

# DHS WORKING PAPERS

Household Air Pollution: National and Subnational Estimates in Bangladesh, India, Indonesia, Nepal, and the Philippines

Wenjuan Wang Shireen Assaf Ben Mayala Lwendo Moonzwe Davis

2020 No. 164

DEMOGRAPHIC AND HEALTH SURVEYS

June 2020

This document was produced for review by the United States Agency for International Development.

# DHS Working Paper No. 164

# Household Air Pollution: National and Subnational Estimates in Bangladesh, India, Indonesia, Nepal, and the Philippines

Wenjuan Wang<sup>1,2</sup> Shireen Assaf<sup>1,2</sup> Ben Mayala<sup>1,2</sup> Lwendo Moonzwe Davis<sup>1</sup>

ICF Rockville, Maryland, USA

June 2020

<sup>1</sup>ICF <sup>2</sup>The DHS Program

*Corresponding author:* Shireen Assaf, The DHS Program, ICF, 530 Gaither Road, Suite 500, Rockville, MD 20850, USA; phone: 301-572-0950; fax: 301-572-0999; email: Shireen.Assaf@icf.com

Acknowledgments: We would like to thank Thomas Pullum, Amit Chandra, Lucy Mize, Sweta Saxena, Kendra Chittenden, Micaela Arthur, and Jean-Jacques Frere for their comments on the report.

Editor: Kerry Aradhya Document Production: Joan Wardell and Chris Gramer

This study was carried out with support provided by the United States Agency for International Development (USAID) through The DHS Program (#720-OAA-18C-00083). The views expressed are those of the authors and do not necessarily reflect the views of USAID or the United States Government.

The DHS Program assists countries worldwide in the collection and use of data to monitor and evaluate population, health, and nutrition programs. Additional information about The DHS Program can be obtained from ICF, 530 Gaither Road, Suite 500, Rockville, MD 20850 USA; telephone: +1 301-407-6500, fax: +1 301-407-6501, email: info@DHSprogram.com, internet: www.DHSprogram.com.

Recommended citation:

Wenjuan, Wang, Shireen Assaf, Ben Mayala, and Lwendo Moonzwe Davis. 2020. *Household Air Pollution: National and Subnational Estimates in Bangladesh, India, Indonesia, Nepal, and the Philippines.* DHS Working Paper No. 164. Rockville, Maryland, USA: ICF.

# CONTENTS

| FIGURE | ES     |                                                                    | v  |
|--------|--------|--------------------------------------------------------------------|----|
| ABSTR  | АСТ    |                                                                    | vi |
| 1      | INTRO  | DUCTION                                                            | 1  |
| 2      | DATA   | AND METHODS                                                        |    |
|        | 2.1    | Data and Measurement                                               |    |
|        | 2.2    | Analysis                                                           | 4  |
|        |        | Descriptive analysis                                               |    |
|        |        | District-level estimation                                          |    |
| 3      | RESUL  | TS                                                                 | 6  |
|        | 3.1    | Levels, Trends, and Types of HAP                                   | 6  |
|        | 3.2    | Differentials and Changes Over Time in HAP by Household Background |    |
|        |        | Characteristics                                                    | 8  |
|        | 3.3    | District-level Estimates of HAP                                    | 13 |
| 4      | DISCU  | SSION AND CONCLUSIONS                                              |    |
| REFER  |        |                                                                    |    |
|        |        |                                                                    |    |
| APPEN  | IDIX A | Use of solid fuel for cooking and district-level HAP estimates     | 27 |

# TABLES

| Table 1            | Number of households included in the analysis by country, survey, and residence                                  | 3  |
|--------------------|------------------------------------------------------------------------------------------------------------------|----|
| Appendix Table A.1 | Levels and changes in the use of solid fuel for cooking by household background characteristics, Bangladesh      | 27 |
| Appendix Table A.2 | Levels and changes in the use of solid fuel for cooking by household background characteristics, India           |    |
| Appendix Table A.3 | Levels and changes in the use of solid fuel for cooking by household background characteristics, Indonesia       |    |
| Appendix Table A.4 | Levels and changes in the use of solid fuel for cooking by household background characteristics, Nepal           |    |
| Appendix Table A.5 | Levels and changes in the use of solid fuel for cooking by household background characteristics, the Philippines | 29 |
| Appendix Table A.6 | District-level estimates of household use of solid fuel for cooking,<br>Bangladesh DHS 2014                      |    |
| Appendix Table A.7 | District-level estimates of household use of solid fuel for cooking,<br>India DHS 2015-2016                      | 31 |
| Appendix Table A.8 | District-level estimates of household use of solid fuel for cooking,<br>Nepal DHS 2016                           | 41 |
| Appendix Table A.9 | Province-level estimates of household use of solid fuel for cooking, the Philippines NDHS 2017                   | 42 |

# FIGURES

| Figure 1  | Percent distribution of households by type of fuel used for cooking                                                       | 6 |
|-----------|---------------------------------------------------------------------------------------------------------------------------|---|
| Figure 2  | Percent distribution of households by type of fuel used for cooking                                                       | 7 |
| Figure 3  | Trends in use of solid fuel for cooking by household characteristics,<br>Bangladesh                                       | 9 |
| Figure 4  | Trends in use of solid fuel for cooking by household characteristics, India                                               | 0 |
| Figure 5  | Trends in use of solid fuel for cooking by household characteristics, Indonesia1                                          | 1 |
| Figure 6  | Trends in use of solid fuel for cooking by household characteristics, Nepal1                                              | 2 |
| Figure 7  | Trends in use of solid fuel for cooking by household characteristics, the Philippines                                     | 3 |
| Figure 8  | District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, Bangladesh DHS 2014       | 4 |
| Figure 9  | District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, India DHS 2015-2016       | 5 |
| Figure 10 | District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, Nepal DHS 2016            | 6 |
| Figure 11 | District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, the Philippines NDHS 2017 | 7 |

# ABSTRACT

Household air pollution (HAP) is a major public health concern in many low- and middle-income countries. In the past few decades, population growth has led to increases in the number of individuals cooking with solid fuels and exposure to biomass and coal smoke. Globally, millions of deaths each year are linked to indoor air pollution, with women and children affected disproportionately. There is limited understanding of trends and geographic variation in HAP, which has made targeting of interventions challenging. This paper identifies HAP trends; examines associations between HAP and household characteristics in Bangladesh, India, Indonesia, Nepal, and the Philippines; and estimates district-level exposure to HAP in all of these countries except for Indonesia, where global positioning system data were lacking. The results indicated a decreasing overall trend in use of solid fuel for cooking in these countries. However, disparities persisted in all countries. The greatest reductions in use of solid fuel were among wealthier households, while the poorest households continued to be the most affected by HAP. The district-level estimates of HAP are summarized in maps that clearly highlight hot spots that can be targeted for interventions.

Key words: Household air pollution, indoor air pollution, district-level estimates

## **1** INTRODUCTION

Biomass and solid fuels such as wood, charcoal, crop residues, and dung-in addition to coal-are used as a primary source of household fuel and energy for billions of individuals worldwide. Globally, cooking with solid fuels has increased due to population growth. Most regions experienced a downward trend in the percentage of households cooking with solid fuels between 1990 and 2010, with a global reduction from 53% to 41% (Bonjour et al. 2013). Although all regions experienced declines, the rates before and after the declines in Africa (82% to 77%), Southeast Asia (83% to 61%), and the Western Pacific (66% to 46%) were higher than the global average, whereas those in the Eastern Mediterranean (48% to 35%), the Americas (27% to 14%), and Europe (23% to 7%) were lower than the global average (Bonjour et al. 2013). The problem of exposure to HAP as a result of cooking with polluting fuels continues to almost exclusively impact low- and middle-income countries (LMIC), with less than 1% of the population in high-income countries accessing polluting fuels. In 2016, 83% of the population in LMIC in the African region, 59% of the population percent in the Southeast Asia region, and 42% of the population in the Western Pacific region relied primary on polluting cooking fuel options such as coal, wood, charcoal, dun, crop residues, or kerosene (World Health Organization 2018a). The percentages of the population relying primarily on polluting fuels in the Eastern Mediterranean, the Americas, and Europe were 31%, 16%, and 6%, respectively, during the same year (World Health Organization 2018a).

Biomass and coal smoke contains several pollutants that are hazardous to people's health and have been implicated as agents for numerous diseases in developing countries (Ezzati and Kammen 2002). The pollutants include respirable particulate matter, carbon monoxide, nitrogen oxides, formaldehyde, benzene, 1,3-butadiene, polycyclide aromatic hydrocarbons, and other toxic organic compounds (Mishra and Retherford 2006). Indoor air pollution is a risk factor for several leading causes of death, including stroke, ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer. It is linked to about 1.5 million deaths annually due to acute lower respiratory infections, chronic obstructive lung disease, and lung cancer (World Health Organization 2006; World Health Organization 2018b). Women and children, especially in developing countries, are disproportionately exposed to polluted air because of the use of biomass for cooking and heating. HAP from biomass and solid fuels used for cooking and heating is a risk factor for several health outcomes associated with child survival, such as pneumonia, low birth weight, stillbirth, and noncommunicable diseases (Dherani et al. 2008; Pope et al. 2010; Smith, Mehta, and Maeusezahl-Feuz 2004; Tielsch et al. 2009). HAP doubles the risk of pneumonia and other acute lower respiratory infections, thus contributing to half of the deaths from pneumonia among children under age 5 (World Health Organization 2018b). Reduction of air pollution, specifically HAP, is a critical component of attaining Sustainable Development Goals (SDGs). Amegah and Jaakkola (2016) recommend action for seven SDGs (SDGs 3, 6, 7, 11, 12, 13, and 15). For instance, for SDG 3 (Ensure healthy lives and promote well-being for all at all ages), the recommended action is to reduce the number of deaths and illnesses from hazardous chemicals and air, water, and soil pollution and contamination by 2030. For SDG 7 (Ensure access to affordable, reliable, sustainable, and modern energy for all), several recommendations aim to increase access to clean energy and increase the use of renewable energy by 2030.

Several studies have found associations between HAP and various forms of lung or respiratory-related complications. HAP exposure increased the risk of lung cancer among individuals in Nepal who had never smoked (Raspanti et al. 2016). In Bangladesh, HAP is a leading cause of respiratory illness and has

contributed to under-5 mortality (Naz, Page, and Agho 2015). A case-control study conducted in Bhaktapur, Nepal, found that the use of biomass as a household fuel source was a risk for acute lower respiratory infection in young children (Bates et al. 2013). Other studies have specifically examined the relationship between HAP and children's health outcomes. Cooking indoors increased the risk of neonatal mortality, infant mortality, acute respiratory infection (ARI), low birth weight, and Cesarean delivery in Bangladesh (Khan et al. 2017). In India, the use of cooking fuel in households was associated with increased risk of mortality in children under age 5, and these associations were higher in rural areas and for households without a separate kitchen for cooking (Naz, Page, and Agho 2016). Smoke exposure can contribute to stunting by causing anemia and low birthweight. In Nepal, children with such exposure showed a considerably higher prevalence of stunting than children with no exposure (84.6% versus 15.4%) (Dadras and Chapman 2017). Further, in India, a study found that the prevalence of anemia was higher among children in households using biofuel than among those in households using cleaner fuels (Mishra and Retherford 2006).

In several countries, interventions have succeeded in reducing the rates of HAP. These interventions have focused on changing behavior, improving stoves and household ventilation, and promoting the adoption of new technologies and the utilization of renewable energy sources (Amegah and Jaakkola 2016; Smith et al. 2011). To effectively implement and target interventions to address the negative impacts of HAP, better understanding of the populations that are most affected, as well as of regional and geographic variation, is needed. Yet, few studies have systematically examined geographic or regional variations in rates of HAP. A meta-analysis of 25 case-control studies examined the association between household coal use and lung cancer. Regional stratification of mainland China and Taiwan found geographic variation in the risk of lung cancer associated with household coal use (Hosgood III et al. 2011). Other studies have found variation in the level of exposure between urban and rural populations and variation within locations such as coastal or mountainous areas (Huboyo et al. 2014; Mestl et al. 2007).

Studies have also identified sociodemographic and socioeconomic factors that are associated with HAP. Women and children tend to have greater exposure to HAP (Duflo, Greenstone, and Hanna 2008; Siddharthan et al. 2018). One study in Bangladesh found not only that the poorest and least-educated households have higher levels of exposure to HAP but also that women and children have higher levels of exposure than men (Dasgupta et al. 2006). In Bangladesh, levels of indoor air pollution were found to be dangerously high for many poor families (Huq et al. 2004). Economic status also affects the level of exposure. Individuals with more wealth and education are more likely to have market access and the ability to own a modified stove.

There is limited understanding of trends in HAP, the characteristics of populations and individuals who are most affected by HAP, and geographic variation in rates of HAP within a country. This paper attempts to fill these gaps by identifying HAP trends, examining associations between HAP and household characteristics, and estimating HAP at the district level. While the links between HAP and health are well documented, estimating HAP at the district level provides key information to inform the targeting of interventions.

# 2 DATA AND METHODS

#### 2.1 Data and Measurement

The study used data from surveys conducted by The Demographic and Health Surveys (DHS) Program in 2005 and later in Bangladesh, India, Indonesia, Nepal, and the Philippines. DHS surveys are conducted approximately every five years in each country, and standardized protocols are used to ensure comparability over time and between countries. Table 1 lists the surveys used in the study and the number of households included by urban and rural residence. DHS surveys use a two-stage cluster sampling design to draw a sample that is representative of the country, for urban and rural areas separately, and for each unit at the country's first administrative level (usually geographic regions). In the first stage of each survey, clusters or enumeration areas were selected from the country's most recent census sampling frame with probability proportional to the population size of clusters. In the second stage, a systematic sample of households in each cluster (usually 20-30 households per cluster) was selected. A household questionnaire was administered to an adult household member (usually the household head or spouse) to collect information on household characteristics, such as water and sanitation, and on household assets.

|                  | Urban   | Rural   | Total   |
|------------------|---------|---------|---------|
| Bangladesh 2007  | 8,133   | 2,267   | 10,400  |
| Bangladesh 2011  | 12,836  | 4,305   | 17,141  |
| Bangladesh 2014  | 12,456  | 4,844   | 17,300  |
| India 2005-06    | 73,462  | 35,579  | 109,041 |
| India 2015-16    | 391,702 | 209,807 | 601,509 |
| Indonesia 2007   | 23,818  | 16,883  | 40,701  |
| Indonesia 2012   | 22,362  | 21,490  | 43,852  |
| Indonesia 2016   | 24,505  | 23,458  | 47,963  |
| Nepal 2006       | 7,234   | 1,473   | 8,707   |
| Nepal 2011       | 9,280   | 1,546   | 10,826  |
| Nepal 2016       | 4,259   | 6,781   | 11,040  |
| Philippines 2008 | 6,192   | 6,277   | 12,469  |
| Philippines 2013 | 7,700   | 7,104   | 14,804  |
| Philippines 2017 | 14,793  | 12,703  | 27,496  |

 Table 1
 Number of households included in the analysis by country, survey, and residence

The household respondent was also asked about the main type of fuel used for cooking. Based on the responses to this question, we defined HAP from cooking to be present if the fuel used for cooking included coal/lignite, charcoal, wood, straw, shrubs/grass, agricultural crop, or animal dung. Otherwise, clean fuels were defined as electricity, liquid propane gas (LPG), natural gas, and biogas. The cooking location, either indoors or outdoors, was also recorded.

Other household-level variables that are commonly found to be associated with HAP in the literature were also examined. These included household wealth quintiles, household crowdedness (four or more household members on average sharing a sleeping room), region, and urban-rural residence (Ghimire et al. 2019; Khan et al. 2017; Naz et al. 2018).

## 2.2 Analysis

#### **Descriptive analysis**

We described the current levels of HAP, trends in HAP, and specific types of fuel used for cooking for each country. The trend analysis assessed changes in HAP over time by household characteristics, including urban-rural residence, region, wealth, and crowdedness. For this part of the analysis, HAP was dichotomized into solid fuel use (either indoors or outdoors) and clean fuel use. Statistical testing was performed to test the significance of the changes over time for each of the background categories. Adjustments for the complex sample design were included in all analyses.

A limitation of this study is the cross-sectional nature of the data, which does not allow for reliable modeling of the association between HAP and child health outcomes such as low birth weight and ARI symptoms. There is also the issue of the timing to the exposure of HAP that may not correspond to the outcomes, especially for ARI symptoms that are only measured for the last two weeks before the survey. We also do not know the duration of exposure to HAP.

