
| Age in months (36-59) | 1.09 | 1.05 | 1.13 | . 000 | 1.06 | 1.03 | 1.09 | . 000 | 1.10 | 1.04 | 1.15 | . 000 | 1.03 | 1.00 | 1.06 | . 093 |
| No illness past 2 weeks | 1.21 | 0.45 | 3.23 | . 706 | 1.26 | 0.79 | 2.01 | . 323 | 1.15 | 0.59 | 2.24 | . 691 | 1.03 | 0.64 | 1.65 | . 914 |
| Not malnourished ${ }^{\text {a }}$ | 0.96 | 0.50 | 1.87 | . 911 | 1.79 | 1.08 | 2.97 | . 023 | 1.81 | 0.78 | 4.19 | . 168 | 1.47 | 0.91 | 2.36 | . 116 |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 3.63 | 0.12 | 114.20 | . 461 | 0.63 | 0.32 | 1.22 | . 169 | 0.32 | 0.13 | 0.80 | . 015 | 0.47 | 0.19 | 1.14 | . 096 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 2.94 | 1.10 | 7.84 | . 032 | 1.47 | 0.88 | 2.46 | . 138 | 0.80 | 0.34 | 1.86 | . 599 | 0.96 | 0.52 | 1.77 | . 898 |
| Higher | 12.02 | 1.85 | 78.15 | . 009 | 1.68 | 0.60 | 4.69 | . 324 | 11.14 | 2.35 | 52.87 | . 003 | 1.30 | 0.36 | 4.63 | . 687 |
| Mother working | 1.00 | 0.53 | 1.89 | . 994 | 0.79 | 0.48 | 1.32 | . 376 | 1.01 | 0.47 | 2.18 | . 975 | 0.68 | 0.34 | 1.36 | . 270 |
| Mother's height <145 cm | 1.22 | 0.44 | 3.40 | . 699 | 1.51 | 0.38 | 6.01 | . 555 |  |  |  |  | 0.97 | 0.17 | 5.39 | . 971 |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 8.76 | 2.04 | 37.57 | . 004 | 0.98 | 0.45 | 2.16 | . 964 | 0.29 | 0.11 | 0.78 | . 015 | 0.50 | 0.19 | 1.30 | . 153 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.11 | 0.48 | 2.56 | . 806 | 0.66 | 0.34 | 1.28 | . 218 | 0.49 | 0.22 | 1.12 | . 090 | 1.25 | 0.69 | 2.26 | . 465 |
| Higher | 1.05 | 0.30 | 3.67 | . 943 | 0.80 | 0.29 | 2.23 | . 672 | 0.62 | 0.18 | 2.20 | . 462 | 1.14 | 0.48 | 2.69 | . 765 |
| $3+$ adults in household | 1.36 | 0.57 | 3.23 | . 480 | 1.17 | 0.72 | 1.91 | . 528 | 2.82 | 0.96 | 8.30 | . 059 | 1.01 | 0.60 | 1.70 | . 977 |
| $3+$ children under 5 in household | 0.94 | 0.40 | 2.21 | . 879 | 0.69 | 0.30 | 1.59 | . 386 | 0.76 | 0.37 | 1.56 | . 448 | 0.84 | 0.46 | 1.55 | . 587 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- |  |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Water-, toilet+ |  |  |  |  | 0.88 | 0.30 | 2.59 | . 813 | 2.96 | 0.45 | 19.38 | . 256 | 1.12 | 0.40 | 3.12 | . 835 |
| Water+, toilet- |  |  |  |  | 2.54 | 0.87 | 7.41 | . 087 | 1.32 | 0.17 | 10.49 | . 793 | 1.54 | 0.76 | 3.13 | . 231 |
| Water+, toilet+ |  |  |  |  | 1.74 | 0.63 | 4.81 | . 282 | 3.16 | 0.39 | 25.45 | . 279 | 1.19 | 0.52 | 2.70 | . 679 |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 3.37 | 1.33 | 8.49 | . 010 | 1.63 | 0.77 | 3.46 | . 199 | 1.49 | 0.22 | 10.28 | . 687 | 2.32 | 1.00 | 5.34 | . 049 |
| Middle | 3.86 | 1.71 | 8.73 | . 001 | 1.85 | 0.83 | 4.10 | . 132 | 1.75 | 0.28 | 11.00 | . 548 | 5.39 | 2.35 | 12.35 | . 000 |
| Richer | 0.83 | 0.25 | 2.69 | . 749 | 1.26 | 0.54 | 2.93 | . 588 | 1.30 | 0.14 | 12.08 | . 818 | 4.28 | 1.70 | 10.77 | . 002 |
| Richest | 0.20 | 0.02 | 2.42 | . 203 | 3.09 | 1.27 | 7.52 | . 013 | 2.70 | 0.32 | 23.16 | . 363 | 5.38 | 1.81 | 15.99 | . 003 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 0.43 | 0.07 | 2.49 | . 342 | 1.01 | 0.50 | 2.01 | . 986 | 0.87 | 0.37 | 2.05 | . 754 | 0.73 | 0.40 | 1.34 | . 309 |

[^2]Appendix Table A3 Adjusted odds ratios for on-track physical development among children age 36-59 months across all countries