#### **District-level estimation**

DHS surveys are not designed to collect data that are representative of the second subnational administrative level (ADMIN 2, usually districts). However, recent developments in model-based geostatistics allow health indicators to be estimated at the ADMIN 2 level (Graetz et al. 2018; Mosser et al. 2019; Osgood-Zimmerman et al. 2018). The geostatistical modeling used to estimate the household use of solid fuel at the district level can be summarized in a few steps. First, individual household-level DHS data were aggregated to the DHS cluster level, for which latitude and longitude information was collected. Second, selected geospatial covariates gathered from multiple sources were processed with R software to extract the corresponding values for the DHS clusters. These geospatial covariates measure environmental and socioeconomic characteristics and have been shown to correlate well with DHS indicators in different settings (Alegana et al. 2015; Gething et al. 2015). The selected geospatial covariates were travel time to the nearest settlement with >50,000 inhabitants, aridity, diurnal temperature range, precipitation, potential evapotranspiration, daily maximum temperature, elevation, enhanced vegetation index, daytime land surface temperature, diurnal difference in land surface temperature, nighttime land surface temperature, population distribution, and livestock density (for cattle and goats). A description of these variables, as well as their sources, is discussed in detail in Mayala et al. (2018). Third, stacked generalized ensemble models were used to generate surfaces based on cluster-level DHS data and spatial covariates. The predicted surfaces were then adjusted for spatial dependence through a Bayesian geostatistical model that produces pixel-level (5x5 km) estimates of the outcome, with associated uncertainties. Finally, the pixel-level estimates were aggregated to the district level. More detail about geospatial covariate processing in R, stacked generalization models, and the Bayesian geostatistical model can be found in Mayala et al. (2019).

We estimated household use of solid fuel at the district level for Bangladesh, Nepal, and the Philippines for the most recent survey using the model-based geostatistics approach. District-level use for India was estimated directly from the survey since it was designed to be representative of the 640 districts in India. Global positioning system data were not collected in DHS surveys in Indonesia; therefore, use of solid fuel at the district level was not estimated for Indonesia. For each of the three countries using the model-based geostatistics approach, we predicted surface maps at the levels of pixels and districts. Uncertainty (width of the 95% conference interval) at the district level was also estimated. These estimates are summarized in the appendix and also represented by maps.

# 3 RESULTS

### 3.1 Levels, Trends, and Types of HAP

Figure 1 presents the trends in HAP in each country. The most recent survey in each country indicated various levels of use of solid fuel. Bangladesh had the highest level, with 82% of households in 2014 relying on solid fuel for cooking, although most households (74%) cooked with solid fuel outside the house. In India and Nepal, more than half of the households used solid fuel for cooking: 54% in India (2015-2016) and 66% in Nepal (2016). The lowest level of HAP was reported in Indonesia, at 23% in 2016.

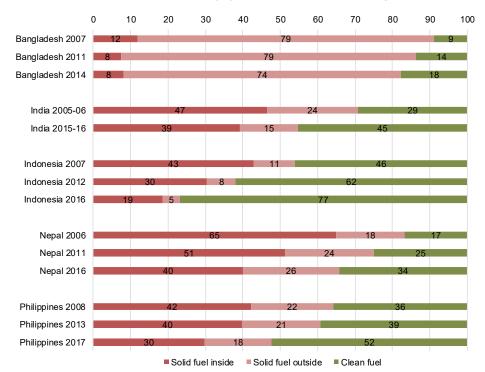
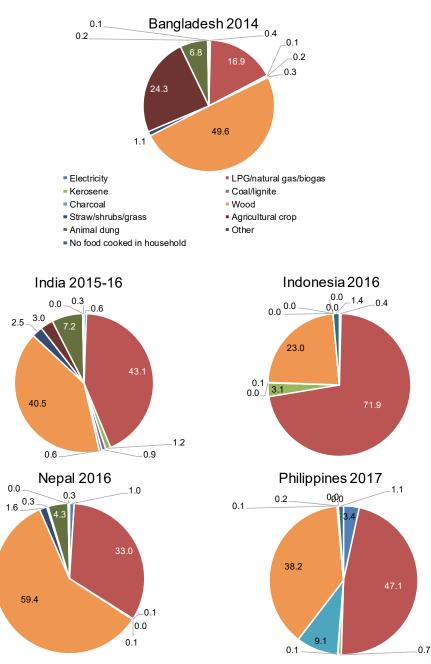




Figure 1 Percent distribution of households by type of fuel used for cooking

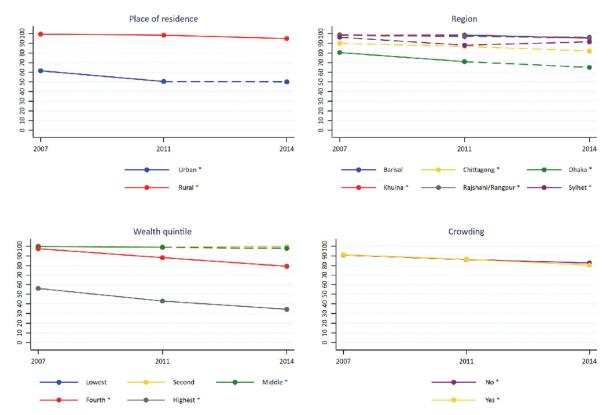
Examining multiple surveys in each country allowed trends to be seen over a 10-year period between 2005/06 and 2016/17, except for Bangladesh, which had a shorter observation period from 2007 to 2014. Over time, there was a decreasing trend in use of solid fuel, both inside and outside the house, in all five countries. The use of clean fuel increased in all five countries. The decreases in solid fuel use between the earliest survey and the most recent survey ranged from 9 percentage points in Bangladesh to 31 percentage points in Indonesia. Conversely, Bangladesh had the lowest increase in use of clean fuel, and Indonesia had the greatest increase. In 2016, more than three-fourths of Indonesian households used clean fuel for cooking. Approximately half of households in the recent surveys in the Philippines and India used clean fuel, approximately a third of households in Nepal, and less than a fifth in Bangladesh.

Figure 2 shows different types of fuel reported in the most recent survey in each country. Among the solid fuel types, wood was commonly reported by all countries, ranging from 23% in Indonesia to 59% in Nepal. Agricultural crops were also commonly used in Bangladesh, by 24% of households. Animal dung was

sometimes reported as fuel for cooking in Bangladesh, India, and Nepal, but by less than 10% of households. Other solid fuel types such as straw, shrubs, and grass were rarely reported. Among the clean fuel types, LPG/natural gas/biogas was the most reported, ranging from 17% of households in Bangladesh to 72% in Indonesia. More than 40% of households in India and the Philippines also used LPG, natural gas, or biogas for cooking. Electricity was rarely used for cooking in any country.

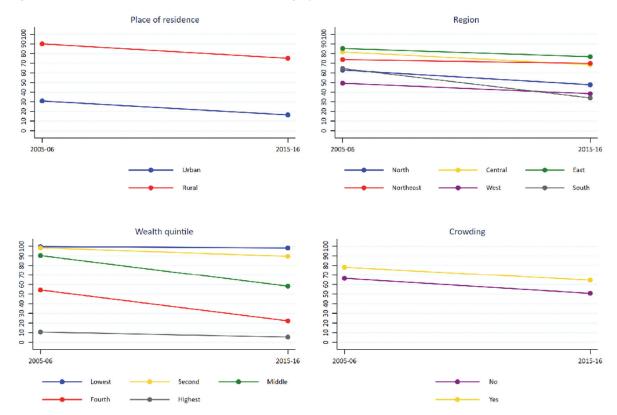


#### Figure 2 Percent distribution of households by type of fuel used for cooking


## 3.2 Differentials and Changes Over Time in HAP by Household Background Characteristics

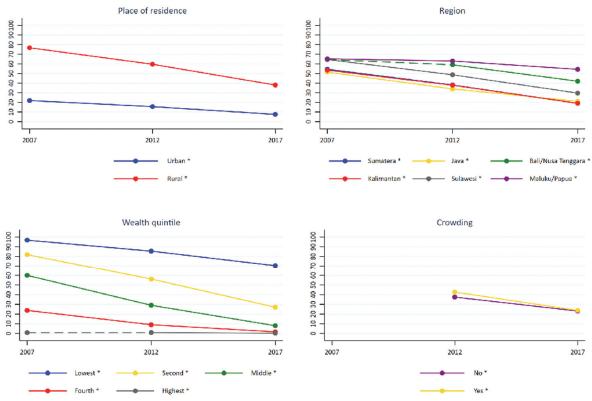
The decrease in the use of solid fuel at the national level was also observed by several household background variables. Figures 3 to 7 and Appendix Tables A.1 to A.5 show trends and significance of differences between surveys in the use of solid fuel by place of residence, wealth quintile, crowding, and region. In the figures, a solid line between consecutive surveys indicates a significant difference, while a dotted line indicates no significant difference. An asterisk next to the category label in the figure legend indicates a significant difference between the first and third surveys.

Bangladesh had the highest use of solid fuel and also the smallest decrease in use when compared with the other countries. By 2014, 82% of households in Bangladesh were still using solid fuel. The percentages differed by place of residence, wealth quintile, and region but not by crowding (see Appendix Table A.1). Over time, the largest decreases in Bangladesh were in households from the fourth and highest wealth quintiles, decreasing by approximately 20 percentage points between the earliest and most recent surveys for these two quintiles (Figure 3). By region, we saw large and significant declines in Dhaka and Sylhet between 2007 and 2011. However, between the two most recent surveys, only Barisal had a significant decline in household use of solid fuel, and the decline was slight and only marginally significant.


In India, Indonesia, and the Philippines, the decrease in the use of solid fuel between the two most recent surveys was significant across all household characteristics (Figures 4, 5, and 7 and Appendix Tables A.2 to A.4). The largest decreases in solid fuel use in these countries were found within wealth quintiles. In both India and the Philippines, households from the middle and fourth wealth quintiles decreased their solid fuel use by approximately 30 percentage points between the earliest and most recent surveys. In Indonesia, solid fuel use decreased by more than 50 percentage points in households from the second and middle quintiles. A large decrease of approximately 30 percentage points was also observed in the South region in India (see Appendix Table A.2).

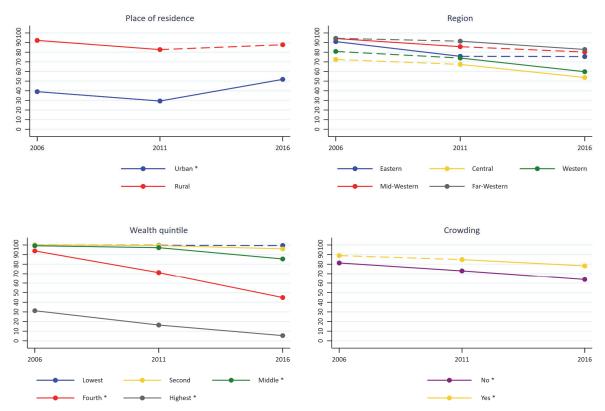
In Nepal, the use of solid fuel for cooking in urban households increased significantly between the two most recent surveys, from 29% in 2011 to 52% in 2016. However, significant decreases in use of solid fuel were observed in all wealth groups and most regions. The largest decrease, by 26 percentage points, was among households from the fourth quintile (Figure 6).




#### Figure 3 Trends in use of solid fuel for cooking by household characteristics, Bangladesh

Crowding = Four or more people per sleeping room Solid line = Significant difference between the two consecutive surveys Dotted line = No significant difference between the two consecutive surveys \* Significant difference between the first and third surveys

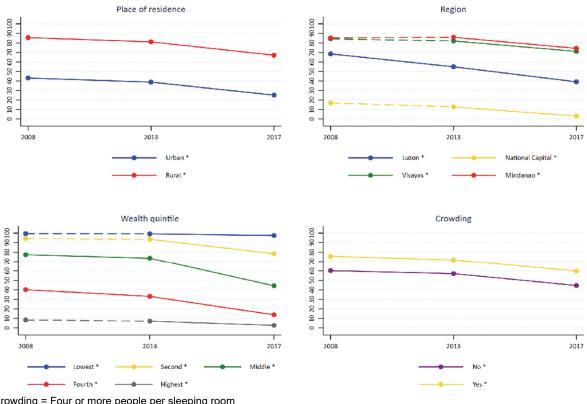



#### Figure 4 Trends in use of solid fuel for cooking by household characteristics, India

Crowding = Four or more people per sleeping room Solid line = Significant difference between the two consecutive surveys Dotted line = No significant difference between the two consecutive surveys \* Significant difference between the first and third surveys



#### Figure 5 Trends in use of solid fuel for cooking by household characteristics, Indonesia


Crowding = Four or more people per sleeping room Solid line = Significant difference between the two consecutive surveys Dotted line = No significant difference between the two consecutive surveys \* Significant difference between the first and third surveys



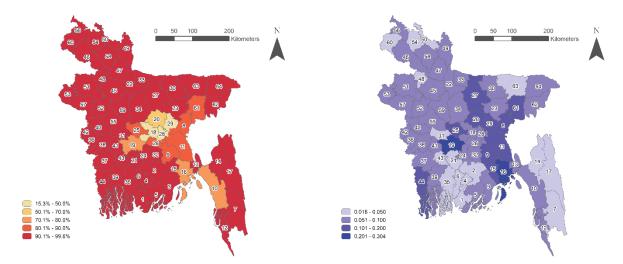
#### Figure 6 Trends in use of solid fuel for cooking by household characteristics, Nepal

Crowding = Four or more people per sleeping room Solid line = Significant difference between the two consecutive surveys Dotted line = No significant difference between the two consecutive surveys

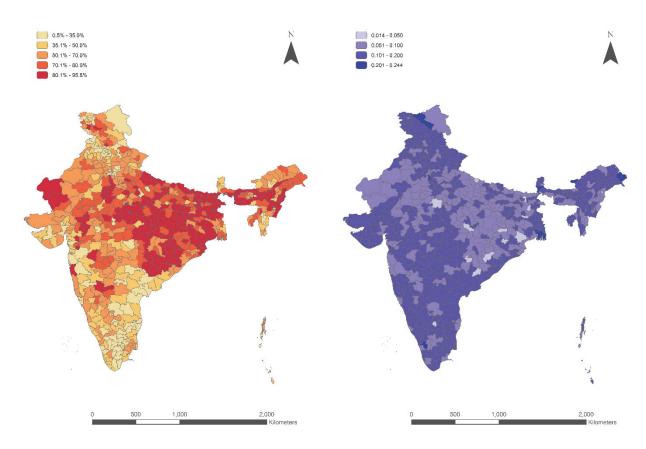
\* Significant difference between the first and third surveys



#### Figure 7 Trends in use of solid fuel for cooking by household characteristics, the Philippines


Crowding = Four or more people per sleeping room Solid line = Significant difference between the two consecutive surveys Dotted line = No significant difference between the two consecutive surveys \* Significant difference between the first and third surveys

Disparities by all background variables persisted in the most recent survey for all five countries. The largest gaps were by wealth quintile (see Appendix Tables A.1 to A.5). In India, Nepal, and the Philippines, the difference in the use of solid fuel between the lowest and highest wealth quintiles for the most recent survey was more than 90 percentage points. The gap was approximately 60 percentage points in Bangladesh and about 70 percentage points in Indonesia. Because of the strong association between wealth and place of residence, large disparities were also seen in the most recent surveys by place of residence. In all five countries, the smallest gaps in use of solid fuel were by crowding.


## 3.3 District-level Estimates of HAP

We used model-based methodology to estimate HAP at the district level in each country except Indonesia. Estimates could not be produced for Indonesia because global positioning system data were not collected for that survey. Estimates are shown through maps with corresponding confidence intervals (CIs) in Figures 8 to 11 and by district name in Appendix Tables A.6 to A.9. The CI maps present the width of the CIs for the district-level estimates. Darker colors on the maps on the right side denote wider CIs, which represent larger errors in the estimates.

Figure 8 District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, Bangladesh DHS 2014



The map on the left in Figure 8 shows that the use of solid fuel in Bangladesh was more than 90% in most districts. The lowest use was in the central districts of Dhaka division, where less than a quarter of the households in three districts used solid fuel for cooking (see Appendix Table A.6). In Dhaka district, only 15% (95% CI: 13%, 18%) used solid fuel. Every district from the Barisal and Khulna regions in the south of Bangladesh had rates of solid fuel use of 95% or higher. Most districts in these regions also had a relatively low level of uncertainty, as shown in the map on the right in Figure 8.



# Figure 9 District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, India DHS 2015-2016

The map on the left in Figure 9 shows a wide range of use of solid fuel for cooking across India's 640 districts. Solid fuel was very common in northeastern areas, with rates of use higher than 80% in most districts. The highest rate of use was in Jamtara district, at 96% (95% CI: 93%, 97%) (see Appendix Table A.7 for district ID 363). The use of solid fuel was relatively low in southern and northern districts. Indeed, several districts had less than 5% of households reporting the use of solid fuel: Srinagar, Chandigarh, North West, North, North East, East, New Delhi, Central, West, Southwest, South, Daman, Hyderabad, Bangalore, Mumbai, and Suburban (district IDs 10, 55, 90-98, 495, 518, 519, 536, and 572). The range of uncertainty for the estimates was below 20 percentage points in most districts (see map on the right in Figure 9). As in other countries, the use of solid fuel was higher in rural areas than in urban areas in every district, with a difference of up to 89 percentage points between the two (i.e., in Sonbhadra district).

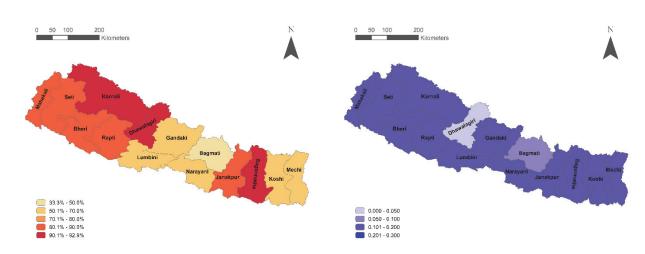



Figure 10 District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, Nepal DHS 2016

On average, two-thirds of households in Nepal used solid fuel for cooking in 2016. The map on the left in Figure 10 indicates that half of the 14 districts reported a level of 80% or higher, with three districts (Dhawalagiri, Karnali, and Sagarmatha) reporting a level higher than 90%. The only district in which less than half of households used solid fuel was Bagmati, at 33% (95% CI: 28.8, 37.6%) (see Appendix Table A.8). As shown in the map on the right in Figure 10, the range of uncertainty for the estimates for most districts fell between 10 and 20 percentage points.

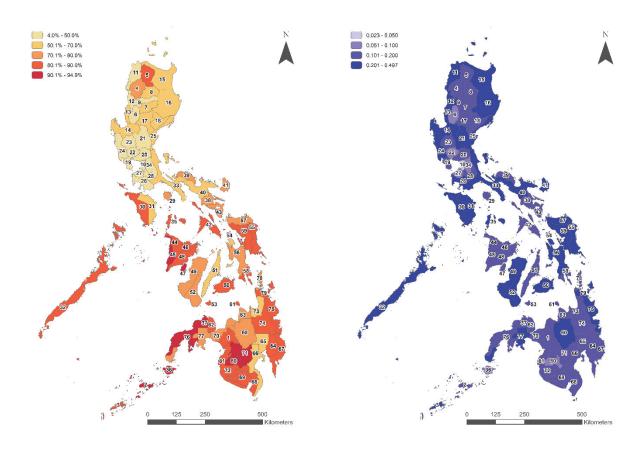



Figure 11 District-level estimates (left) and 95% CIs (right) of household use of solid fuel for cooking, the Philippines NDHS 2017

The map on the left in Figure 11 shows that in the Philippines, solid fuel use increases from north to south (with a few exceptions). The lowest rate of use was in Metro Manila, at 4% (95% CI: 3%, 5%) (see Appendix Table A.9). The surrounding provinces also had low levels of solid fuel use, ranging from 10% to 15%. These provinces are part of the Calabarzon and Central Lazon regions, but these regions had a few provinces with levels of solid fuel use above 50%. The highest solid fuel use was in the Autonomous Region in Muslim Mindanao (ARMM), ranging from 83% (in Shariff Kabunsuan province) to 95% (in Basilan province). Other provinces in the central and south of the country had moderate to high use, with more than 70% of households in most provinces using solid fuel for cooking. The level of uncertainty in these estimates ranged from moderate to high (i.e., between 10 and 20 percentage points), as shown in the map on the right in Figure 11.

# 4 DISCUSSION AND CONCLUSIONS

The adverse impacts of HAP on health, especially for women and children, have been well documented. Previous studies have examined this important issue in individual countries, but limited research has examined the levels of and trends in HAP in multiple countries (Bonjour et al. 2013). This study adds to that research and is also the first study to estimate the district-level use of solid fuel for cooking. Using data from nationally representative household surveys and geostatistical models, we assessed the levels of HAP from the use of solid fuel at the national, regional, and district levels and over time in five Southeast Asian countries. Overall, our analysis reveals a decreasing trend in use of solid fuel for cooking in these countries, which is in line with the model estimates based on data from the World Health Organization (Bonjour et al. 2013). Disparities in exposure by urban-rural residence, socioeconomic status, and geographic region persisted in all countries. We found the greatest reductions in use of solid fuel among relatively wealthy households, while the poorest households continued to be the most affected by HAP.

Bangladesh shows persistently high use of solid fuel for cooking. Reductions over time are less noticeable than in other countries. At the district level, more than 90% of households in most districts were using solid fuel for cooking in 2014. Clearly, HAP is a critical public health issue in Bangladesh; it contributes to 4% of the national burden of diseases (World Health Organization 2007). While the overall use of solid fuel is high in Bangladesh, most households reported cooking outside of the house or in a separate building. Research from Bangladesh has shown that cooking outside the house is associated with lower risks of ARI and low birth weight than is cooking inside the house, regardless of type of fuel (Khan et al. 2017). In another study, PM10 concentration was found to be lower in households that cooked in a separate kitchen or had doors and windows open after cooking (Dasgupta et al. 2006). A study conducted in India also found that in addition to fuel type, kitchen type was an important predictor of HAP (Balakrishnan et al. 2004). Given the universally high use of solid fuel in Bangladesh, a complete transition to clean energy will take time and be challenging. The government of Bangladesh aims to install improved cookstoves in 30 million households by 2030. Several improved cook stove programs are now being implemented with the support of international donors (Jain and Sadeque 2017). Other cost-effective options such as improving ventilation by changing space configurations and cooking locations should be encouraged, especially in poor areas.

Indonesia has the lowest use of solid fuel among the five countries studied. The country has also seen the greatest reduction in use over time, with use decreasing by more than half in the past decade. More than three-quarters of the households used clean fuel for cooking in 2016. The government of Indonesia's substantial investment in national energy subsidy programs has contributed to these improvements (Pertamina and World LP Gas Association 2015). Indonesia has been particularly successful in transitioning to clean household fuels including LPG, biogas, and electricity (Gardiner 2019). Between 2007 and 2012, the country successfully implemented a massive project to convert the primary fuel for cooking from kerosene to LPG in more than 50 million households (Budya and Arofat 2011; Pertamina and World LP Gas Association 2017 and 2012 in this analysis. Despite all these improvements and the low use of solid fuel on average, individuals in the poorest households still suffer from high exposure to HAP today. The use of LPG was found to be strongly associated with household income (Thoday et al. 2018). Target subsidies for low-income families should be considered.

India has a wide range of use of solid fuel for cooking across its districts. Solid fuel is very common in districts in northeastern areas but relatively low in districts in the south and north. India had the largest number of deaths due to illness caused by use of solid fuel in 2017 (Ritchie and Roser 2019). Since early 1980, the government of India has implemented several interventions to reduce HAP, including the widespread promotion and distribution of improved cooking stoves (Sinha 2002). However, due to various reasons including cultural factors, cost of maintenance, and poor design of the stoves, the uptake of improved cookstoves has remained low, especially in rural areas, and emissions from air pollutants have remained high (Khandelwal et al. 2017; Sinha 2002). The government recently implemented initiatives to introduce clean cooking to households by increasing access to LPG, improving stoves, and subsidizing fuel for poor households. Assessing the impact of these initiatives will be important for future policies and programs. Along with these initiatives, programs targeting other barriers such as a lack of awareness of the health risks of HAP are also warranted.

Nepal's overall level of HAP is high, with more than 80% of households in half of the country's districts using solid fuel for cooking. In contrast to trends in other countries, the use of solid fuel in urban areas appeared to have substantially increased in the most recent survey when compared with the two previous surveys. However, this increase is spurious and likely due to the use of different urban-rural classifications in the most recent DHS survey. Because many areas designated as rural in previous surveys were designated as urban in the 2016 DHS survey, comparisons between surveys by urban and rural place of residence should be interpreted with caution. As in other countries, households in low socioeconomic groups (the poorest wealth quintiles) are disproportionately affected by HAP, and the reduction over time was negligible. Previous research in Nepal has also shown that fuel choices and cooking practices are associated with household socioeconomic status (Ghimire et al. 2019). Given the limited access to clean fuel and limited subsidies from the government in Nepal, economic affordability plays a critical role in a household's access to clean fuel. Western districts have the highest levels of use. The government of Nepal has several policies and guidelines to reduce emissions from indoor open burning of biomass, including the National Indoor Air Quality Standard and Implementation Guidelines 2009, the Rural Renewable Energy Policy, and the National Rural Electrification Programme. The Alternative Energy Promotion Center has also headed a clean stove program aimed at promoting cleaner cooking fuels and clean cooking stoves. It has been noted that much more effort is needed. Specifically, prioritization of policies on biomass energy and incentivization for the use of improved cooking stoves are needed (Sigdel 2007).

The Philippines has made substantial improvements in the use of clean fuel, with about 50% of households using clean fuel for cooking. Despite limited government policies that promote the use of clean cooking technologies, clean cooking is associated with access to LPG, which has grown rapidly in the Philippines since the 1990s. Factors contributing to the increased utilization of LPG include competitive economics, improvements to product availability, and safety (SEforALL 2019; World Bank 2020). As in other countries, the use of solid fuel for cooking in the Philippines differs by place of residence, region, and wealth quintile. Although use has decreased in both urban and rural areas, the use of solid fuel in rural areas remains high, with more than 60% of households using it as their source for cooking. Regionally, the use of solid fuel increases from north to south with the lowest levels of use in the national capital. Variation across wealth quintiles is similar to that in other countries, with nearly all households in the lowest quintile but only about 5% of households in the highest quintile using solid fuel for cooking. These findings are in line with previous research showing higher use of solid fuel in lower income groups and a strong negative correlation between income and the use of dirty fuels (Arcenas et al. 2010). Studies conducted in the Philippines

examining the costs and benefits of switching to improved stoves, specifically improved wood stoves, have found that such a change would benefit health and save time (Arcenas et al. 2010).

Other countries have also seen a fair reduction in use of solid fuel given various interventions including the promotion and distribution of improved cooking stoves. Improved cooking stove interventions gained momentum alongside rising concerns about the depletion of natural forest resources, and they have successfully reduced indoor air pollution in certain contexts in several countries (Barnes 2005). However, some issues prevent sustainable use of improved stoves, including cultural factors, cost of maintenance, and poor design, especially in low-income settings (Amegah and Jaakkola 2016). For example, in India, despite a massive program, the uptake of improved cooking stoves remains low, especially in rural areas, and emissions from air pollutants are still high (Khandelwal et al. 2017; Sinha 2002). Important considerations for increasing uptake of improved cooking stoves include designs that meet the needs of the local context; effective marketing strategies; facilitation of local production or job creation, and assurance that user perceptions, community participation, and local energy policies are taken into account.

Similar to what previous research has shown, we found that households with low socioeconomic status are disproportionately affected by HAP and that the reduction in use of solid fuel has been much less among those households. In all five countries, while the reduction was the greatest among the relatively wealthy households (those in the third and fourth wealth quintiles), changes among the poorest households were minimal. Improved stoves and alternative types of fuel are not easily affordable for low-income households. Countries need low-cost interventions to reduce HAP. Some possibilities include tending fires (with smaller pieces of wood and reduced duration of burning), stove maintenance and use, ventilation use, and safer locations for children while fires are burning (Barnes 2005).

Interventions that promote increased ventilation to reduce fine particulate matter, the use of chimney stoves to reduce smoke exposure, and the separation of kitchens from living areas have been shown to reduce HAP and improve health outcomes (Mehta 2002; Thompson et al. 2011; Weaver et al. 2017). In addition to improved infrastructure and locally adapted solutions, behavioral change interventions focused on acceptability and use of clean cooking alternatives can help reduce the pollution from cooking (Naz, Page, and Agho 2018; Rhodes et al. 2014). Studies have also found that government efforts alone do not go far enough in reducing HAP; to implement effective interventions, coordination and support for affordable solutions is needed from both the government and the commercial sector (Zhang and Smith 2007).

An important contribution of this study is the estimation of use of solid fuel for cooking at the second subnational administrative level (district level). Except for the recent DHS survey in India, DHS data are only representative of the national and first administrative levels. District-level estimates, however, can be critical because interventions are often planned and implemented at the district level. To design more targeted programs to reduce HAP, it is imperative to understand geographic differences in level of exposure. The district-level estimates indicate wide geographic differentials in the use of solid fuel for cooking in the studied countries, especially in India and the Philippines. These estimates can assist policymakers in identifying districts that need interventions.

A limitation of this study is the cross-sectional nature of the data, which do not allow for reliable modeling of the association between HAP and child health outcomes such as low birth weight and ARI symptoms. For the study of low birth weight, we also did not know the duration of HAP exposure while a mother was

pregnant. ARI symptoms are only reported for the two weeks before the survey and cannot capture the possible chronic association between ARI and HAP. Another limitation is the self-reporting of HAP. We cannot know whether solid fuel was the only source of cooking fuel or was used only at certain times or for specific food preparation. Households have been found to use more than one source of fuel for cooking in what is referred to as fuel stacking (Thoday et al. 2018). The concentration or level of pollution produced from solid fuels can vary over time within the same household. Future studies to examine the link between HAP and health outcomes, using different types of data, could be designed to avoid some of these methodological issues.

In conclusion, this report has shown that use of solid fuel in households has declined in every country included in the analysis. The declines may reflect a combination of successful interventions and improvements is socioeconomic status. Analysis by household characteristics has shown that disparities still exist, and interventions that target rural and poor households can potentially further decrease HAP. It is imperative that interventions be tailored for different socioeconomic levels. The district-level analysis can further pinpoint the locations where these interventions are most needed.

# REFERENCES

Alegana, V. A., P. M. Atkinson, C. Pezzulo, A. Sorichetta, D. Weiss, T. Bird, E. Erbach-Schoenberg, and A. J. Tatem. 2015. "Fine Resolution Mapping of Population Age-Structures for Health and Development Applications." *Journal of The Royal Society Interface* 12 (105): 20150073.

Amegah, A. K., and J. J. Jaakkola. 2016. "Household Air Pollution and the Sustainable Development Goals." *Bulletin of the World Health Organization* 94 (3): 215.

Arcenas, A., J. Bojö, B. Larsen, and F. Ruiz Ñunez. 2010. "The Economic Costs of Indoor Air Pollution: New Results for Indonesia, the Philippines, and Timor-Leste." *Journal of Natural Resources Policy Research* 2 (1): 75-93.

Balakrishnan, K., S. Sambandam, P. Ramaswamy, S. Mehta, and K. R. Smith. 2004. "Exposure Assessment for Respirable Particulates Associated with Household Fuel Use in Rural Districts of Andhra Pradesh, India." *Journal of Exposure Science & Environmental Epidemiology* 14 (1): S14-S25.

Barnes, B. R. 2005. "Interventions to Reduce Child Exposure to Indoor Air Pollution in Developing Countries: Behavioral Opportunities and Research Needs." *Children Youth and Environments* 15 (1): 67-82.

Bates, M. N., R. K. Chandyo, P. Valentiner-Branth, A. K. Pokhrel, M. Mathisen, S. Basnet, P. S. Shrestha, T. A. Strand, and K. R. Smith. 2013. "Acute Lower Respiratory Infection in Childhood and Household Fuel Use in Bhaktapur, Nepal." *Environmental Health Perspectives* 121 (5): 637-642.

Bonjour, S., H. Adair-Rohani, J. Wolf, N. G. Bruce, S. Mehta, A. Prüss-Ustün, M. Lahiff, et al. 2013. "Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010." *Environmental Health Perspectives* 121 (7): 784-790.

Budya, H., and M. Y. Arofat. 2011. "Providing Cleaner Energy Access in Indonesia through the Megaproject of Kerosene Conversion to LPG." *Energy Policy* 39 (12): 7575-7586.