| Variable | Benin 2017-18 |  |  |  | Burundi 2016-17 |  |  |  | Cambodia 2014 |  |  |  | Haiti 2016-17 |  |  |  | Jordan 2017-18 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\underset{\substack{p \\ \text { value }}}{ }$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ |
| Severe or moderate anemia | 1.00 | 1.00 | 1.01 | . 358 | 1.00 | 0.99 | 1.00 | . 855 | 0.99 | 0.98 | 1.00 | . 099 | 0.99 | 0.98 | 1.00 | . 052 | 1.00 | 0.98 | 1.01 | . 686 |
| Early child education | 1.74 | 0.75 | 4.08 | . 198 | 1.64 | 0.60 | 4.47 | . 334 | 0.87 | 0.15 | 5.09 | . 876 | 1.47 | 0.75 | 2.89 | . 258 | 1.34 | 0.26 | 6.90 | . 726 |
| Availability of books | 1.00 |  |  |  | 1.00 |  |  |  | 1.22 | 0.17 | 8.82 | . 843 | 0.44 | 0.17 | 1.14 | . 090 | 1.54 | 0.62 | 3.84 | . 349 |
| Availability of playthings | 1.23 | 0.75 | 2.02 | . 418 | 2.31 | 1.31 | 4.07 | . 004 | 0.83 | 0.38 | 1.83 | . 650 | 0.95 | 0.54 | 1.70 | . 874 | 0.74 | 0.33 | 1.68 | . 478 |
| Adequate care | 0.93 | 0.58 | 1.50 | . 766 | 1.20 | 0.73 | 1.98 | . 469 | 0.55 | 0.11 | 2.74 | . 465 | 0.84 | 0.41 | 1.73 | . 644 | 0.26 | 0.11 | 0.58 | . 001 |
| Support for learning | 1.22 | 1.07 | 1.40 | . 003 | 1.03 | 0.90 | 1.19 | . 651 | 0.87 | 0.70 | 1.08 | . 194 | 1.19 | 0.97 | 1.47 | . 095 | 0.68 | 0.47 | 0.99 | . 046 |
| Age in months (36-59) | 1.02 | 0.99 | 1.05 | . 206 | 1.03 | 1.00 | 1.06 | . 059 | 1.02 | 0.95 | 1.08 | . 620 | 1.00 | 0.93 | 1.06 | . 896 | 0.97 | 0.93 | 1.02 | . 295 |
| No illness past 2 weeks | 1.81 | 1.12 | 2.95 | . 016 | 1.06 | 0.68 | 1.67 | . 785 | 1.47 | 0.58 | 3.76 | . 418 | 2.18 | 0.84 | 5.65 | . 110 | 1.11 | 0.43 | 2.87 | . 829 |
| Not malnourished ${ }^{\text {a }}$ | 1.64 | 1.06 | 2.55 | . 027 | 0.87 | 0.55 | 1.38 | . 555 | 1.00 | 0.45 | 2.22 | 1.000 | 1.04 | 0.49 | 2.20 | . 923 |  |  |  |  |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 1.28 | 0.64 | 2.57 | . 485 | 1.21 | 0.73 | 2.00 | . 471 | 1.56 | 0.52 | 4.65 | . 424 | 1.46 | 0.39 | 5.48 | . 572 | 0.82 | 0.11 | 5.89 | . 845 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 2.30 | 0.66 | 8.08 | . 192 | 1.26 | 0.27 | 5.80 | . 770 | 0.83 | 0.33 | 2.10 | . 696 | 3.52 | 0.92 | 13.47 | . 065 | 2.29 | 0.78 | 6.71 | . 130 |
| Higher | 0.19 | 0.03 | 1.34 | . 095 | 1.00 |  |  |  | 1.48 | 0.10 | 21.47 | . 772 | 1.00 |  |  |  | 1.89 | 0.61 | 5.85 | . 266 |
| Mother working | 1.50 | 0.81 | 2.75 | . 194 | 0.85 | 0.38 | 1.88 | . 682 | 0.88 | 0.34 | 2.27 | . 792 | 1.14 | 0.54 | 2.40 | . 725 | 0.41 | 0.17 | 1.03 | . 058 |
| Mother's height < 145 cm | 0.49 | 0.09 | 2.60 | . 402 | 1.08 | 0.41 | 2.82 | . 875 | 2.10 | 0.24 | 18.46 | . 504 |  |  |  |  |  |  |  |  |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 1.29 | 0.64 | 2.60 | . 482 | 0.96 | 0.61 | 1.52 | . 869 | 1.69 | 0.53 | 5.36 | . 374 | 1.02 | 0.48 | 2.17 | . 952 | 0.18 | 0.04 | 0.92 | . 040 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.04 | 0.48 | 2.27 | . 917 | 1.20 | 0.39 | 3.76 | . 749 | 1.72 | 0.61 | 4.87 | . 307 | 1.54 | 0.46 | 5.14 | . 483 | 0.69 | 0.23 | 2.11 | . 519 |
| Higher | 1.32 | 0.21 | 8.47 | . 768 | 3.58 | 0.24 | 53.95 | . 356 | 2.51 | 0.47 | 13.56 | . 284 | 1.00 |  |  |  | 1.89 | 0.45 | 8.00 | . 388 |
| $3+$ adults in household | 0.57 | 0.34 | 0.96 | . 034 | 0.68 | 0.43 | 1.09 | . 113 | 0.61 | 0.26 | 1.44 | . 255 | 0.61 | 0.30 | 1.24 | . 170 | 0.98 | 0.41 | 2.35 | . 960 |
| $3+$ children under 5 in household | 0.84 | 0.48 | 1.47 | . 535 | 0.71 | 0.41 | 1.24 | . 229 | 1.00 |  |  |  | 1.22 | 0.42 | 3.52 | . 710 | 0.66 | 0.25 | 1.75 | . 401 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |  |  |  |  |
| Water-, toilet+ | 3.14 | 0.36 | 27.45 | . 301 | 1.50 | 0.54 | 4.19 | . 434 | 2.32 | 0.38 | 14.10 | . 360 | 5.42 | 0.40 | 73.73 | . 204 |  |  |  |  |
| Water+, toilet- | 0.85 | 0.47 | 1.54 | . 589 | 0.53 | 0.26 | 1.11 | . 091 | 0.98 | 0.34 | 2.86 | . 974 | 0.86 | 0.32 | 2.36 | . 772 |  |  |  |  |
| Water+, toilet+ | 1.20 | 0.51 | 2.81 | . 678 | 0.87 | 0.38 | 1.99 | . 747 | 3.72 | 0.56 | 24.65 | . 173 | 1.94 | 0.56 | 6.75 | . 295 |  |  |  |  |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 0.65 | 0.26 | 1.62 | . 353 | 1.14 | 0.60 | 2.18 | . 691 | 3.47 | 1.16 | 10.41 | . 027 | 0.78 | 0.32 | 1.89 | . 582 | 0.44 | 0.17 | 1.13 | . 088 |
| Middle | 0.64 | 0.25 | 1.63 | . 353 | 0.81 | 0.45 | 1.49 | . 505 | 14.33 | 3.93 | 52.22 | . 000 | 0.34 | 0.11 | 1.03 | . 056 | 0.55 | 0.24 | 1.25 | . 152 |
| Richer | 0.43 | 0.16 | 1.14 | . 091 | 1.68 | 0.85 | 3.32 | . 132 | 3.12 | 0.34 | 28.86 | . 316 | 0.38 | 0.07 | 2.11 | . 265 | 0.58 | 0.14 | 2.47 | . 459 |
| Richest | 0.14 | 0.04 | 0.46 | . 001 | 1.03 | 0.36 | 2.93 | . 953 | 1.23 | 0.17 | 9.15 | . 838 | 0.52 | 0.06 | 4.19 | . 537 | 27.28 | 2.18 | 342.03 | . 010 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 0.52 | 0.26 | 1.04 | . 064 | 2.17 | 0.87 | 5.42 | . 096 | 2.67 | 0.48 | 14.81 | . 259 | 0.26 | 0.06 | 1.17 | . 079 | 0.78 | 0.29 | 2.14 | . 633 |