Dadras, O., and R. S. Chapman. 2017. "Biomass Fuel Smoke and Stunting in Early Childhood: Finding from a National Survey Nepal." *Journal of Health Research* 31 (Suppl. 1): s7-s15.

Dasgupta, S., M. Huq, M. Khaliquzzaman, K. Pandey, and D. Wheeler. 2006. "Who Suffers from Indoor Air Pollution? Evidence from Bangladesh." *Health Policy and Planning* 21 (6): 444-458.

Dherani, M., D. Pope, M. Mascarenhas, K. R. Smith, M. Weber, and N. Bruce. 2008. "Indoor Air Pollution from Unprocessed Solid Fuel Use and Pneumonia Risk in Children Aged under Five Years: A Systematic Review and Meta-Analysis." *Bulletin of the World Health Organization* 86: 390-398C.

Duflo, E., M. Greenstone, and R. Hanna. 2008. "Indoor Air Pollution, Health and Economic Well-Being." *S.A.P.I.EN.S. Surveys and Perspectives Integrating Environment and Society* (1.1).

Ezzati, M., & Kammen, D. M. 2002. "The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs." *Environmental Health Perspectives*, 110(11), 1057-1068.

Gardiner, B. 2019. *LMIC Urban Air Pollution Solutions Technical Document*. Chicago, IL, USA: USAID. https://www.harpnet.org/resource/lmic-urban-air-pollution-solutions-technical-document/.

Gething, P., A. Tatem, T. Bird, and C. R. Burgert-Brucker. 2015. *Creating Spatial Interpolation Surfaces with DHS Data*. DHS Spatial Analysis Reports No. 11. Rockville, Maryland, USA: ICF International. http://dhsprogram.com/pubs/pdf/SAR11/SAR11.pdf.

Ghimire, S., S. R. Mishra, A. Sharma, A. Siweya, N. Shrestha, and B. Adhikari. 2019. "Geographic and Socio-Economic Variation in Markers of Indoor Air Pollution in Nepal: Evidence from Nationally-Representative Data." *BMC Public Health* 19 (1): 195.

Graetz, N., J. Friedman, A. Osgood-Zimmerman, R. Burstein, M. H. Biehl, C. Shields, J. F. Mosser, et al. 2018. "Mapping Local Variation in Educational Attainment across Africa." *Nature* 555 (7694): 48-53.

Hosgood III, H. D., H. Wei, A. Sapkota, I. Choudhury, N. Bruce, K. R. Smith, N. Rothman, and Q. Lan. 2011. "Household Coal Use and Lung Cancer: Systematic Review and Meta-Analysis of Case-Control Studies, with an Emphasis on Geographic Variation." *International Journal of Epidemiology* 40 (3): 719-728.

Huboyo, H. S., S. Tohno, P. Lestari, A. Mizohata, and M. Okumura. 2014. "Characteristics of Indoor Air Pollution in Rural Mountainous and Rural Coastal Communities in Indonesia." *Atmospheric Environment* 82: 343-350.

Huq, M., S. Dasgupta, M. Khaliquzzaman, K. Pandey, and D. Wheeler. 2004. *Indoor Air Quality for Poor Families: New Evidence from Bangladesh*: Washington, DC, USA: World Bank. http://documents.worldbank.org/curated/en/573571468742542922/pdf/wps3393.pdf.

Jain, A., & Sadeque, Z. 2017. *Clean Cooking in Bangladesh: the experience from one million households*. https://blogs.worldbank.org/energy/clean-cooking-bangladesh-experience-one-million-households

Khan, M. N., M. M. Islam, M. R. Islam, and M. M. Rahman. 2017. "Household Air Pollution from Cooking and Risk of Adverse Health and Birth Outcomes in Bangladesh: A Nationwide Population-Based Study." *Environmental Health* 16 (1): 57.

Khandelwal, M., M. E. Hill Jr, P. Greenough, J. Anthony, M. Quill, M. Linderman, and H. Udaykumar. 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?" *World Development* 92: 13-27.

Mayala, B. K., T. Dontamsetti, T. D. Fish, and T. N. Croft. 2019. *Interpolation of DHS Survey Data at Subnational Administrative Level 2*. DHS Spatial Analysis Reports No. 17. Rockville, MD, USA: ICF. http://dhsprogram.com/pubs/pdf/SAR17/SAR17.pdf.

Mayala, B. K., T. D. Fish, D. Eitelberg, and T. Dontamsetti. 2018. *The DHS Program Geospatial Covariate Datasets Manual*. Rockville, MD, USA: ICF.

Mehta, S. 2002. *Characterizing Exposures to Indoor Air Pollution from Household Solid Fuel Use*. Berkeley, CA, USA: University of California, Berkeley.

Mestl, H. E., K. Aunan, H. M. Seip, S. Wang, Y. Zhao, and D. Zhang. 2007. "Urban and Rural Exposure to Indoor Air Pollution from Domestic Biomass and Coal Burning across China." *Science of the Total Environment* 377 (1): 12-26.

Mishra, V., and R. D. Retherford. 2006. "Does Biofuel Smoke Contribute to Anaemia and Stunting in Early Childhood?" *International Journal of Epidemiology* 36 (1): 117-129.

Mosser, J. F., W. Gagne-Maynard, P. C. Rao, A. Osgood-Zimmerman, N. Fullman, N. Graetz, R. Burstein, et al. 2019. "Mapping Diphtheria-Pertussis-Tetanus Vaccine Coverage in Africa, 2000–2016: A Spatial and Temporal Modelling Study." *The Lancet* 393 (10183): 1843-1855.

Naz, S., A. Page, and K. E. Agho. 2015. "Household Air Pollution and under-Five Mortality in Bangladesh (2004–2011)." *International Journal of Environmental Research and Public Health* 12 (10): 12847-12862.

Naz, S., A. Page, and K. E. Agho. 2016. "Household Air Pollution and Under-Five Mortality in India (1992–2006)." *Environmental Health* 15 (1): 54.

Naz, S., A. Page, and K. E. Agho. 2018. "Potential Impacts of Modifiable Behavioral and Environmental Exposures on Reducing Burden of Under-Five Mortality Associated with Household Air Pollution in Nepal." *Maternal and Child Health Journal* 22 (1): 59-70.

Osgood-Zimmerman, A., A. I. Millear, R. W. Stubbs, C. Shields, B. V. Pickering, L. Earl, N. Graetz, et al. 2018. "Mapping Child Growth Failure in Africa between 2000 and 2015." *Nature* 555 (7694): 41-47.

Pertamina, and World LP Gas Association. 2015. *Kerosene to LP Gas Conversion Programme in Indonesia: A Case Study of Domestic Energy*. Jakarta, Indonesia: Pertamina and World LP Gas Association. https://www.wlpga.org/wp-content/uploads/2015/09/kerosene-to-lp-gas-conversion-programme-in-indonesia.pdf.

Pope, D. P., V. Mishra, L. Thompson, A. R. Siddiqui, E. A. Rehfuess, M. Weber, and N. G. Bruce. 2010. "Risk of Low Birth Weight and Stillbirth Associated with Indoor Air Pollution from Solid Fuel Use in Developing Countries." *Epidemiologic Reviews* 32 (1): 70-81.

Raspanti, G. A., M. Hashibe, B. Siwakoti, M. Wei, B. K. Thakur, C. B. Pun, M. Al-Temimi, Y.-C. A. Lee, and A. Sapkota. 2016. "Household Air Pollution and Lung Cancer Risk among Never-Smokers in Nepal." *Environmental Research* 147: 141-145.

Rhodes, E., R. Dreibelbis, E. Klasen, N. Naithani, J. Baliddawa, D. Menya, S. Khatry, et al. 2014. "Behavioral Attitudes and Preferences in Cooking Practices with Traditional Open-Fire Stoves in Peru, Nepal, and Kenya: Implications for Improved Cookstove Interventions." *International Journal of Environmental Research and Public Health* 11 (10): 10310-10326. Ritchie, H., and M. Roser. 2019. "Outdoor Air Pollution." *Our World in Data*. https://ourworldindata.org/outdoor-air-pollution.

SEforALL. 2019. *Taking the pulse of energy access in the Philippines*. https://www.seforall.org/sites/default/files/2019-12/Taking-Pulse-Philippines.pdf

Siddharthan, T., M. R. Grigsby, D. Goodman, M. Chowdhury, A. Rubinstein, V. Irazola, L. Gutierrez, et al. 2018. "Association between Household Air Pollution Exposure and Chronic Obstructive Pulmonary Disease Outcomes in 13 Low-and Middle-Income Country Settings." *American Journal of Respiratory and Critical Care Medicine* 197 (5): 611-620.

Sigdel, S. 2007. *Policy Research on Household Energy and Indoor Air Pollution in South Asia. Summary Report.* Kathmandu, Nepal: Practical Action Nepal. http://www.wownepal.com/wp-content/uploads/2017/12/Policy-gaps-study-summary-report.pdf.

Sinha, B. 2002. "The Indian Stove Programme: An Insider's View-the Role of Society, Politics, Economics and Education." *Boiling Point* 48: 23-26.

Smith, K. R., J. P. McCracken, M. W. Weber, A. Hubbard, A. Jenny, L. M. Thompson, J. Balmes, et al. 2011. "Effect of Reduction in Household Air Pollution on Childhood Pneumonia in Guatemala (Respire): A Randomised Controlled Trial." *The Lancet* 378 (9804): 1717-1726.

Smith, K. R., S. Mehta, and M. Maeusezahl-Feuz. 2004. "Indoor Air Pollution from Household Use of Solid Fuels." *Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors* 2: 1435-1493.

Thoday, K., P. Benjamin, M. Gan, and E. Puzzolo. 2018. "The Mega Conversion Program from Kerosene to LPG in Indonesia: Lessons Learned and Recommendations for Future Clean Cooking Energy Expansion." *Energy for Sustainable Development* 46: 71-81.

Thompson, L. M., N. Bruce, B. Eskenazi, A. Diaz, D. Pope, and K. R. Smith. 2011. "Impact of Reduced Maternal Exposures to Wood Smoke from an Introduced Chimney Stove on Newborn Birth Weight in Rural Guatemala." *Environmental Health Perspectives* 119 (10): 1489-1494.

Tielsch, J. M., J. Katz, R. D. Thulasiraj, C. L. Coles, S. Sheeladevi, E. L. Yanik, and L. Rahmathullah. 2009. "Exposure to Indoor Biomass Fuel and Tobacco Smoke and Risk of Adverse Reproductive Outcomes, Mortality, Respiratory Morbidity and Growth among Newborn Infants in South India." *International Journal of Epidemiology* 38 (5): 1351-1363.

Weaver, A. M., S. Parveen, D. Goswami, C. Crabtree-Ide, C. Rudra, J. Yu, L. Mu, et al. 2017. "Pilot Intervention Study of Household Ventilation and Fine Particulate Matter Concentrations in a Low-Income Urban Area, Dhaka, Bangladesh." *The American Journal of Tropical Medicine and Hygiene* 97 (2): 615-623.

World Bank. 2020. *Regulatory Indicators for Sustainable Energy: Philippines*. Geneva, Switzerland: https://rise.worldbank.org/country/philippines

World Health Organization. 2006. *Fuel for Life: Household Energy and Health*. Geneva, Switzerland: World Health Organization. https://www.who.int/indoorair/publications/fuelforlife/en/.

World Health Organization. 2007. *Indoor Air Pollution: National Burden of Disease Estimates*. Geneva, Switzerland: World Health Organization. https://www.who.int/airpollution/publications/nationalburden/en/.

World Health Organization. 2018a. *Exposure to household air pollution for 2016*. Geneva, Switzerland: World Health Organization. https://www.who.int/airpollution/data/HAP\_exposure\_results\_final.pdf?ua=1

World Health Organization. 2018b. *Household Air Pollution and Health [Fact Sheet]*. Geneva, Switzerland: World Health Organization. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health.

Zhang, J., and K. R. Smith. 2007. "Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions." *Environmental Health Perspectives* 115 (6): 848-855.

# APPENDIX A USE OF SOLID FUEL FOR COOKING AND **DISTRICT-LEVEL HAP ESTIMATES**

# Appendix Table A.1 Levels and changes in the use of solid fuel for cooking by household background characteristics, Bangladesh

|                    | 2007              |     | 2011             |     | Diff. <sup>2</sup><br>- 2011- | 2014             |                | Diff. <sup>2</sup><br>—2014- | Diff. <sup>2</sup><br>2014- |
|--------------------|-------------------|-----|------------------|-----|-------------------------------|------------------|----------------|------------------------------|-----------------------------|
| Variable           | % [C.I.]          | p1  | % [C.I.]         | p1  | 2007                          | % [C.I.]         | p <sup>1</sup> | 2014-                        | 2014-2007                   |
| Total              | 91.1 [89.4,92.5]  |     | 86.3 [84.7,87.7] |     | -4.8***                       | 82.3 [79.5,84.8] |                | -4.0**                       | -8.8***                     |
| Place of residence |                   | *** |                  | *** |                               |                  | ***            |                              |                             |
| Urban              | 61.5 [54.5,68.1]  |     | 50.4 [44.8,56.0] |     | -11.1*                        | 50.0 [44.1,56.0] |                | 4                            | -11.5*                      |
| Rural              | 99.4 [98.8,99.7]  |     | 98.4 [97.5,98.9] |     | -1.0**                        | 94.9 [91.8,96.9] |                | -3.5***                      | -4.5***                     |
| Wealth guintile    |                   | *** |                  | *** |                               |                  | ***            |                              |                             |
| Lowest             | 100.0 [0,0]       |     | 99.3 [98.4,99.7] |     | 7                             | 99.8 [99.4,99.9] |                | .5                           | 2                           |
| Second             | 99.9 [99.6,100.0] |     | 99.6 [99.1,99.8] |     | 3                             | 99.7 [99.5,99.9] |                | .1                           | 2                           |
| Middle             | 99.7 [99.3,99.9]  |     | 98.9 [97.9,99.4] |     | 8*                            | 97.8 [96.6,98.7] |                | -1.0                         | -1.9***                     |
| Fourth             | 97.5 [96.0,98.5]  |     | 88.2 [85.6,90.5] |     | -9.3***                       | 79.3 [73.8,83.9] |                | -8.9***                      | -18.2***                    |
| Highest            | 55.9 [49.7,61.9]  |     | 42.9 [38.6,47.2] |     | -13.0***                      | 34.4 [30.2,38.9] |                | -8.5**                       | -21.5***                    |
| Crowding           |                   |     |                  |     |                               |                  |                |                              |                             |
| No                 | 91.1 [89.2,92.6]  |     | 86.3 [84.7,87.7] |     | -4.8***                       | 82.7 [80.0,85.2] |                | -3.5*                        | -8.3***                     |
| Yes                | 91.3 [88.4,93.5]  |     | 86.5 [83.7,88.9] |     | -4.8*                         | 80.5 [75.9,84.4] |                | -6.0*                        | -10.8***                    |
| Region             |                   | *** |                  | *** |                               |                  | ***            |                              |                             |
| Barisal            | 98.2 [95.5,99.3]  |     | 98.4 [97.5,99.0] |     | .2                            | 95.5 [89.8,98.1] |                | -3.0*                        | -2.8                        |
| Chittagong         | 89.8 [85.5,92.9]  |     | 86.7 [82.9,89.7] |     | -3.1                          | 82.0 [74.8,87.5] |                | -4.7                         | -7.8*                       |
| Dhaka              | 80.4 [75.5,84.4]  |     | 71.0 [66.7,74.9] |     | -9.4**                        | 65.0 [57.0,72.3] |                | -6.0                         | -15.4***                    |
| Khulna             | 98.7 [97.7,99.2]  |     | 97.4 [95.6,98.4] |     | -1.3                          | 95.4 [93.7,96.7] |                | -1.9                         | -3.2***                     |
| Rajshahi/Rangpur   | 98.2 [97.1,98.9]  |     | 96.8 [95.3,97.8] |     | -1.4                          | 96.2 [94.6,97.4] |                | 5                            | -2.0*                       |
| Sylhet             | 96.2 [93.1,97.9]  |     | 88.0 [84.0,91.0] |     | -8.3***                       | 91.5 [87.7,94.3] |                | 3.6                          | -4.7*                       |

Notes: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001 <sup>1</sup> p-value significance of the covariate in each survey <sup>2</sup> Difference between the two surveys with the p-value of the difference

|                    | 2005-06          |                | 2015-16          | Diff. <sup>2</sup><br>- 2015-16- |          |
|--------------------|------------------|----------------|------------------|----------------------------------|----------|
| Variable           | % [C.I.]         | p <sup>1</sup> | % [C.I.]         | p <sup>1</sup>                   | 2015-10- |
| Total              | 70.8 [69.8,71.8] |                | 54.7 [54.3,55.1] |                                  | -16.1*** |
| Place of residence |                  | ***            |                  | ***                              |          |
| Urban              | 30.9 [28.7,33.1] |                | 16.4 [15.9,17.0] |                                  | -14.5*** |
| Rural              | 90.2 [89.4,90.9] |                | 75.2 [74.9,75.5] |                                  | -15.0*** |
| Wealth quintile    |                  | ***            |                  | ***                              |          |
| Lowest             | 99.8 [99.7,99.8] |                | 98.3 [98.2,98.4] |                                  | -1.4***  |
| Second             | 98.5 [98.2,98.7] |                | 89.6 [89.2,90.0] |                                  | -8.9***  |
| Middle             | 90.4 [89.6,91.2] |                | 58.2 [57.6,58.9] |                                  | -32.2*** |
| Fourth             | 54.2 [52.6,55.9] |                | 22.2 [21.8,22.7] |                                  | -32.0*** |
| Highest            | 10.6 [9.9,11.4]  |                | 5.5 [5.3,5.7]    |                                  | -5.2***  |
| Crowding           |                  | ***            |                  | ***                              |          |
| No                 | 66.4 [65.3,67.5] |                | 50.7 [50.3,51.1] |                                  | -15.7*** |
| Yes                | 78.2 [77.1,79.3] |                | 64.5 [63.9,65.1] |                                  | -13.7*** |
| Region             |                  | ***            |                  | ***                              |          |
| North              | 63.0 [61.0,64.9] |                | 47.8 [46.8,48.8] |                                  | -15.2*** |
| Central            | 81.8 [79.6,83.9] |                | 68.6 [68.0,69.1] |                                  | -13.2*** |
| East               | 85.4 [83.7,87.0] |                | 76.9 [76.1,77.6] |                                  | -8.5***  |
| Northeast          | 73.9 [70.5,77.1] |                | 69.9 [69.0,70.8] |                                  | -4.0*    |
| West               | 49.4 [46.2,52.6] |                | 38.4 [37.4,39.5] |                                  | -10.9*** |
| South              | 64.6 [62.3,66.9] |                | 34.1 [33.4,34.8] |                                  | -30.5*** |

#### Appendix Table A.2 Levels and changes in the use of solid fuel for cooking by household background characteristics, India

Notes: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001 <sup>1</sup> p-value significance of the covariate in each survey <sup>2</sup> Difference between the two surveys with the p-value of the difference

|                    | 2007             |                | 2012             |                | Diff. <sup>2</sup><br>- 2012- | 2017             |                | Diff. <sup>2</sup><br>2017- | Diff. <sup>2</sup><br>2017- |
|--------------------|------------------|----------------|------------------|----------------|-------------------------------|------------------|----------------|-----------------------------|-----------------------------|
| Variable           | % [C.I.]         | p <sup>1</sup> | % [C.I.]         | p <sup>1</sup> | 2007                          | % [C.I.]         | p <sup>1</sup> | 2012                        | 2007                        |
| Total              | 54.0 [52.2,55.9] |                | 38.1 [36.5,39.6] |                | -16.0***                      | 23.1 [22.1,24.3] |                | -14.9***                    | -30.9***                    |
| Place of residence |                  | ***            |                  | ***            |                               |                  | ***            |                             |                             |
| Urban              | 22.0 [19.1,25.1] |                | 15.6 [13.6,17.8] |                | -6.4***                       | 7.6 [6.7,8.5]    |                | -8.0***                     | -14.4***                    |
| Rural              | 76.8 [74.6,78.8] |                | 59.6 [57.4,61.9] |                | -17.1***                      | 38.0 [36.1,40.0] |                | -21.6***                    | -38.7***                    |
| Wealth quintile    |                  | ***            |                  | ***            |                               |                  | ***            |                             |                             |
| Lowest             | 97.0 [96.4,97.5] |                | 85.6 [84.2,86.8] |                | -11.4***                      | 70.4 [68.7,72.0] |                | -15.2***                    | -26.6***                    |
| Second             | 81.9 [80.1,83.6] |                | 56.2 [53.9,58.5] |                | -25.7***                      | 27.0 [25.3,28.8] |                | -29.2***                    | -54.9***                    |
| Middle             | 60.0 [57.3,62.6] |                | 29.1 [26.9,31.3] |                | -30.9***                      | 8.0 [7.1,9.0]    |                | -21.1***                    | -52.0***                    |
| Fourth             | 23.8 [21.2,26.6] |                | 9.0 [7.8,10.4]   |                | -14.7***                      | 1.6 [1.3,2.0]    |                | -7.4***                     | -22.2***                    |
| Highest            | .8 [0.5,1.3]     |                | .9 [0.6,1.3]     |                | .1                            | .2 [0.1,0.3]     |                | 7***                        | 7***                        |
| Crowding           |                  |                |                  | ***            |                               |                  |                |                             |                             |
| No                 | NA               |                | 37.5 [36.0,39.1] |                |                               | 23.1 [22.0,24.2] |                | -14.5***                    |                             |
| Yes                | NA               |                | 42.7 [40.2,45.3] |                |                               | 23.8 [21.7,25.9] |                | -19.0***                    |                             |
| Region             |                  | ***            |                  | ***            |                               |                  | ***            |                             |                             |
| Sumatera           | 54.5 [51.7,57.2] |                | 38.1 [35.9,40.3] |                | -16.4***                      | 19.1 [17.3,21.0] |                | -19.0***                    | -35.4***                    |
| Java               | 51.5 [48.7,54.3] |                | 34.0 [31.7,36.4] |                | -17.5***                      | 21.2 [19.6,22.9] |                | -12.8***                    | -30.3***                    |
| Bali/Nusa Tenggara | 64.5 [59.8,68.9] |                | 59.1 [55.1,62.9] |                | -5.4                          | 42.1 [38.3,45.9] |                | -17.0***                    | -22.4***                    |
| Kalimantan         | 53.5 [49.3,57.7] |                | 37.9 [34.7,41.1] |                | -15.7***                      | 19.1 [16.0,22.7] |                | -18.8***                    | -34.4***                    |
| Sulawesi           | 64.5 [61.4,67.6] |                | 48.7 [45.5,51.9] |                | -15.8***                      | 29.7 [26.8,32.7] |                | -19.0***                    | -34.9***                    |
| Maluku/Papua       | 65.3 [59.8,70.4] |                | 63.0 [59.1,66.8] |                | -2.3                          | 54.4 [48.3,60.3] |                | -8.7*                       | -10.9**                     |

#### Appendix Table A.3 Levels and changes in the use of solid fuel for cooking by household background characteristics, Indonesia

Notes: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001 <sup>1</sup> p-value significance of the covariate in each survey

<sup>2</sup> Difference between the two surveys with the p-value of the difference

NA = Not available

|                    | 2006             |                | 2011             |                | Diff. <sup>2</sup><br>- 2011- | 2016             |                | Diff. <sup>2</sup><br>2016- | Diff. <sup>2</sup><br>2016- |
|--------------------|------------------|----------------|------------------|----------------|-------------------------------|------------------|----------------|-----------------------------|-----------------------------|
| Variable           | % [C.I.]         | p <sup>1</sup> | % [C.I.]         | p <sup>1</sup> | 2006                          | % [C.I.]         | p <sup>1</sup> | 2010-                       | 2006                        |
| Total              | 83.3 [78.5,87.2] |                | 75.1 [71.3,78.5] |                | -8.2**                        | 65.7 [62.4,68.9] |                | -9.4***                     | -17.6***                    |
| Place of residence |                  | ***            |                  | ***            |                               |                  | ***            |                             |                             |
| Urban              | 39.1 [32.0,46.7] |                | 29.3 [25.8,33.1] |                | -9.7*                         | 51.8 [47.4,56.3] |                | 22.5***                     | 12.8**                      |
| Rural              | 92.3 [87.3,95.4] |                | 82.7 [78.6,86.2] |                | -9.6**                        | 87.8 [83.6,91.0] |                | 5.0                         | -4.5                        |
| Wealth quintile    |                  | ***            |                  | ***            |                               |                  | ***            |                             |                             |
| Lowest             | 100.0            |                | 99.7 [99.1,99.9] |                | 3                             | 99.5 [98.8,99.8] |                | 2                           | 5                           |
| Second             | 100.0            |                | 99.4 [98.9,99.7] |                | 6***                          | 96.0 [94.7,97.0] |                | -3.4***                     | -4.0                        |
| Middle             | 99.2 [98.1,99.7] |                | 97.2 [95.9,98.1] |                | -2.0*                         | 85.5 [82.8,87.8] |                | -11.7***                    | -13.7***                    |
| Fourth             | 93.8 [90.8,95.9] |                | 71.2 [67.2,74.9] |                | -22.6***                      | 44.9 [40.9,49.1] |                | -26.3***                    | -48.9***                    |
| Highest            | 31.2 [25.0,38.3] |                | 16.4 [13.6,19.6] |                | -14.9***                      | 5.4 [4.3,6.8]    |                | -11.0***                    | -25.8***                    |
| Crowding           |                  | ***            |                  | ***            |                               |                  | ***            |                             |                             |
| No                 | 81.3 [76.3,85.5] |                | 73.0 [69.1,76.6] |                | -8.3**                        | 63.8 [60.4,67.1] |                | -9.2***                     | -17.5***                    |
| Yes                | 89.0 [84.4,92.3] |                | 84.8 [80.7,88.1] |                | -4.2                          | 78.2 [74.4,81.6] |                | -6.6*                       | -10.7***                    |
| Region             |                  | ***            |                  | **             |                               |                  | ***            |                             |                             |
| Eastern            | 91.0 [84.9,94.8] |                | 75.7 [67.7,82.3] |                | -15.3**                       | 75.4 [68.9,81.0] |                | 3                           | -15.6***                    |
| Central            | 72.5 [61.1,81.6] |                | 67.4 [59.0,74.8] |                | -5.1                          | 53.8 [47.6,59.9] |                | -13.6**                     | -18.7**                     |
| Western            | 80.8 [69.5,88.6] |                | 74.0 [65.2,81.2] |                | -6.9                          | 59.8 [52.9,66.3] |                | -14.2*                      | -21.0**                     |
| Mid-Western        | 94.2 [89.0,97.0] |                | 85.8 [77.9,91.1] |                | -8.5*                         | 80.2 [73.6,85.4] |                | -5.6                        | -14.0***                    |
| Far-Western        | 94.4 [91.9,96.2] |                | 91.5 [87.8,94.1] |                | -3.0                          | 82.9 [74.5,88.9] |                | -8.6*                       | -11.5***                    |

#### Appendix Table A.4 Levels and changes in the use of solid fuel for cooking by household background characteristics, Nepal

Notes: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001 <sup>1</sup> p-value significance of the covariate in each survey <sup>2</sup> Difference between the two surveys with the p-value of the difference

|                    | 2008             |                | 2013             |                | Diff. <sup>2</sup><br>- 2013- | 2017             |                | Diff. <sup>2</sup><br>—2017- | Diff. <sup>2</sup><br>2017- |
|--------------------|------------------|----------------|------------------|----------------|-------------------------------|------------------|----------------|------------------------------|-----------------------------|
| Variable           | % [C.I.]         | p <sup>1</sup> | % [C.I.]         | p <sup>1</sup> | 2008                          | % [C.I.]         | p <sup>1</sup> | 2013                         | 2008                        |
| Total              | 64.2 [62.2,66.1] |                | 60.8 [59.3,62.2] |                | -3.4**                        | 47.7 [45.1,50.3] |                | -13.1***                     | -16.5***                    |
| Place of residence |                  | ***            |                  | ***            |                               |                  | ***            |                              |                             |
| Urban              | 43.1 [40.4,45.8] |                | 38.7 [36.6,41.0] |                | -4.3*                         | 25.1 [22.3,28.0] |                | -13.7***                     | -18.0***                    |
| Rural              | 85.6 [83.6,87.3] |                | 81.1 [79.1,82.9] |                | -4.5***                       | 67.1 [63.4,70.6] |                | -14.0***                     | -18.5***                    |
| Wealth quintile    |                  | ***            |                  | ***            |                               |                  | ***            |                              |                             |
| Lowest             | 99.5 [99.2,99.7] |                | 99.3 [98.9,99.6] |                | 2                             | 97.5 [96.7,98.2] |                | -1.8***                      | -2.0***                     |
| Second             | 94.4 [93.1,95.4] |                | 93.5 [92.4,94.4] |                | 8                             | 78.3 [68.7,85.6] |                | -15.2***                     | -16.0***                    |
| Middle             | 77.3 [74.6,79.8] |                | 73.5 [71.2,75.7] |                | -3.8*                         | 44.2 [41.5,47.0] |                | -29.3***                     | -33.1***                    |
| Fourth             | 40.1 [37.4,42.9] |                | 33.0 [30.9,35.2] |                | -7.1***                       | 13.7 [12.2,15.4] |                | -19.3***                     | -26.4***                    |
| Highest            | 8.3 [7.0,9.8]    |                | 7.1 [6.1,8.3]    |                | -1.2                          | 2.7 [2.1,3.3]    |                | -4.4***                      | -5.7***                     |
| Crowding           |                  | ***            |                  | ***            |                               |                  | ***            |                              |                             |
| No                 | 60.1 [58.1,62.2] |                | 57.0 [55.4,58.6] |                | -3.1*                         | 44.5 [41.8,47.3] |                | -12.5***                     | -15.6***                    |
| Yes                | 75.6 [73.0,78.0] |                | 71.7 [69.3,73.9] |                | -3.9*                         | 59.7 [56.7,62.7] |                | -12.0***                     | -15.9***                    |
| Region             |                  | ***            |                  | ***            |                               |                  | ***            |                              |                             |
| Luzon              | 68.4 [65.6,71.2] |                | 54.9 [52.3,57.5] |                | -13.6***                      | 39.1 [35.9,42.3] |                | -15.8***                     | -29.4***                    |
| National Capital   | 16.9 [13.5,20.8] |                | 12.7 [9.9,16.2]  |                | -4.1                          | 3.0 [1.9,4.8]    |                | -9.7***                      | -13.8***                    |
| Visayas            | 84.2 [81.7,86.3] |                | 82.1 [78.8,84.9] |                | -2.1                          | 71.0 [66.8,74.8] |                | -11.1***                     | -13.2***                    |
| Mindanao           | 85.3 [82.7,87.6] |                | 85.9 [83.8,87.8] |                | .6                            | 74.2 [64.0,82.4] |                | -11.7**                      | -11.1**                     |

## Appendix Table A.5 Levels and changes in the use of solid fuel for cooking by household

Notes: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001 <sup>1</sup> p-value significance of the covariate in each survey