Appendix Table A3-Continued

| Variable | Maldives 2016-17 |  |  |  | Rwanda 2019-20 |  |  |  | Senegal 2017 |  |  |  | Uganda 2016 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value |
| Severe or moderate anemia | 0.97 | 0.95 | 0.98 | . 001 | 1.01 | 1.00 | 1.03 | . 120 | 1.00 | 0.99 | 1.00 | . 402 | 1.00 | 0.99 | 1.00 | . 294 |
| Early child education | 0.01 | 0.00 | 1.60 | . 073 | 1.09 | 0.50 | 2.36 | . 833 | 1.78 | 0.85 | 3.73 | . 126 | 2.40 | 1.07 | 5.41 | . 034 |
| Availability of books |  |  |  |  |  |  |  |  |  |  |  |  | 0.42 | 0.07 | 2.48 | . 336 |
| Availability of playthings | 2.66 | 0.40 | 17.90 | . 309 | 0.67 | 0.32 | 1.39 | . 282 | 0.58 | 0.33 | 1.00 | . 049 | 1.51 | 0.82 | 2.77 | . 183 |
| Adequate care | 55.67 | 4.45 | 697.19 | . 002 | 0.75 | 0.32 | 1.75 | . 509 | 0.70 | 0.44 | 1.12 | . 139 | 0.95 | 0.57 | 1.58 | . 841 |
| Support for learning | 9.14 | 1.52 | 55.07 | . 016 | 0.95 | 0.78 | 1.16 | . 627 | 0.76 | 0.67 | 0.87 | . 000 | 0.89 | 0.77 | 1.04 | . 153 |
| Age in months (36-59) | 0.88 | 0.78 | 0.99 | . 037 | 1.05 | 1.00 | 1.09 | . 057 | 1.01 | 0.98 | 1.04 | . 641 | 0.96 | 0.93 | 1.00 | . 047 |
| No illness past 2 weeks | 0.01 | 0.00 | 1.33 | . 065 | 1.15 | 0.57 | 2.30 | . 694 | 0.72 | 0.43 | 1.22 | . 223 | 0.75 | 0.44 | 1.29 | . 301 |
| Not malnourished ${ }^{\text {a }}$ |  |  |  |  | 1.09 | 0.55 | 2.17 | . 806 | 1.24 | 0.73 | 2.11 | . 430 | 1.10 | 0.62 | 1.96 | . 750 |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.00 | 0.00 | 1.49 | . 060 | 0.53 | 0.21 | 1.35 | . 181 | 0.26 | 0.13 | 0.53 | . 000 | 1.43 | 0.65 | 3.17 | . 377 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 54.84 | 0.69 | 4,328.96 | . 072 | 1.25 | 0.35 | 4.51 | . 733 | 0.85 | 0.23 | 3.13 | . 804 | 3.76 | 1.28 | 11.06 | . 016 |
| Higher | 10.54 | 0.20 | 558.71 | . 241 | 0.63 | 0.03 | 13.31 | . 765 | 0.09 | 0.02 | 0.34 | . 001 | 1.03 | 0.22 | 4.87 | . 971 |
| Mother working | 36.35 | 1.50 | 883.62 | . 028 | 0.70 | 0.25 | 1.95 | . 489 | 1.26 | 0.72 | 2.21 | . 408 | 2.11 | 1.09 | 4.08 | . 028 |
| Mother's height <145 cm | 0.00 | 0.00 | 4.23 | . 109 |  |  |  |  |  |  |  |  | 1.44 | 0.21 | 9.84 | . 707 |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.22 | 0.01 | 3.67 | . 287 | 0.92 | 0.38 | 2.21 | . 845 | 1.08 | 0.52 | 2.24 | . 839 | 0.63 | 0.31 | 1.28 | . 200 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 0.00 | 0.00 | 20.65 | . 173 | 0.59 | 0.15 | 2.28 | . 445 | 0.51 | 0.13 | 1.98 | . 332 | 0.93 | 0.44 | 1.95 | . 842 |
| Higher | 0.01 | 0.00 | 39.26 | . 274 | 1.00 |  |  |  | 5.11 | 0.81 | 32.24 | . 082 | 0.68 | 0.23 | 2.00 | . 478 |
| $3+$ adults in household |  |  |  |  | 0.70 | 0.36 | 1.35 | . 285 | 0.92 | 0.38 | 2.19 | . 845 | 1.06 | 0.62 | 1.80 | . 830 |
| $3+$ children under 5 in household | 0.91 | 0.17 | 4.88 | . 915 | 1.56 | 0.40 | 6.12 | . 524 | 0.93 | 0.54 | 1.58 | . 775 | 0.79 | 0.38 | 1.66 | . 532 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- |  |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Water-, toilet+ |  |  |  |  | 0.35 | 0.07 | 1.68 | . 188 | 0.66 | 0.23 | 1.92 | . 445 | 1.26 | 0.13 | 12.35 | . 844 |
| Water+, toilet- |  |  |  |  | 0.40 | 0.10 | 1.63 | . 201 | 0.90 | 0.43 | 1.84 | . 764 | 0.73 | 0.25 | 2.10 | . 558 |
| Water+, toilet+ |  |  |  |  | 0.39 | 0.10 | 1.46 | . 161 | 0.67 | 0.31 | 1.44 | . 305 | 0.47 | 0.16 | 1.38 | . 169 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 0.00 | 0.00 | 1.12 | . 055 | 1.05 | 0.45 | 2.47 | . 910 | 1.12 | 0.64 | 1.96 | . 684 | 1.28 | 0.61 | 2.69 | . 515 |
| Middle | 0.01 | 0.00 | 0.66 | . 033 | 3.82 | 1.15 | 12.74 | . 029 | 0.67 | 0.33 | 1.34 | . 257 | 2.03 | 0.93 | 4.44 | . 075 |
| Richer | 0.00 | 0.00 | 0.09 | . 017 | 2.84 | 0.92 | 8.79 | . 070 | 0.65 | 0.27 | 1.58 | . 342 | 1.73 | 0.70 | 4.27 | . 236 |
| Richest |  |  |  |  | 2.87 | 0.76 | 10.76 | . 118 | 2.52 | 0.55 | 11.57 | . 232 | 1.92 | 0.59 | 6.31 | . 279 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 1.00 |  |  |  | 1.40 | 0.43 | 4.55 | . 570 | 1.09 | 0.63 | 1.89 | . 764 | 0.25 | 0.07 | 0.86 | . 029 |

$A O R=$ adjusted odds ratio; LB = lower bound of confidence interval; UB = upper bound of confidence interval
Note: Models were adjusted for region. In Jordan child nutritional status was not included and in Senegal maternal height was not included. Note: Models were adjusted for region. In Jords indicate that no coefficients were produced in the model because of small sample sizes.
Appendix Table A4 Adjusted odds ratios for on-track for social-emotional development among children age 36-59 months across all countries

| Variable | Benin 2017-18 |  |  |  | Burundi 2016-17 |  |  |  | Cambodia 2014 |  |  |  | Haiti 2016-17 |  |  |  | Jordan 2017-18 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ |
| Severe or moderate anemia | 1.00 | 0.99 | 1.00 | . 023 | 1.00 | 1.00 | 1.00 | . 469 | 1.00 | 0.99 | 1.00 | . 261 | 1.00 | 1.00 | 1.01 | . 465 | 1.00 | 1.00 | 1.01 | . 428 |
| Early child education | 0.89 | 0.60 | 1.32 | . 578 | 1.20 | 0.70 | 2.04 | . 504 | 0.85 | 0.53 | 1.37 | . 507 | 0.83 | 0.51 | 1.36 | . 468 | 0.70 | 0.39 | 1.27 | . 245 |
| Availability of books | 0.43 | 0.20 | 0.95 | . 036 | 0.27 | 0.06 | 1.23 | . 090 | 0.76 | 0.38 | 1.53 | . 445 | 1.28 | 0.67 | 2.46 | . 458 | 1.66 | 1.00 | 2.74 | . 050 |
| Availability of playthings | 1.00 | 0.75 | 1.33 | . 997 | 0.78 | 0.60 | 1.02 | . 070 | 1.12 | 0.82 | 1.53 | . 478 | 1.16 | 0.79 | 1.70 | . 458 | 0.72 | 0.44 | 1.17 | . 186 |
| Adequate care | 1.33 | 1.01 | 1.76 | . 044 | 1.31 | 1.03 | 1.66 | . 025 | 1.45 | 0.92 | 2.28 | . 107 | 1.75 | 1.13 | 2.72 | . 013 | 0.62 | 0.42 | 0.92 | . 018 |
| Support for learning | 1.08 | 1.01 | 1.16 | . 032 | 1.04 | 0.97 | 1.13 | . 258 | 1.07 | 0.98 | 1.16 | . 114 | 0.97 | 0.87 | 1.10 | . 667 | 0.99 | 0.86 | 1.14 | . 909 |
| Age in months (36-59) | 1.01 | 0.99 | 1.03 | . 397 | 1.01 | 0.99 | 1.03 | . 187 | 1.00 | 0.98 | 1.02 | . 793 | 1.00 | 0.98 | 1.03 | . 915 | 0.99 | 0.96 | 1.01 | . 343 |
| No illness past 2 weeks | 1.19 | 0.91 | 1.55 | . 194 | 1.18 | 0.93 | 1.49 | . 174 | 0.87 | 0.63 | 1.22 | . 423 | 1.22 | 0.83 | 1.79 | . 301 | 1.01 | 0.70 | 1.47 | . 938 |
| Not malnourished ${ }^{\text {a }}$ | 1.05 | 0.80 | 1.37 | . 717 | 1.02 | 0.78 | 1.33 | . 910 | 1.50 | 1.11 | 2.02 | . 008 | 0.90 | 0.57 | 1.44 | . 666 |  |  |  |  |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.80 | 0.55 | 1.17 | . 251 | 0.98 | 0.76 | 1.27 | . 894 | 1.52 | 1.00 | 2.33 | . 051 | 1.76 | 1.02 | 3.04 | . 041 | 1.09 | 0.37 | 3.21 | . 872 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | $1.00$ |  |  |  |
| Secondary | 0.83 | 0.49 | 1.38 | .469 | 1.21 | 0.68 | 2.15 | . 512 | 1.26 | 0.86 | 1.85 | . 235 | 1.08 | 0.63 | 1.84 | . 784 | 0.80 | 0.37 | 1.72 | . 560 |