<sup>2</sup> Difference between the two surveys with the p-value of the difference

| District ID | District name              | Estimate       | Lower          | Upper           |
|-------------|----------------------------|----------------|----------------|-----------------|
| 1           | Barguna                    | 99.6%          | 97.6%          | 100.0%          |
| 2           | Barisal                    | 95.8%          | 92.9%          | 97.5%           |
| 3           | Bhola                      | 95.1%          | 89.3%          | 97.7%           |
| 4           | Jhalokati                  | 97.3%          | 94.5%          | 98.7%           |
| 5           | Patuakhali                 | 97.7%          | 93.4%          | 99.4%           |
| 6           | Pirojpur                   | 99.1%          | 97.1%          | 99.8%           |
| 7<br>8      | Bandarban<br>Brahamanbaria | 99.6%<br>88.5% | 97.7%<br>81.7% | 100.0%<br>93.1% |
| 9           | Chandpur                   | 87.4%          | 81.1%          | 92.2%           |
| 10          | Chittagong                 | 77.2%          | 72.2%          | 80.9%           |
| 11          | Comilla                    | 88.3%          | 82.4%          | 92.7%           |
| 12          | Cox's Bazar                | 98.7%          | 93.2%          | 99.9%           |
| 13          | Feni                       | 92.0%          | 86.4%          | 95.4%           |
| 14          | Khagrachhari               | 99.4%          | 97.2%          | 100.0%          |
| 15          | Lakshmipur                 | 94.2%          | 86.6%          | 97.6%           |
| 16          | Noakhali                   | 74.3%          | 58.6%          | 83.2%           |
| 17          | Rangamati                  | 99.2%          | 97.2%          | 99.8%           |
| 18          | Dhaka                      | 15.4%          | 12.9%          | 17.9%           |
| 19          | Faridpur                   | 79.8%          | 62.4%          | 92.8%           |
| 20          | Gazipur                    | 62.3%          | 54.7%          | 68.0%           |
| 21          | Gopalganj                  | 99.1%          | 96.2%          | 99.9%           |
| 22          | Jamalpur                   | 98.2%          | 94.2%          | 99.6%           |
| 23<br>24    | Kishoreganj<br>Madaripur   | 95.7%<br>97.2% | 88.7%<br>91.7% | 98.4%<br>99.5%  |
| 24          | Manikganj                  | 80.5%          | 71.6%          | 99.5%<br>87.4%  |
| 26          | Munshiganj                 | 88.6%          | 84.9%          | 91.4%           |
| 27          | Mymensingh                 | 93.7%          | 85.8%          | 97.1%           |
| 28          | Narayanganj                | 22.8%          | 18.2%          | 27.8%           |
| 29          | Narsingdi                  | 49.7%          | 41.1%          | 56.8%           |
| 30          | Netrakona                  | 98.7%          | 91.4%          | 100.0%          |
| 31          | Rajbari                    | 98.9%          | 96.7%          | 99.7%           |
| 32          | Shariatpur                 | 96.7%          | 91.7%          | 99.0%           |
| 33          | Sherpur                    | 95.5%          | 89.1%          | 98.2%           |
| 34          | Tangail                    | 96.9%          | 91.3%          | 99.2%           |
| 35          | Bagerhat                   | 98.5%          | 96.2%          | 99.5%           |
| 36          | Chuadanga                  | 96.2%          | 91.9%          | 98.4%           |
| 37          | Jessore                    | 97.2%          | 93.3%          | 99.0%           |
| 38<br>39    | Jhenaidah                  | 97.0%          | 93.7%          | 98.7%           |
| 39<br>40    | Khulna<br>Kushtia          | 91.8%<br>94.6% | 87.7%<br>90.2% | 94.6%<br>97.1%  |
| 40          | Magura                     | 94.6%          | 90.2%          | 97.4%           |
| 42          | Meherpur                   | 95.4%          | 90.4%          | 98.1%           |
| 43          | Narail                     | 99.3%          | 98.2%          | 99.8%           |
| 44          | Satkhira                   | 96.9%          | 88.7%          | 99.4%           |
| 45          | Bogra                      | 92.7%          | 88.2%          | 95.7%           |
| 46          | Dinajpur                   | 97.0%          | 93.1%          | 98.9%           |
| 47          | Gaibandha                  | 96.9%          | 93.7%          | 98.7%           |
| 48          | Joypurhat                  | 98.4%          | 96.3%          | 99.5%           |
| 49          | Kurigram                   | 98.0%          | 94.4%          | 99.4%           |
| 50          | Lalmonirhat                | 98.8%          | 95.4%          | 99.8%           |
| 51          | Naogaon                    | 97.4%          | 92.9%          | 99.2%           |
| 52          | Natore                     | 97.1%          | 93.7%          | 98.9%           |
| 53          | Nawabganj                  | 98.5%          | 93.1%          | 99.9%           |
| 54          | Nilphamari                 | 96.9%          | 94.2%          | 98.5%           |
| 55<br>56    | Pabna                      | 93.6%          | 89.6%          | 96.2%<br>99.3%  |
| 56<br>57    | Panchagarh<br>Baisbabi     | 97.8%          | 94.2%          | 99.3%<br>95.3%  |
| 57<br>58    | Rajshahi<br>Rangpur        | 92.8%<br>94.8% | 89.3%<br>91.1% | 95.3%<br>97.2%  |
| 59          | Sirajganj                  | 94.8%          | 91.1%<br>87.2% | 95.6%           |
| 60          | Thakurgaon                 | 98.8%          | 96.1%          | 99.8%           |
| 61          | Habiganj                   | 90.0%          | 84.0%          | 94.8%           |
| 62          | Maulvibazar                | 94.1%          | 88.9%          | 97.0%           |
| 63          | Sunamganj                  | 98.1%          | 95.4%          | 99.1%           |
| 64          | Sylhet                     | 90.5%          | 85.1%          | 93.7%           |

Appendix Table A.6 District-level estimates of household use of solid fuel for cooking, Bangladesh DHS 2014

| District ID | District name              | Estimate | Lower | Upper |
|-------------|----------------------------|----------|-------|-------|
| 1           | Kupwara                    | 50.9%    | 42.6% | 59.2% |
| 2           | Badgam                     | 37.8%    | 28.5% | 48.1% |
| 3           | Leh                        | 10.9%    | 7.0%  | 16.5% |
| 4           | Kargil                     | 55.1%    | 44.7% | 65.1% |
| 5           | Punch                      | 77.5%    | 70.8% | 83.0% |
| 6           | Rajouri                    | 67.1%    | 57.1% | 75.8% |
| 7           | Kathua                     | 59.2%    | 50.5% | 67.3% |
| 8           | Baramula                   | 27.6%    | 21.6% | 34.7% |
| 9           | Bandipore                  | 43.6%    | 34.2% | 53.6% |
| 10          | Srinagar                   | 2.1%     | 0.7%  | 6.4%  |
| 11          | Ganderbal                  | 31.4%    | 22.4% | 42.0% |
| 12          | Pulwama                    | 21.1%    | 14.6% | 29.5% |
| 13          | Shupiyan                   | 56.2%    | 47.9% | 64.3% |
| 14          | Anantnag                   | 29.5%    | 20.8% | 40.0% |
| 15          | Kulgam                     | 49.2%    | 42.7% | 55.7% |
| 16          | Doda                       | 83.8%    | 76.5% | 89.1% |
| 17          | Ramban                     | 79.7%    | 73.4% | 84.8% |
| 18          | Kishtwar                   | 72.9%    | 63.1% | 80.9% |
| 19          | Udhampur                   | 72.5%    | 63.7% | 79.9% |
| 20          | Reasi                      | 82.6%    | 74.8% | 88.3% |
| 21          | Jammu                      | 25.0%    | 18.9% | 32.4% |
| 22          | Samba                      | 49.8%    | 40.7% | 58.8% |
| 23          | Chamba                     | 73.9%    | 65.9% | 80.5% |
| 24          | Kangra                     | 64.9%    | 58.2% | 71.0% |
| 25          | Lahul And Spiti            | 38.6%    | 30.6% | 47.3% |
| 26          | Kullu                      | 61.1%    | 52.1% | 69.4% |
| 27          | Mandi                      | 75.7%    | 68.4% | 81.8% |
| 28          | Hamirpur                   | 75.4%    | 70.9% | 79.5% |
| 29          | Una                        | 67.4%    | 61.5% | 72.8% |
| 30          | Bilaspur                   | 80.4%    | 75.5% | 84.6% |
| 31          | Solan                      | 47.6%    | 39.8% | 55.5% |
| 32          | Sirmaur                    | 60.8%    | 52.6% | 68.5% |
| 33          | Shimla                     | 32.0%    | 25.5% | 39.4% |
| 34          | Kinnaur                    | 31.1%    | 25.3% | 37.6% |
| 35          | Gurdaspur                  | 29.6%    | 24.6% | 35.3% |
| 36          | Kapurthala                 | 22.3%    | 16.5% | 29.5% |
| 37          | Jalandhar                  | 20.9%    | 15.9% | 27.0% |
| 38          | Hoshiarpur                 | 37.1%    | 31.2% | 43.5% |
| 39          | Sangrur                    | 44.4%    | 38.6% | 50.4% |
| 40          | Fatehgarh Sahib            | 29.3%    | 24.3% | 34.8% |
| 41          | Ludhiana                   | 21.4%    | 17.4% | 26.0% |
| 42          | Moga                       | 44.4%    | 40.0% | 48.9% |
| 43          | Firozpur                   | 50.1%    | 42.9% | 57.2% |
| 44          | Muktsar                    | 40.2%    | 34.9% | 45.7% |
| 45          | Faridkot                   | 34.7%    | 29.0% | 40.9% |
| 46          | Bathinda                   | 37.1%    | 30.7% | 43.9% |
| 47          | Mansa                      | 59.1%    | 52.8% | 65.1% |
| 48          | Patiala                    | 31.0%    | 25.1% | 37.6% |
| 49          | Amritsar                   | 26.6%    | 21.6% | 32.3% |
| 50          | Tarn Taran                 | 44.6%    | 39.4% | 50.0% |
| 51          | Rupnagar                   | 32.3%    | 27.1% | 37.9% |
| 52          | Sahibzada Ajit Singh Nagar | 18.5%    | 14.2% | 23.8% |
| 53          | Shahid Bhagat Singh Nagar  | 47.8%    | 42.0% | 53.7% |
| 54          | Barnala                    | 45.5%    | 40.8% | 50.4% |
| 55          | Chandigarh                 | 4.1%     | 1.8%  | 9.0%  |
| 56          | Uttarkashi                 | 71.7%    | 64.8% | 77.7% |
| 57          | Chamoli                    | 63.3%    | 56.2% | 69.8% |
| 58          | Rudraprayag                | 67.0%    | 59.7% | 73.5% |
| 59          | Tehri Garhwal              | 64.6%    | 54.1% | 73.8% |
| 60          | Dehradun                   | 13.9%    | 10.1% | 18.8% |
| 61          | Garhwal                    | 64.3%    | 57.1% | 70.9% |
| 01          |                            |          |       |       |

Appendix Table A.7 District-level estimates of household use of solid fuel for cooking, India DHS 2015-2016

| District ID | District name     | Estimate | Lower | Upper |
|-------------|-------------------|----------|-------|-------|
| 63          | Bageshwar         | 76.4%    | 66.7% | 83.9% |
| 64          | Almora            | 69.7%    | 61.2% | 77.0% |
| 65          | Champawat         | 69.5%    | 61.6% | 76.3% |
| 66          | Nainital          | 36.6%    | 30.4% | 43.3% |
| 67          | Udham Singh Nagar | 46.8%    | 41.3% | 52.4% |
| 68          | Hardwar           | 53.1%    | 47.8% | 58.4% |
| 69          | Panchkula         | 22.0%    | 15.7% | 29.9% |
| 70          | Ambala            | 32.0%    | 25.8% | 38.9% |
| 71          | Yamunanagar       | 38.0%    | 32.5% | 43.9% |
| 72          | Kurukshetra       | 40.4%    | 34.2% | 46.9% |
| 73          | Kaithal           | 58.5%    | 50.4% | 66.2% |
| 74          | Karnal            | 45.3%    | 36.6% | 54.3% |
| 75          | Panipat           | 36.2%    | 30.1% | 42.8% |
| 76          | Sonipat           | 51.6%    | 45.0% | 58.2% |
| 77          | Jind              | 63.2%    | 57.0% | 69.0% |
| 78          | Fatehabad         | 60.8%    | 53.6% | 67.6% |
| 79          | Sirsa             | 58.1%    | 53.1% | 63.0% |
| 80          | Hisar             | 60.8%    | 56.2% | 65.2% |
| 81          | Bhiwani           | 66.3%    | 58.9% | 73.0% |
| 82          | Rohtak            | 54.2%    | 48.1% | 60.2% |
| 83          | Jhajjar           | 55.8%    | 48.9% | 62.4% |
| 84          | Mahendragarh      | 66.4%    |       | 72.6% |
|             | 0                 |          | 59.5% | -     |
| 85          | Rewari            | 60.8%    | 55.0% | 66.3% |
| 86          | Gurgaon           | 17.0%    | 13.2% | 21.6% |
| 87          | Mewat             | 82.6%    | 70.3% | 90.5% |
| 88          | Faridabad         | 15.9%    | 10.6% | 23.2% |
| 89          | Palwal            | 69.1%    | 62.6% | 75.0% |
| 90          | North West        | 2.8%     | 1.2%  | 6.4%  |
| 91          | North             | 0.7%     | 0.1%  | 5.2%  |
| 92          | North East        | 0.8%     | 0.4%  | 1.8%  |
| 93          | East              | 0.6%     | 0.2%  | 1.6%  |
| 94          | New Delhi         | 4.5%     | 1.6%  | 12.3% |
| 95          | Central           | 0.5%     | 0.1%  | 3.3%  |
| 96          | West              | 0.5%     | 0.1%  | 1.5%  |
| 97          | South West        | 1.5%     | 0.4%  | 5.5%  |
| 98          | South             | 2.7%     | 0.9%  | 7.5%  |
| 99          | Ganganagar        | 60.1%    | 54.4% | 65.6% |
| 100         | Hanumangarh       | 74.9%    | 70.6% | 78.7% |
| 101         | Bikaner           | 60.3%    | 57.1% | 63.4% |
| 102         | Churu             | 69.5%    | 65.7% | 73.0% |
| 103         | Jhunjhunun        | 48.9%    | 42.6% | 55.1% |
| 104         | Alwar             | 76.0%    | 71.5% | 79.9% |
| 105         | Bharatpur         | 83.6%    | 76.8% | 88.7% |
| 105         | Dhaulpur          | 78.6%    | 71.3% | 84.4% |
| 107         | Karauli           | 85.3%    | 81.2% | 88.7% |
| 107         |                   |          |       | 85.9% |
|             | Sawai Madhopur    | 81.9%    | 76.9% |       |
| 109         | Dausa             | 83.2%    | 77.9% | 87.5% |
| 110         | Jaipur            | 44.7%    | 40.5% | 49.0% |
| 111         | Sikar             | 56.9%    | 52.2% | 61.5% |
| 112         | Nagaur            | 75.6%    | 69.7% | 80.7% |
| 113         | Jodhpur           | 54.8%    | 51.0% | 58.5% |
| 114         | Jaisalmer         | 82.6%    | 77.6% | 86.6% |
| 115         | Barmer            | 85.2%    | 79.6% | 89.4% |
| 116         | Jalor             | 73.0%    | 66.9% | 78.3% |
| 117         | Sirohi            | 59.2%    | 50.9% | 67.1% |
| 118         | Pali              | 58.4%    | 52.5% | 64.0% |
| 119         | Ajmer             | 49.0%    | 45.3% | 52.7% |
| 120         | Tonk              | 78.2%    | 74.2% | 81.8% |
| 121         | Bundi             | 76.9%    | 71.9% | 81.4% |
| 122         | Bhilwara          | 72.3%    | 67.2% | 76.8% |
| 123         | Rajsamand         | 74.3%    | 69.2% | 78.8% |
| 124         | Dungarpur         | 82.8%    | 77.1% | 87.4% |
| 125         | Banswara          | 87.3%    | 82.7% | 90.8% |
|             |                   |          |       |       |