| Higher | 18.55 | 2.05 | 168.25 | . 010 | 5.42 | 1.19 | 24.81 | . 029 | 1.05 | 0.30 | 3.58 | . 944 | 2.12 | 0.28 | 15.90 | . 464 | 0.76 | 0.33 | 1.76 | . 527 |
| Mother working | 0.81 | 0.53 | 1.24 | . 331 | 1.36 | 0.91 | 2.05 | . 133 | 0.91 | 0.61 | 1.36 | . 645 | 0.98 | 0.65 | 1.46 | . 916 | 1.31 | 0.73 | 2.35 | . 361 |
| Mother's height <145 cm | 1.95 | 0.52 | 7.23 | . 318 | 0.69 | 0.41 | 1.15 | . 158 | 1.38 | 0.71 | 2.68 | . 342 | 0.57 | 0.06 | 5.09 | . 612 | 0.46 | 0.12 | 1.76 | . 255 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 1.07 | 0.75 | 1.53 | . 716 | 1.34 | 1.05 | 1.71 | . 021 | 1.02 | 0.59 | 1.77 | . 940 | 0.66 | 0.40 | 1.07 | . 093 | 1.63 | 0.61 | 4.36 | . 329 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.18 | 0.81 | 1.71 | . 397 | 0.99 | 0.60 | 1.62 | . 956 | 1.12 | 0.77 | 1.61 | . 552 | 0.77 | 0.44 | 1.35 | . 361 | 1.79 | 1.00 | 3.19 | . 050 |
| Higher | 1.10 | 0.50 | 2.40 | . 811 | 0.64 | 0.21 | 1.88 | . 411 | 1.08 | 0.44 | 2.63 | . 870 | 1.55 | 0.59 | 4.11 | . 374 | 2.09 | 1.08 | 4.03 | . 028 |
| $3+$ adults in household | 1.30 | 0.97 | 1.74 | . 083 | 1.18 | 0.92 | 1.51 | . 202 | 0.96 | 0.70 | 1.32 | . 813 | 1.18 | 0.78 | 1.77 | . 431 | 1.40 | 0.93 | 2.09 | . 104 |
| $3+$ children under 5 in household | 0.81 | 0.60 | 1.08 | . 149 | 0.62 | 0.46 | 0.82 | . 001 | 1.30 | 0.68 | 2.48 | . 420 | 1.42 | 0.75 | 2.70 | . 281 | 1.07 | 0.66 | 1.74 | . 783 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |  |  |  |  |
| Water-, toilet+ | 0.80 | 0.38 | 1.72 | . 574 | 1.07 | 0.61 | 1.86 | . 825 | 1.14 | 0.61 | 2.14 | . 671 | 1.17 | 0.48 | 2.89 | . 726 |  |  |  |  |
| Water+, toilet- | 1.04 | 0.75 | 1.44 | . 807 | 0.78 | 0.51 | 1.21 | . 270 | 1.16 | 0.74 | 1.82 | . 512 | 0.84 | 0.48 | 1.44 | . 516 |  |  |  |  |
| Water+, toilet+ | 1.78 | 1.11 | 2.85 | . 017 | 1.02 | 0.65 | 1.61 | . 924 | 0.90 | 0.55 | 1.47 | . 679 | 1.41 | 0.69 | 2.87 | . 342 |  |  |  |  |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 1.14 | 0.76 | 1.70 | . 524 | 0.93 | 0.63 | 1.36 | . 693 | 1.19 | 0.76 | 1.87 | . 437 | 1.13 | 0.64 | 1.98 | . 673 | 0.70 | 0.46 | 1.07 | . 103 |
| Middle | 0.89 | 0.59 | 1.35 | . 585 | 0.74 | 0.51 | 1.06 | . 103 | 0.69 | 0.41 | 1.17 | . 168 | 0.86 | 0.41 | 1.81 | . 683 | 0.52 | 0.33 | 0.84 | . 007 |
| Richer | 0.94 | 0.59 | 1.50 | . 793 | 0.82 | 0.55 | 1.21 | . 307 | 0.51 | 0.28 | 0.94 | . 031 | 0.78 | 0.31 | 1.93 | . 588 | 0.44 | 0.23 | 0.82 | . 009 |
| Richest | 0.47 | 0.25 | 0.89 | . 020 | 0.72 | 0.42 | 1.23 | . 232 | 0.70 | 0.32 | 1.51 | . 364 | 0.74 | 0.25 | 2.23 | . 596 | 0.57 | 0.28 | 1.15 | . 117 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 1.12 | 0.78 | 1.62 | 0.544 | 1.37 | 0.83 | 2.29 | . 221 | 0.74 | 0.45 | 1.20 | 0.218 | 0.93 | 0.49 | 1.74 | . 816 | 0.99 | 0.64 | 1.53 | . 958 |

Appendix Table A4-Continued

| Variable | Maldives 2016-17 |  |  |  | Rwanda 2019-20 |  |  |  | Senegal 2017 |  |  |  | Uganda 2016 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value |
| Severe or moderate anemia | 1.00 | 0.99 | 1.01 | . 565 | 1.00 | 0.99 | 1.01 | . 741 | 1.00 | 1.00 | 1.00 | . 421 | 1.00 | 1.00 | 1.01 | . 173 |
| Early child education | 1.16 | 0.61 | 2.22 | . 653 | 0.59 | 0.30 | 1.16 | . 126 | 1.62 | 1.07 | 2.45 | . 022 | 1.12 | 0.78 | 1.61 | . 554 |
| Availability of books | 1.26 | 0.67 | 2.40 | . 471 | 0.41 | 0.06 | 2.71 | . 356 | 2.10 | 0.59 | 7.44 | . 250 | 0.90 | 0.32 | 2.53 | . 840 |
| Availability of playthings | 1.18 | 0.62 | 2.26 | . 605 | 1.44 | 0.76 | 2.74 | . 260 | 0.68 | 0.49 | 0.94 | . 019 | 0.70 | 0.49 | 1.00 | . 052 |
| Adequate care | 0.71 | 0.29 | 1.74 | . 457 | 3.26 | 1.65 | 6.44 | . 001 | 0.75 | 0.58 | 0.96 | . 023 | 1.28 | 0.91 | 1.81 | . 156 |
| Support for learning | 0.99 | 0.65 | 1.49 | . 946 | 0.90 | 0.70 | 1.16 | . 424 | 0.77 | 0.70 | 0.84 | . 000 | 1.10 | 1.01 | 1.20 | . 032 |
| Age in months (36-59) | 0.97 | 0.93 | 1.02 | . 267 | 1.01 | 0.97 | 1.06 | . 513 | 1.01 | 1.00 | 1.03 | . 132 | 0.99 | 0.97 | 1.01 | . 416 |
| No illness past 2 weeks | 0.67 | 0.32 | 1.41 | . 286 | 2.16 | 1.13 | 4.09 | . 019 | 1.03 | 0.80 | 1.32 | . 819 | 1.55 | 1.12 | 2.14 | . 008 |
| Not malnourished ${ }^{\text {a }}$ | 0.55 | 0.26 | 1.14 | . 107 | 0.67 | 0.34 | 1.32 | . 247 | 1.11 | 0.87 | 1.40 | . 401 | 1.01 | 0.70 | 1.45 | . 972 |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 3.35 | 0.47 | 24.08 | . 227 | 1.66 | 0.80 | 3.42 | . 173 | 0.76 | 0.54 | 1.09 | . 140 | 1.33 | 0.82 | 2.15 | . 241 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.93 | 0.77 | 4.85 | . 162 | 1.90 | 0.51 | 7.08 | . 338 | 0.58 | 0.30 | 1.15 | . 117 | 0.93 | 0.59 | 1.49 | . 771 |
| Higher | 0.78 | 0.18 | 3.39 | . 745 | 1.00 |  |  |  | 1.26 | 0.38 | 4.15 | . 702 | 2.78 | 1.01 | 7.68 | . 049 |
| Mother working | 1.17 | 0.63 | 2.16 | . 616 | 1.35 | 0.58 | 3.11 | . 485 | 1.06 | 0.82 | 1.38 | . 631 | 1.09 | 0.69 | 1.71 | . 718 |
| Mother's height <145 cm | 2.17 | 0.83 | 5.66 | . 114 | 2.32 | 0.28 | 19.03 | . 432 |  |  |  |  | 0.46 | 0.12 | 1.76 | . 259 |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.61 | 0.18 | 2.06 | . 427 | 0.58 | 0.26 | 1.26 | . 168 | 0.93 | 0.66 | 1.30 | . 662 | 1.76 | 0.76 | 4.04 | . 186 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.02 | 0.40 | 2.60 | . 970 |  |  |  |  | 0.89 | 0.54 | 1.47 | . 653 | 1.34 | 0.86 | 2.08 | . 191 |
| Higher | 1.25 | 0.46 | 3.38 | . 656 |  |  |  |  | 1.59 | 0.65 | 3.87 | . 310 | 1.38 | 0.76 | 2.49 | . 292 |
| $3+$ adults in household | 0.99 | 0.51 | 1.95 | . 985 | 0.88 | 0.43 | 1.82 | . 735 | 0.87 | 0.55 | 1.38 | . 556 | 1.01 | 0.72 | 1.42 | . 945 |
| $3+$ children under 5 in household | 0.58 | 0.28 | 1.19 | . 136 | 1.01 | 0.35 | 2.97 | . 982 | 0.89 | 0.66 | 1.21 | . 463 | 1.33 | 0.88 | 2.01 | . 178 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- |  |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Water-, toilet+ |  |  |  |  | 0.70 | 0.15 | 3.32 | . 653 | 0.64 | 0.37 | 1.11 | . 115 | 2.52 | 0.95 | 6.67 | . 063 |
| Water+, toilet- |  |  |  |  | 0.58 | 0.15 | 2.27 | . 435 | 0.85 | 0.57 | 1.28 | . 430 | 1.43 | 0.86 | 2.38 | . 163 |
| Water+, toilet+ |  |  |  |  | 0.47 | 0.13 | 1.73 | . 256 | 1.02 | 0.66 | 1.57 | . 925 | 2.00 | 0.97 | 4.11 | . 059 |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 1.39 | 0.66 | 2.97 | . 386 | 0.83 | 0.37 | 1.85 | . 642 | 1.02 | 0.74 | 1.41 | . 883 | 0.79 | 0.49 | 1.29 | . 355 |
| Middle | 1.01 | 0.48 | 2.14 | . 974 | 2.74 | 0.92 | 8.17 | . 070 | 0.86 | 0.56 | 1.34 | . 510 | 0.81 | 0.50 | 1.31 | . 384 |
| Richer | 1.84 | 0.47 | 7.20 | . 381 | 1.14 | 0.46 | 2.82 | . 771 | 0.86 | 0.49 | 1.51 | . 598 | 0.49 | 0.28 | 0.88 | . 016 |
| Richest | 0.42 | 0.06 | 3.10 | . 396 | 3.17 | 0.74 | 13.50 | . 118 | 0.69 | 0.30 | 1.63 | . 399 | 0.51 | 0.23 | 1.15 | . 107 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 0.88 | 0.18 | 4.30 | . 873 | 0.42 | 0.14 | 1.30 | . 134 | 1.05 | 0.74 | 1.51 | . 769 | 0.81 | 0.45 | 1.45 | . 472 |