| District ID | District name       | Estimate | Lower          | Upper |
|-------------|---------------------|----------|----------------|-------|
| 127         | Kota                | 38.7%    | 34.1%          | 43.5% |
| 128         | Baran               | 74.7%    | 68.7%          | 80.0% |
| 129         | Jhalawar            | 74.2%    | 69.3%          | 78.6% |
| 130         | Udaipur             | 74.8%    | 70.6%          | 78.5% |
| 131         | Pratapgarh          | 85.9%    | 80.3%          | 90.0% |
| 132         | Saharanpur          | 61.5%    | 57.4%          | 65.5% |
| 133         | Muzaffarnagar       | 60.1%    | 54.0%          | 65.9% |
| 134         | Bijnor              | 65.9%    | 60.6%          | 70.9% |
| 135         | Moradabad           | 55.0%    | 50.6%          | 59.4% |
| 136         | Rampur              | 67.7%    | 62.0%          | 72.9% |
| 137         | Jyotiba Phule Nagar | 68.3%    | 61.3%          | 74.5% |
| 138         | Meerut              | 34.8%    | 29.1%          | 40.9% |
| 139         | Baghpat             | 57.1%    | 47.3%          | 66.5% |
| 140         | Ghaziabad           | 20.7%    | 17.0%          | 24.9% |
| 141         | Gautam Buddha Nagar | 23.2%    | 18.4%          | 28.8% |
| 142         | Bulandshahr         | 67.4%    | 61.5%          | 72.7% |
| 143         | Aligarh             | 59.7%    | 55.5%          | 63.8% |
| 144         | Mahamaya Nagar      | 69.3%    | 64.2%          | 73.9% |
| 145         | Mathura             | 66.6%    | 58.7%          | 73.7% |
| 146         | Agra                | 52.8%    | 46.9%          | 58.5% |
| 147         | Firozabad           | 63.1%    | 60.2%          | 65.8% |
| 148         | Mainpuri            | 75.1%    | 70.4%          | 79.3% |
| 149         | Budaun              | 77.1%    | 73.4%          | 80.4% |
| 150         | Bareilly            | 55.6%    | 51.7%          | 59.4% |
| 151         | Pilibhit            | 71.3%    | 66.1%          | 76.0% |
| 152         | Shahjahanpur        | 73.9%    | 68.4%          | 78.7% |
| 153         | Kheri               | 83.4%    | 78.2%          | 87.5% |
| 154         | Sitapur             | 80.8%    | 75.4%          | 85.2% |
| 155         | Hardoi              | 76.7%    | 66.6%          | 84.4% |
| 156         | Unnao               | 76.4%    | 71.9%          | 80.4% |
| 157         | Lucknow             | 23.1%    | 19.9%          | 26.7% |
| 158         | Rae Bareli          | 76.8%    | 71.8%          | 81.0% |
| 159         | Farrukhabad         | 74.8%    | 68.4%          | 80.3% |
| 160         | Kannauj             | 80.2%    | 74.1%          | 85.1% |
| 161         | Etawah              | 72.2%    | 66.8%          | 76.9% |
| 162         | Auraiya             | 72.4%    | 66.1%          | 77.8% |
| 163         | Kanpur Dehat        | 82.3%    | 78.2%          | 85.7% |
| 164         | Kanpur Nagar        | 28.2%    | 24.6%          | 32.1% |
| 165         | Jalaun              | 66.4%    | 61.2%          | 71.3% |
| 166         | Jhansi              | 58.6%    | 54.5%          | 62.6% |
| 167         | Lalitpur            | 81.7%    | 75.1%          | 86.9% |
| 168         | Hamirpur            | 80.3%    | 75.5%          | 84.3% |
| 169         | Mahoba              | 83.3%    | 77.8%          | 87.6% |
| 170         | Banda               | 84.7%    | 78.9%          | 89.1% |
| 171         | Chitrakoot          | 88.3%    | 83.8%          | 91.7% |
| 172         | Fatehpur            | 82.2%    | 78.2%          | 85.5% |
| 172         |                     | 75.9%    | 70.2%          | 80.8% |
|             | Pratapgarh          | 81.3%    | 76.6%          | 85.2% |
| 174         | Kaushambi           |          |                |       |
| 175         | Allahabad           | 62.3%    | 54.6%<br>67.3% | 69.5% |
| 176         | Bara Banki          | 71.8%    |                | 75.8% |
| 177         | Faizabad            | 75.0%    | 70.8%          | 78.7% |
| 178         | Ambedkar Nagar      | 85.1%    | 80.3%          | 88.9% |
| 179         | Sultanpur           | 83.2%    | 78.1%          | 87.3% |
| 180         | Bahraich            | 84.7%    | 79.4%          | 88.8% |
| 181         | Shrawasti           | 90.6%    | 88.2%          | 92.6% |
| 182         | Balrampur           | 90.0%    | 85.9%          | 93.0% |
| 183         | Gonda               | 79.8%    | 74.7%          | 84.0% |
| 184         | Siddharth Nagar     | 79.3%    | 73.8%          | 83.9% |
| 185         | Basti               | 80.1%    | 75.4%          | 84.1% |
| 186         | Sant Kabir Nagar    | 81.5%    | 75.9%          | 86.1% |
| 187         | Mahrajganj          | 81.3%    | 76.1%          | 85.5% |
| 188         | Gorakhpur           | 59.5%    | 53.8%          | 64.9% |
| 189         | Kushinagar          | 75.8%    | 70.5%          | 80.4% |
| 190         | Deoria              | 66.9%    | 58.5%          | 74.3% |

| District ID | District name                | Estimate       | Lower          | Upper          |
|-------------|------------------------------|----------------|----------------|----------------|
| 191         | Azamgarh                     | 75.3%          | 68.0%          | 81.3%          |
| 192         | Mau                          | 77.1%          | 71.4%          | 82.0%          |
| 193         | Ballia                       | 75.3%          | 70.3%          | 79.7%          |
| 194         | Jaunpur                      | 78.1%          | 73.7%          | 81.9%          |
| 195         | Ghazipur                     | 82.8%          | 77.9%          | 86.8%          |
| 196         | Chandauli                    | 77.6%          | 73.2%          | 81.4%          |
| 197         | Varanasi                     | 49.7%          | 45.1%          | 54.3%          |
| 198         | Sant Ravidas Nagar (Bhadohi) |                | 66.9%          | 79.4%          |
| 199         | Mirzapur                     | 81.9%          | 76.6%          | 86.2%          |
| 200         | Sonbhadra                    | 79.4%          | 74.8%          | 83.4%          |
| 201<br>202  | Etah<br>Kanshiram Nagar      | 75.4%<br>80.9% | 69.6%<br>77.0% | 80.4%<br>84.2% |
| 202         | Pashchim Champaran           | 81.7%          | 74.2%          | 87.4%          |
| 203         | Purba Champaran              | 85.3%          | 81.2%          | 88.6%          |
| 204         | Sheohar                      | 88.6%          | 85.8%          | 90.9%          |
| 205         | Sitamarhi                    | 87.2%          | 82.4%          | 90.9%          |
| 200         | Madhubani                    | 87.5%          | 83.0%          | 90.9%          |
| 207         | Supaul                       | 93.9%          | 90.4%          | 96.1%          |
| 209         | Araria                       | 94.8%          | 90.5%          | 97.2%          |
| 209         | Kishanganj                   | 94.0%          | 90.5%<br>89.7% | 96.6%          |
| 210         | Purnia                       | 91.4%          | 84.6%          | 95.3%          |
| 212         | Katihar                      | 89.9%          | 85.5%          | 93.0%          |
| 212         | Madhepura                    | 90.9%          | 88.6%          | 92.8%          |
| 214         | Saharsa                      | 86.6%          | 80.1%          | 91.2%          |
| 215         | Darbhanga                    | 81.5%          | 76.4%          | 85.7%          |
| 216         | Muzaffarpur                  | 77.7%          | 72.2%          | 82.4%          |
| 217         | Gopalganj                    | 79.1%          | 73.6%          | 83.7%          |
| 218         | Siwan                        | 77.5%          | 72.7%          | 81.6%          |
| 219         | Saran                        | 81.9%          | 77.8%          | 85.3%          |
| 220         | Vaishali                     | 79.0%          | 74.0%          | 83.3%          |
| 221         | Samastipur                   | 85.6%          | 82.1%          | 88.5%          |
| 222         | Begusarai                    | 83.4%          | 77.3%          | 88.1%          |
| 223         | Khagaria                     | 86.5%          | 81.1%          | 90.5%          |
| 224         | Bhagalpur                    | 76.4%          | 71.1%          | 81.1%          |
| 225         | Banka                        | 90.7%          | 86.1%          | 93.9%          |
| 226         | Munger                       | 73.4%          | 67.8%          | 78.3%          |
| 227         | Lakhisarai                   | 85.0%          | 79.9%          | 88.9%          |
| 228         | Sheikhpura                   | 83.1%          | 79.9%          | 85.9%          |
| 229         | Nalanda                      | 75.8%          | 70.9%          | 80.0%          |
| 230         | Patna                        | 47.8%          | 42.3%          | 53.4%          |
| 231         | Bhojpur                      | 78.9%          | 73.4%          | 83.5%          |
| 232         | Buxar                        | 76.4%          | 70.1%          | 81.7%          |
| 233         | Kaimur (Bhabua)              | 85.9%          | 82.0%          | 89.1%          |
| 234         | Rohtas                       | 81.9%          | 77.5%          | 85.6%          |
| 235         | Aurangabad                   | 83.3%          | 78.0%          | 87.5%          |
| 236         | Gaya                         | 84.3%          | 77.3%          | 89.4%          |
| 237         | Nawada                       | 78.5%          | 72.8%          | 83.3%          |
| 238         | Jamui                        | 90.5%          | 87.4%          | 92.9%          |
| 239         | Jehanabad                    | 79.8%          | 74.7%          | 84.1%          |
| 240         | Arwal                        | 89.8%          | 85.7%          | 92.8%          |
| 241         | North District               | 49.5%          | 43.3%          | 55.7%          |
| 242         | West District                | 58.4%          | 51.0%          | 65.4%          |
| 243         | South District               | 46.8%          | 39.9%          | 53.8%          |
| 244         | East District                | 26.5%          | 23.2%          | 30.0%          |
| 245         | Tawang                       | 53.8%          | 43.3%          | 63.9%          |
| 246         | West Kameng                  | 39.6%          | 34.0%          | 45.5%          |
| 247         | East Kameng                  | 63.0%          | 57.6%          | 68.1%          |
| 248         | Papumpare                    | 14.3%          | 11.0%          | 18.4%          |
| 249         | Upper Subansiri              | 61.5%          | 52.0%          | 70.1%          |
| 250         | West Siang                   | 50.2%          | 41.6%          | 58.7%          |
| 251         | East Siang                   | 54.9%          | 45.9%          | 63.6%          |
| 252         | Upper Siang                  | 77.6%          | 72.7%          | 81.9%          |
| 253         | Changlang                    | 73.2%          | 64.4%          | 80.5%          |

| District ID | District name               | Estimate       | Lower | Upper          |
|-------------|-----------------------------|----------------|-------|----------------|
| 254         | Tirap                       | 78.8%          | 72.2% | 84.2%          |
| 255         | Lower Subansiri             | 35.4%          | 29.5% | 41.7%          |
| 256         | Kurung Kumey                | 60.5%          | 51.9% | 68.5%          |
| 257         | Dibang Valley               | 66.2%          | 56.8% | 74.4%          |
| 258         | Lower Dibang Valley         | 57.9%          | 50.8% | 64.6%          |
| 259         | Lohit                       | 75.2%          | 68.2% | 81.1%          |
| 260         | Anjaw                       | 74.8%          | 60.7% | 85.1%          |
| 261         | Mon                         | 94.0%          | 89.3% | 96.8%          |
| 262         | Mokokchung                  | 61.7%          | 56.8% | 66.4%          |
| 263         | Zunheboto                   | 87.2%          | 82.7% | 90.7%          |
| 264         | Wokha                       | 63.9%          | 57.9% | 69.6%          |
| 265         | Dimapur                     | 31.6%          | 27.6% | 35.9%          |
| 266         | Phek                        | 90.1%          | 86.8% | 92.7%          |
| 267         | Tuensang                    | 90.6%          | 87.1% | 93.2%          |
| 268         | Longleng                    | 95.2%          | 92.3% | 97.0%          |
| 269         | Kiphire                     | 88.9%          | 84.7% | 92.0%          |
| 270         | Kohima                      | 43.7%          | 38.8% | 48.7%          |
| 271         | Peren                       | 83.1%          | 78.6% | 86.8%          |
|             | Senapati                    |                |       |                |
| 272         | (Excluding 3 Sub-Divisions) | 80.9%          | 74.3% | 86.1%          |
| 273         | Tamenglong                  | 87.3%          | 79.7% | 92.3%          |
| 274         | Churachandpur               | 57.6%          | 47.8% | 66.9%          |
| 275         | Bishnupur                   | 61.1%          | 56.3% | 65.7%          |
| 276         | Thoubal                     | 62.8%          | 58.0% | 67.4%          |
| 277         | Imphal West                 | 36.1%          | 31.0% | 41.7%          |
| 278         | Imphal East                 | 49.3%          | 44.4% | 54.3%          |
| 279         | Ukhrul                      | 89.1%          | 85.8% | 91.6%          |
| 280         | Chandel                     | 82.5%          | 75.7% | 87.7%          |
| 281         | Mamit                       | 58.5%          | 50.1% | 66.5%          |
| 282         | Kolasib                     | 27.9%          | 23.3% | 33.0%          |
| 283         | Aizawl                      | 11.7%          | 8.4%  | 16.0%          |
| 284         | Champhai                    | 44.7%          | 40.1% | 49.3%          |
| 285         | Serchhip                    | 33.0%          | 29.1% | 37.3%          |
| 286         | Lunglei                     | 45.0%          | 39.6% | 50.5%          |
| 287         | Lawngtlai                   | 53.8%          | 45.8% | 61.5%          |
| 288         | Saiha                       | 37.2%          | 33.1% | 41.5%          |
| 289         | West Tripura                | 50.9%          | 45.5% | 56.3%          |
| 290         | South Tripura               | 70.4%          | 64.7% | 75.5%          |
| 291         | Dhalai                      | 76.9%          | 71.3% | 81.6%          |
| 292         | North Tripura               | 74.7%          | 69.7% | 79.2%          |
| 293         | West Garo Hills             | 82.3%          | 75.3% | 87.6%          |
| 294         | East Garo Hills             | 92.9%          | 86.2% | 96.5%          |
| 295         | South Garo Hills            | 89.9%          | 84.3% | 93.7%          |
| 296         | West Khasi Hills            | 92.7%          | 88.6% | 95.4%          |
| 297         | Ribhoi                      | 88.3%          | 81.0% | 93.1%          |
| 298         | East Khasi Hills            | 47.9%          | 43.2% | 52.7%          |
| 299         | Jaintia Hills               | 76.9%          | 70.9% | 82.0%          |
| 300         | Kokrajhar                   | 81.5%          | 75.0% | 86.7%          |
| 301         | Dhubri                      | 83.2%          | 79.4% | 86.4%          |
| 302         | Goalpara                    | 78.7%          | 73.6% | 83.1%          |
| 302         | Barpeta                     | 76.9%          | 70.0% | 82.7%          |
| 303         | Morigaon                    | 81.7%          | 70.0% | 86.9%          |
| 304<br>305  | Nagaon                      | 81.7%<br>80.6% | 75.1% |                |
| 305         | Sonitpur                    | 76.7%          | 70.6% | 85.9%<br>82.0% |
| 306         | Lakhimpur                   | 76.7%<br>80.8% | 70.6% | 82.0%          |
|             | •                           |                |       |                |
| 308         | Dhemaji                     | 88.8%          | 82.4% | 93.1%          |
| 309         | Tinsukia                    | 71.1%          | 64.3% | 77.0%          |
| 310         | Dibrugarh                   | 71.2%          | 65.4% | 76.4%          |
| 311         | Sivasagar                   | 72.3%          | 65.6% | 78.2%          |
| 312         | Jorhat                      | 65.0%          | 56.5% | 72.6%          |
| 313         | Golaghat                    | 84.1%          | 80.2% | 87.3%          |
| 314<br>315  | Karbi Anglong               | 84.5%          | 77.8% | 89.4%          |
|             | Dima Hasao                  | 72.9%          | 66.6% | 78.3%          |