$A O R=$ adjusted odds ratio; LB = lower bound of confidence interval; UB = upper bound of confidence interval
Note: Models were adjusted for region. In Jordan child nutritional status was not included and in Senegal maternal height was not included.
Appendix Table A5 Adjusted odds ratios for on-track learning development among children age 36-59 months across all countries

| Variable | Benin 2017-18 |  |  |  | Burundi 2016-17 |  |  |  | Cambodia 2014 |  |  |  | Haiti 2016-17 |  |  |  | Jordan 2017-18 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | value | AOR | LB | UB | value | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | $\begin{gathered} p \\ \text { value } \end{gathered}$ | AOR | LB | UB | value |
| Severe or moderate anemia | 1.00 | 1.00 | 1.00 | . 637 | 1.00 | 1.00 | 1.00 | . 482 | 1.00 | 1.00 | 1.01 | . 661 | 1.00 | 1.00 | 1.01 | . 374 | 0.99 | 0.99 | 1.00 | . 099 |
| Early child education | 1.48 | 0.86 | 2.53 | . 153 | 2.91 | 1.35 | 6.26 | . 006 | 4.20 | 1.69 | 10.42 | . 002 | 2.64 | 1.30 | 5.36 | . 007 | 1.16 | 0.50 | 2.69 | . 731 |
| Availability of books | 0.85 | 0.32 | 2.30 | . 752 | 0.14 | 0.02 | 1.30 | . 083 | 0.28 | 0.09 | 0.83 | . 022 | 2.69 | 0.76 | 9.56 | . 125 | 3.51 | 1.70 | 7.26 | . 001 |
| Availability of playthings | 1.46 | 1.07 | 2.00 | . 017 | 1.17 | 0.87 | 1.57 | . 306 | 1.91 | 1.11 | 3.28 | . 020 | 0.86 | 0.49 | 1.49 | . 586 | 1.71 | 1.09 | 2.67 | . 020 |
| Adequate care | 1.22 | 0.91 | 1.63 | . 182 | 0.92 | 0.72 | 1.17 | . 482 | 1.22 | 0.57 | 2.59 | . 607 | 2.03 | 1.15 | 3.59 | . 015 | 1.31 | 0.73 | 2.33 | . 362 |
| Support for learning | 1.10 | 1.01 | 1.19 | . 028 | 0.94 | 0.87 | 1.03 | . 196 | 1.23 | 1.09 | 1.39 | . 001 | 1.05 | 0.90 | 1.22 | . 562 | 1.17 | 0.97 | 1.42 | . 095 |
| Age in months (36-59) | 1.04 | 1.02 | 1.06 | . 000 | 1.02 | 1.01 | 1.04 | . 004 | 1.03 | 0.99 | 1.06 | . 105 | 1.04 | 1.01 | 1.08 | . 025 | 0.99 | 0.97 | 1.02 | . 635 |
| No illness past 2 weeks | 1.17 | 0.84 | 1.61 | . 349 | 0.83 | 0.65 | 1.04 | . 110 | 1.08 | 0.65 | 1.78 | . 779 | 1.17 | 0.66 | 2.08 | . 588 | 0.72 | 0.42 | 1.21 | . 210 |
| Not malnourished ${ }^{\text {a }}$ | 1.34 | 1.01 | 1.78 | . 045 | 1.11 | 0.83 | 1.48 | . 468 | 1.23 | 0.75 | 2.00 | . 409 | 1.06 | 0.59 | 1.91 | . 849 |  |  |  |  |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.72 | 0.44 | 1.19 | . 199 | 0.99 | 0.76 | 1.29 | . 947 | 2.13 | 1.12 | 4.04 | . 022 | 1.20 | 0.56 | 2.59 | . 634 | $0.84$ | 0.30 | 2.32 | . 732 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | $1.00$ |  |  |  | $1.00$ |  |  |  |
| Secondary | 1.08 | 0.54 | 2.17 | . 820 | 1.63 | 0.72 | 3.66 | . 238 | 1.04 | 0.63 | 1.74 | . 867 | 0.92 | 0.43 | 1.98 | . 833 | 2.74 | 1.25 | 6.04 | . 012 |
| Higher | 1.00 |  |  |  | 1.67 | 0.29 | 9.67 | . 565 | 2.51 | 0.18 | 34.80 | . 491 | 1.00 |  |  |  | 2.14 | 0.84 | 5.41 | . 109 |
| Mother working | 1.88 | 1.33 | 2.67 | . 000 | 1.37 | 0.89 | 2.10 | . 148 | 0.86 | 0.52 | 1.42 | . 567 | 0.85 | 0.50 | 1.46 | . 566 | 0.82 | 0.44 | 1.54 | . 539 |
| Mother's height <145 cm | 0.61 | 0.19 | 1.98 | . 406 | 0.74 | 0.44 | 1.25 | . 259 | 0.45 | 0.22 | 0.90 | . 024 | 0.08 | 0.01 | 1.05 | . 055 | 1.00 |  |  |  |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.94 | 0.65 | 1.36 | . 741 | 0.96 | 0.74 | 1.25 | . 786 | 0.94 | 0.50 | 1.76 | . 847 | 1.20 | 0.60 | 2.43 | . 603 | 2.15 | 0.85 | 5.42 | . 106 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 1.13 | 0.67 | 1.91 | . 645 | 0.94 | 0.54 | 1.67 | . 845 | 0.90 | 0.47 | 1.71 | . 738 | 1.58 | 0.77 | 3.25 | . 212 | 1.22 | 0.62 | 2.43 | . 563 |
| Higher | 1.55 | 0.46 | 5.27 | . 483 | 3.44 | 0.52 | 22.84 | . 201 | 0.78 | 0.07 | 9.43 | . 848 | 2.21 | 0.38 | 12.93 | . 378 | 1.34 | 0.55 | 3.27 | . 518 |
| $3+$ adult in household | 0.82 | 0.60 | 1.12 | . 209 | 0.97 | 0.73 | 1.28 | . 820 | 0.69 | 0.45 | 1.05 | . 086 | 1.23 | 0.71 | 2.11 | . 460 | 1.06 | 0.61 | 1.84 | . 830 |
| $3+$ children under 5 in household | 1.25 | 0.90 | 1.72 | . 182 | 0.88 | 0.63 | 1.22 | . 441 | 0.60 | 0.27 | 1.36 | . 224 | 2.15 | 0.94 | 4.93 | . 070 | 0.76 | 0.45 | 1.28 | . 296 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |  |  |  |  |
| Water-, toilet+ | 2.20 | 0.97 | 5.02 | . 060 | 1.34 | 0.76 | 2.37 | . 314 | 1.18 | 0.41 | 3.42 | . 754 | 0.58 | 0.19 | 1.75 | . 334 |  |  |  |  |
| Water+, toilet- | 1.16 | 0.86 | 1.58 | . 333 | 0.98 | 0.64 | 1.51 | . 932 | 1.06 | 0.60 | 1.90 | . 835 | 1.87 | 0.77 | 4.54 | . 166 |  |  |  |  |
| Water+, toilet+ | 1.75 | 1.01 | 3.01 | . 045 | 1.59 | 1.00 | 2.54 | . 052 | 1.07 | 0.46 | 2.52 | . 875 | 0.95 | 0.37 | 2.43 | . 906 |  |  |  |  |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 0.93 | 0.62 | 1.41 | . 739 | 0.99 | 0.69 | 1.41 | . 945 | 1.83 | 0.92 | 3.65 | . 084 | 0.98 | 0.45 | 2.17 | . 969 | 1.00 | 0.57 | 1.77 | . 987 |
| Middle | 1.11 | 0.74 | 1.66 | . 612 | 1.61 | 1.13 | 2.30 | . 008 | 1.65 | 0.74 | 3.68 | . 222 | 1.05 | 0.36 | 3.05 | . 923 | 0.96 | 0.52 | 1.75 | . 891 |
| Richer | 0.63 | 0.38 | 1.02 | . 062 | 0.96 | 0.63 | 1.45 | . 840 | 1.38 | 0.58 | 3.28 | . 465 | 0.38 | 0.11 | 1.24 | . 109 | 1.02 | 0.50 | 2.09 | . 946 |
| Richest | 0.57 | 0.27 | 1.20 | . 137 | 0.98 | 0.57 | 1.67 | . 928 | 1.30 | 0.38 | 4.44 | . 671 | 0.91 | 0.20 | 4.08 | . 901 | 0.91 | 0.27 | 3.08 | . 876 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 1.30 | 0.92 | 1.84 | . 137 | 0.60 | 0.36 | 1.01 | . 054 | 0.49 | 0.23 | 1.03 | . 060 | 1.11 | 0.49 | 2.50 | . 806 | 1.09 | 0.69 | 1.73 | . 704 |

Appendix Table A5-Continued

| Variable | Maldives 2016-17 |  |  |  | Rwanda 2019-20 |  |  |  | Senegal 2017 |  |  |  | Uganda 2016 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value | AOR | LB | UB | $p$ value |
| Severe or moderate anemia | 1.01 | 0.99 | 1.02 | . 422 | 1.00 | 0.99 | 1.00 | . 328 | 1.00 | 1.00 | 1.00 | . 649 | 1.00 | 1.00 | 1.01 | . 242 |
| Early child education | 1.02 | 0.36 | 2.91 | . 963 | 1.91 | 1.22 | 3.00 | . 005 | 3.06 | 1.44 | 6.48 | . 004 | 3.08 | 1.57 | 6.05 | . 001 |
| Availability of books | 2.07 | 0.79 | 5.42 | . 137 | 1.27 | 0.20 | 8.22 | . 799 |  |  |  |  |  |  |  |  |
| Availability of playthings | 1.01 | 0.33 | 3.09 | . 991 | 0.91 | 0.61 | 1.34 | . 623 | 1.15 | 0.68 | 1.93 | . 603 | 0.98 | 0.59 | 1.60 | . 925 |
| Adequate care | 4.12 | 1.00 | 16.96 | . 050 | 0.86 | 0.59 | 1.27 | . 461 | 0.77 | 0.55 | 1.07 | . 122 | 0.52 | 0.34 | 0.81 | . 004 |
| Support for learning | 0.68 | 0.27 | 1.69 | . 404 | 1.02 | 0.91 | 1.14 | . 765 | 1.11 | 0.99 | 1.25 | . 081 | 1.03 | 0.91 | 1.17 | . 607 |
| Age in months (36-59) | 1.06 | 1.01 | 1.12 | . 026 | 1.01 | 0.98 | 1.04 | . 425 | 1.03 | 1.01 | 1.05 | . 008 | 1.00 | 0.97 | 1.03 | . 984 |
| No illness past 2 weeks | 0.64 | 0.18 | 2.32 | . 494 | 1.05 | 0.72 | 1.53 | . 794 | 0.67 | 0.45 | 0.99 | . 044 | 0.89 | 0.58 | 1.37 | . 587 |
| Not malnourished ${ }^{\text {a }}$ | 0.73 | 0.25 | 2.12 | . 562 | 1.13 | 0.77 | 1.65 | . 526 | 1.30 | 0.96 | 1.76 | . 087 | 1.29 | 0.80 | 2.07 | . 292 |
| Mother's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None |  |  |  |  | 0.69 | 0.42 | 1.14 | . 147 | 0.74 | 0.46 | 1.17 | . 197 | 1.19 | 0.64 | 2.22 | . 587 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 2.43 | 0.59 | 9.98 | . 216 | 1.48 | 0.75 | 2.91 | . 261 | 0.87 | 0.36 | 2.09 | . 751 | 2.91 | 1.19 | 7.12 | . 019 |
| Higher | 2.48 | 0.49 | 12.61 | . 273 | 1.29 | 0.31 | 5.37 | . 727 | 1.00 |  |  |  | 0.68 | 0.12 | 3.84 | . 664 |
| Mother working | 1.07 | 0.39 | 2.88 | . 900 | 1.54 | 1.01 | 2.36 | . 047 | 1.17 | 0.85 | 1.62 | . 342 | 0.66 | 0.34 | 1.28 | . 217 |
| Mother's height <145 cm | 0.49 | 0.12 | 1.90 | . 298 | 1.20 | 0.39 | 3.73 | . 753 |  |  |  |  | 1.04 | 0.24 | 4.45 | . 958 |
| Father's education level |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 0.47 | 0.06 | 3.67 | . 467 | 0.99 | 0.58 | 1.69 | . 967 | 0.59 | 0.37 | 0.94 | . 028 | 1.13 | 0.46 | 2.73 | . 792 |
| Primary | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Secondary | 0.99 | 0.19 | 5.17 | . 994 | 0.86 | 0.40 | 1.84 | . 699 | 0.99 | 0.43 | 2.26 | . 975 | 1.10 | 0.60 | 2.01 | . 755 |
| Higher | 1.48 | 0.20 | 10.76 | . 699 | 0.64 | 0.16 | 2.60 | . 531 | 1.18 | 0.23 | 5.99 | . 839 | 1.29 | 0.34 | 4.84 | . 709 |
| $3+$ adults in household | 1.01 | 0.24 | 4.28 | . 984 | 0.68 | 0.46 | 1.02 | . 061 | 0.88 | 0.50 | 1.54 | . 644 | 0.92 | 0.57 | 1.49 | . 733 |
| $3+$ children under 5 in household | 0.36 | 0.10 | 1.36 | . 131 | 0.49 | 0.27 | 0.89 | . 019 | 0.87 | 0.59 | 1.28 | . 464 | 1.47 | 0.75 | 2.87 | . 259 |
| WASH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water-, toilet- |  |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Water-, toilet+ |  |  |  |  | 1.68 | 0.93 | 3.04 | . 085 | 2.87 | 1.27 | 6.48 | . 011 | 1.99 | 0.25 | 16.07 | . 520 |
| Water+, toilet- |  |  |  |  | 1.80 | 0.97 | 3.34 | . 062 | 1.55 | 0.95 | 2.53 | . 077 | 0.81 | 0.39 | 1.66 | . 561 |
| Water+, toilet+ |  |  |  |  | 2.25 | 1.24 | 4.06 | . 008 | 2.98 | 1.60 | 5.54 | . 001 | 1.53 | 0.61 | 3.80 | . 361 |
| Wealth quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Poorer | 2.17 | 0.61 | 7.71 | . 228 | 1.51 | 0.86 | 2.65 | . 155 | 0.65 | 0.40 | 1.05 | . 078 | 1.07 | 0.59 | 1.94 | . 815 |
| Middle | 1.30 | 0.35 | 4.78 | . 695 | 1.88 | 1.04 | 3.39 | . 037 | 0.38 | 0.22 | 0.65 | . 000 | 1.64 | 0.79 | 3.43 | . 185 |
| Richer | 0.55 | 0.12 | 2.57 | . 441 | 3.66 | 1.79 | 7.48 | . 000 | 0.63 | 0.27 | 1.49 | . 291 | 1.88 | 0.77 | 4.58 | . 164 |
| Richest | 1.00 |  |  |  | 1.47 | 0.64 | 3.35 | . 361 | 0.84 | 0.31 | 2.32 | . 739 | 1.23 | 0.31 | 4.83 | . 768 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  | 1.00 |  |  |  |
| Rural | 1.00 |  |  |  | 1.41 | 0.77 | 2.56 | . 266 | 1.32 | 0.90 | 1.93 | . 155 | 1.09 | 0.52 | 2.27 | . 823 |
| $A O R=$ adjusted odds ratio; $\mathrm{LB}=$ lower bound of confidence interval; $\mathrm{UB}=$ upper bound of confidence interval ${ }^{a}$ a Malnourished refers to children who are not stunted, underweight, overweight, or wasted. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Note: Models were adjusted for region. In Jordan child nutritional status was not included and in Senegal maternal height was not included.Blank cells indicate that no coefficients were produced in the model because of small sample sizes. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


[^0]:    ${ }^{c}$ Model 3: same as Model 2 covariates plus early childhood education attendance, availability of books, availability of playthings, support for learning, and adequate care

[^1]:    $A O R=$ adjusted odds ratio; $\mathrm{LB}=$ lower bound of confidence interval; UB = upper bound of confidence interval ${ }^{\text {a }}$ Malnourished refers to children who are not stunted, underweight, overweight, or wasted.

    Note: Models were adjusted for region. In Jordan child nutritional status was not included and in Senegal maternal height was not included.
    Blank cells indicate that no coefficients were produced in the model because of small sample sizes.

[^2]:    $A O R=$ adjusted odds ratio; LB = lower bound of confidence interval; UB = upper bound of confidence interval
    Malnourished refers to children who are not stunted, underweight, overweight, or wasted. Blank cells indicate that no coefficients were produced in the model because of small sample sizes.