| District ID | District name              | Estimate       | Lower          | Upper          |
|-------------|----------------------------|----------------|----------------|----------------|
| 316         | Cachar                     | 69.7%          | 63.2%          | 75.5%          |
| 317         | Karimganj                  | 76.9%          | 70.9%          | 82.0%          |
| 318         | Hailakandi                 | 86.1%          | 83.1%          | 88.6%          |
| 319         | Bongaigaon                 | 72.3%          | 64.9%          | 78.7%          |
| 320         | Chirang                    | 81.6%          | 74.1%          | 87.3%          |
| 321         | Kamrup                     | 61.2%          | 52.3%          | 69.4%          |
| 322         | Kamrup Metropolitan        | 17.4%          | 12.1%          | 24.4%          |
| 323         | Nalbari                    | 64.4%          | 57.6%          | 70.7%          |
| 324         | Baksa                      | 83.4%          | 76.9%          | 88.3%          |
| 325         | Darrang                    | 81.8%          | 75.5%          | 86.7%          |
| 326         | Udalguri                   | 85.9%          | 81.8%          | 89.2%          |
| 327         | Darjiling                  | 43.1%          | 33.3%          | 53.4%          |
| 328         | Jalpaiguri                 | 70.7%          | 63.8%          | 76.7%          |
| 329         | Koch Bihar                 | 85.2%          | 81.0%          | 88.6%          |
| 330         | Uttar Dinajpur             | 87.6%          | 81.3%          | 92.0%          |
| 331         | Dakshin Dinajpur           | 87.1%          | 83.7%          | 89.9%          |
| 332         | Maldah                     | 83.5%          | 76.6%          | 88.7%          |
| 333         | Murshidabad                | 80.0%          | 71.5%          | 86.5%          |
| 334<br>335  | Birbhum                    | 82.4%          | 74.5%<br>62.4% | 88.3%          |
| 336         | Barddhaman<br>Nadia        | 69.5%<br>70.8% | 63.8%          | 75.7%<br>77.0% |
| 330         | North Twenty Four Parganas | 46.2%          | 39.4%          | 53.0%          |
| 338         | Hugli                      | 46.2%<br>66.7% | 59.4%<br>59.4% | 73.3%          |
| 339         | Bankura                    | 83.1%          | 78.7%          | 86.7%          |
| 340         | Puruliya                   | 92.1%          | 88.7%          | 94.6%          |
| 340         | Haora                      | 51.0%          | 40.4%          | 61.5%          |
| 342         | Kolkata                    | 5.8%           | 2.5%           | 13.0%          |
| 343         | South Twenty Four Parganas | 77.2%          | 65.6%          | 85.8%          |
| 344         | Paschim Medinipur          | 85.7%          | 79.4%          | 90.3%          |
| 345         | Purba Medinipur            | 89.1%          | 84.4%          | 92.5%          |
| 346         | Garhwa                     | 94.1%          | 90.8%          | 96.3%          |
| 347         | Chatra                     | 89.2%          | 82.8%          | 93.4%          |
| 348         | Kodarma                    | 68.9%          | 60.8%          | 76.1%          |
| 349         | Giridih                    | 84.8%          | 79.2%          | 89.2%          |
| 350         | Deoghar                    | 79.1%          | 71.7%          | 84.9%          |
| 351         | Godda                      | 93.5%          | 91.1%          | 95.3%          |
| 352         | Sahibganj                  | 87.9%          | 81.6%          | 92.3%          |
| 353         | Pakur                      | 93.4%          | 88.6%          | 96.3%          |
| 354         | Dhanbad                    | 79.2%          | 73.6%          | 83.8%          |
| 355         | Bokaro                     | 73.1%          | 67.6%          | 77.9%          |
| 356         | Lohardaga                  | 84.8%          | 81.3%          | 87.8%          |
| 357         | Purbi Singhbhum            | 58.3%          | 53.3%          | 63.1%          |
| 358         | Palamu                     | 83.7%          | 80.0%          | 86.8%          |
| 359         | Latehar                    | 94.8%          | 90.9%          | 97.1%          |
| 360         | Hazaribagh                 | 81.7%          | 75.1%          | 86.8%          |
| 361         | Ramgarh                    | 81.2%          | 76.9%          | 84.9%          |
| 362         | Dumka                      | 90.6%          | 87.2%          | 93.1%          |
| 363         | Jamtara                    | 95.8%          | 93.3%          | 97.4%          |
| 364         | Ranchi                     | 60.0%          | 55.8%          | 64.0%          |
| 365         | Khunti                     | 92.3%          | 87.7%          | 95.3%          |
| 366         | Gumla                      | 89.3%          | 85.3%          | 92.3%          |
| 367         | Simdega                    | 94.1%          | 91.1%          | 96.1%          |
| 368         | Pashchimi Singhbhum        | 89.7%          | 86.7%          | 92.1%          |
| 369         | Saraikela Kharsawan        | 74.2%          | 64.1%          | 82.3%          |
| 370         | Bargarh                    | 86.4%          | 82.9%          | 89.3%          |
| 371         | Jharsuguda                 | 70.9%          | 66.3%          | 75.1%          |
| 372         | Sambalpur                  | 74.1%          | 68.7%          | 78.9%          |
| 373         | Debagarh                   | 92.4%          | 89.6%          | 94.4%          |
| 374         | Sundargarh                 | 72.6%          | 68.4%          | 76.5%          |
| 375         | Kendujhar                  | 82.8%          | 74.1%          | 89.1%          |
| 376         | Mayurbhanj<br>Baleshwar    | 89.3%          | 86.6%          | 91.5%          |
| 377<br>378  | Baleshwar<br>Bhadrak       | 83.9%<br>88.2% | 79.5%<br>82.7% | 87.5%<br>92.1% |
| 510         | Dilaulak                   | 00.2%          | 02.1%          | 92.170         |

| District ID | District name                   | Estimate       | Lower          | Upper          |
|-------------|---------------------------------|----------------|----------------|----------------|
| 379         | Kendrapara                      | 85.5%          | 80.1%          | 89.6%          |
| 380         | Jagatsinghapur                  | 85.9%          | 81.5%          | 89.4%          |
| 381         | Cuttack                         | 64.9%          | 59.7%          | 69.8%          |
| 382         | Jajapur                         | 83.1%          | 78.9%          | 86.6%          |
| 383         | Dhenkanal                       | 78.6%          | 74.0%          | 82.5%          |
| 384         | Anugul                          | 78.1%          | 70.1%          | 84.4%          |
| 385         | Nayagarh                        | 77.4%          | 72.7%          | 81.5%          |
| 386         | Khordha                         | 51.6%          | 46.3%          | 56.9%          |
| 387         | Puri                            | 78.7%          | 73.0%          | 83.4%          |
| 388         | Ganjam                          | 65.0%          | 59.3%          | 70.3%          |
| 389         | Gajapati                        | 80.4%          | 74.7%          | 85.1%          |
| 390         | Kandhamal                       | 93.3%          | 88.0%          | 96.4%          |
| 391         | Baudh                           | 88.3%          | 82.5%          | 92.4%          |
| 392         | Subarnapur                      | 86.4%          | 82.0%          | 89.9%          |
| 393         | Balangir                        | 90.2%          | 87.4%          | 92.5%          |
| 394         | Nuapada                         | 91.2%          | 86.4%          | 94.4%          |
| 395         | Kalahandi                       | 92.7%          | 90.1%          | 94.6%          |
| 396         | Rayagada                        | 82.5%          | 76.8%          | 87.0%          |
| 397         | Nabarangapur                    | 90.3%          | 86.8%          | 93.0%          |
| 398         | Koraput                         | 80.3%          | 75.3%          | 84.5%          |
| 399         | Malkangiri                      | 94.1%          | 91.8%          | 95.8%          |
| 400         | Korea (Koriya)                  | 80.8%          | 77.2%          | 83.9%          |
| 401         | Surguja                         | 87.2%          | 83.2%          | 90.4%          |
| 402         | Jashpur                         | 91.8%          | 88.2%          | 94.4%          |
| 403         | Raigarh                         | 80.1%          | 75.9%          | 83.8%          |
| 404         | Korba                           | 72.4%          | 68.4%          | 76.1%          |
| 405         | Janjgir - Champa                | 81.0%          | 74.2%          | 86.3%          |
| 405         | Bilaspur                        | 71.4%          | 64.1%          | 77.7%          |
| 400         | Kabirdham                       | 89.1%          | 84.6%          | 92.4%          |
| 407         | Rajnandgaon                     | 80.3%          | 72.9%          | 86.0%          |
| 408         | , ,                             | 63.0%          | 59.3%          | 66.5%          |
| 409         | Durg                            |                |                |                |
| 410         | Raipur<br>Mahasamund            | 64.7%          | 61.3%          | 67.9%          |
|             |                                 | 86.7%          | 83.0%          | 89.8%          |
| 412         | Dhamtari                        | 78.6%          | 72.0%          | 84.0%          |
| 413         | Uttar Bastar Kanker             | 84.7%          | 79.6%          | 88.6%          |
| 414         | Bastar                          | 88.4%          | 84.2%          | 91.6%          |
| 415         | Narayanpur                      | 87.9%          | 85.2%          | 90.2%          |
| 416         | Dakshin Bastar Dantewada        | 83.0%          | 77.4%          | 87.5%          |
| 417         | Bijapur                         | 90.0%          | 86.4%          | 92.7%          |
| 418         | Sheopur                         | 86.1%          | 82.3%          | 89.1%          |
| 419         | Morena                          | 76.2%          | 68.1%          | 82.7%          |
| 420         | Bhind                           | 81.4%          | 76.4%          | 85.5%          |
| 421         | Gwalior                         | 41.4%          | 37.6%          | 45.3%          |
| 422         | Datia                           | 78.2%          | 74.4%          | 81.6%          |
| 423         | Shivpuri                        | 79.9%          | 77.5%          | 82.1%          |
| 424         | Tikamgarh                       | 85.3%          | 81.2%          | 88.6%          |
| 425         | Chhatarpur                      | 86.2%          | 80.4%          | 90.5%          |
| 426         | Panna                           | 88.6%          | 84.7%          | 91.6%          |
| 427         | Sagar                           | 82.0%          | 75.3%          | 87.2%          |
| 428         | Damoh                           | 86.1%          | 81.8%          | 89.5%          |
| 429         | Satna                           | 77.4%          | 72.4%          | 81.8%          |
| 430         | Rewa                            | 86.3%          | 80.6%          | 90.5%          |
| 431         | Umaria                          | 87.2%          | 78.2%          | 92.8%          |
| 432         | Neemuch                         | 64.8%          | 58.7%          | 70.5%          |
| 433         | Mandsaur                        | 70.4%          | 63.3%          | 76.6%          |
| 434         | Ratlam                          | 65.7%          | 57.7%          | 72.9%          |
| 435         | Ujjain                          | 52.4%          | 48.9%          | 55.9%          |
| 436         | Shajapur                        | 74.1%          | 69.5%          | 78.1%          |
| 437         | Dewas                           | 61.6%          | 55.4%          | 67.4%          |
| 438         | Dhar                            | 64.4%          | 56.1%          | 72.0%          |
| -00         |                                 |                |                |                |
| 430         | Indore                          | 14 4 %         | 1110/2         | 18 6%          |
| 439<br>440  | Indore<br>Khargone (West Nimar) | 14.4%<br>67.0% | 11.0%<br>60.3% | 18.6%<br>73.1% |

| District ID | District name        | Estimate       | Lower          | Upper          |
|-------------|----------------------|----------------|----------------|----------------|
| 442         | Rajgarh              | 81.2%          | 75.6%          | 85.8%          |
| 443         | Vidisha              | 81.6%          | 74.6%          | 86.9%          |
| 444         | Bhopal               | 22.1%          | 16.9%          | 28.3%          |
| 445         | Sehore               | 74.7%          | 68.7%          | 79.8%          |
| 446         | Raisen               | 72.9%          | 64.3%          | 80.0%          |
| 447         | Betul                | 71.9%          | 64.8%          | 78.0%          |
| 448         | Harda                | 68.7%          | 63.6%          | 73.4%          |
| 449         | Hoshangabad          | 65.0%          | 60.9%          | 68.9%          |
| 450         | Katni                | 80.9%          | 76.5%          | 84.7%          |
| 451         | Jabalpur             | 49.8%          | 45.4%          | 54.2%          |
| 452<br>453  | Narsimhapur          | 78.5%          | 69.6%          | 85.3%          |
| 453<br>454  | Dindori<br>Mandla    | 95.3%<br>84.3% | 93.3%          | 96.7%<br>87.6% |
| 454<br>455  | Chhindwara           | 73.9%          | 80.3%<br>67.1% | 79.7%          |
| 455         | Seoni                | 81.5%          | 75.1%          | 86.5%          |
| 450<br>457  | Balaghat             | 82.9%          | 75.1%          | 87.2%          |
| 457         | Guna                 | 76.1%          | 71.8%          | 80.0%          |
| 458         | Ashoknagar           | 84.1%          | 78.3%          | 88.6%          |
| 460         | Shahdol              | 86.1%          | 81.7%          | 89.6%          |
| 461         |                      | 81.3%          | 75.1%          | 86.2%          |
| 462         | Anuppur<br>Sidhi     | 93.0%          | 86.8%          | 96.4%          |
| 463         | Singrauli            | 82.6%          | 74.6%          | 88.4%          |
| 464         | Jhabua               | 90.6%          | 84.8%          | 94.3%          |
| 465         | Alirajpur            | 87.3%          | 81.7%          | 91.3%          |
| 466         | Khandwa (East Nimar) | 70.5%          | 64.6%          | 75.8%          |
| 467         | Burhanpur            | 53.8%          | 49.3%          | 58.2%          |
| 468         | Kachchh              | 56.7%          | 46.7%          | 66.3%          |
| 469         | Banaskantha          | 69.6%          | 61.5%          | 76.7%          |
| 470         | Patan                | 64.9%          | 57.9%          | 71.3%          |
| 471         | Mahesana             | 41.0%          | 34.5%          | 47.8%          |
| 472         | Sabarkantha          | 67.4%          | 57.8%          | 75.7%          |
| 473         | Gandhinagar          | 44.3%          | 34.8%          | 54.2%          |
| 474         | Ahmadabad            | 11.6%          | 8.5%           | 15.6%          |
| 475         | Surendranagar        | 61.4%          | 52.9%          | 69.2%          |
| 476         | Rajkot               | 31.5%          | 25.0%          | 38.8%          |
| 477         | Jamnagar             | 38.3%          | 30.8%          | 46.4%          |
| 478         | Porbandar            | 49.5%          | 42.9%          | 56.0%          |
| 479         | Junagadh             | 50.2%          | 41.0%          | 59.2%          |
| 480         | Amreli               | 46.2%          | 38.6%          | 54.0%          |
| 481         | Bhavnagar            | 50.9%          | 44.0%          | 57.8%          |
| 482         | Anand                | 54.0%          | 45.4%          | 62.4%          |
| 483         | Kheda                | 68.7%          | 58.5%          | 77.4%          |
| 484         | Panchmahal           | 73.4%          | 66.2%          | 79.6%          |
| 485         | Dohad                | 84.2%          | 76.8%          | 89.6%          |
| 486         | Vadodara             | 43.4%          | 36.6%          | 50.5%          |
| 487         | Narmada              | 83.4%          | 72.7%          | 90.4%          |
| 488         | Bharuch              | 46.1%          | 39.5%          | 52.9%          |
| 489         | The Dangs            | 90.7%          | 86.9%          | 93.4%          |
| 490         | Navsari              | 45.1%          | 38.3%          | 52.1%          |
| 491         | Valsad               | 40.1%          | 30.9%          | 50.1%          |
| 492         | Surat                | 14.2%          | 10.1%          | 19.7%          |
| 493         | Тарі                 | 76.7%          | 71.7%          | 81.0%          |
| 494         | Diu                  | 27.4%          | 21.8%          | 33.8%          |
| 495         | Daman                | 3.2%           | 1.5%           | 6.7%           |
| 496         | Dadra & Nagar Haveli | 37.4%          | 32.4%          | 42.7%          |
| 497         | Nandurbar            | 77.7%          | 69.0%          | 84.4%          |
| 498         | Dhule                | 58.0%          | 51.8%          | 63.9%          |
| 499         | Jalgaon              | 44.7%          | 38.6%          | 50.8%          |
| 500         | Buldana              | 66.5%          | 61.2%          | 71.3%          |
| 501         | Akola                | 55.3%          | 50.2%          | 60.2%          |
| 502         | Washim               | 65.7%          | 59.4%          | 71.4%          |
| 503         | Amravati             | 49.4%          | 41.1%          | 57.7%          |
| 504         | Wardha               | 41.1%          | 35.6%          | 46.9%          |

| District ID | District name               | Estimate       | Lower          | Upper          |
|-------------|-----------------------------|----------------|----------------|----------------|
| 505         | Nagpur                      | 22.6%          | 17.1%          | 29.2%          |
| 506         | Bhandara                    | 52.1%          | 43.0%          | 61.1%          |
| 507         | Gondiya                     | 75.8%          | 70.1%          | 80.7%          |
| 508         | Gadchiroli                  | 77.5%          | 71.8%          | 82.4%          |
| 509         | Chandrapur                  | 52.2%          | 42.4%          | 61.7%          |
| 510         | Yavatmal                    | 62.4%          | 55.1%          | 69.3%          |
| 511         | Nanded                      | 66.9%          | 61.0%          | 72.3%          |
| 512         | Hingoli                     | 74.1%          | 67.9%          | 79.5%          |
| 513<br>514  | Parbhani<br>Jalna           | 72.8%<br>77.4% | 66.1%<br>71.2% | 78.7%          |
| 514         | Aurangabad                  | 42.4%          | 34.0%          | 82.5%<br>51.4% |
| 516         | Nashik                      | 29.0%          | 20.7%          | 38.9%          |
| 517         | Thane                       | 15.2%          | 12.1%          | 18.9%          |
| 518         | Mumbai Suburban             | 2.2%           | 1.0%           | 4.4%           |
| 519         | Mumbai                      | 1.5%           | 0.2%           | 9.8%           |
| 520         | Raigarh                     | 21.2%          | 13.0%          | 32.5%          |
| 521         | Pune                        | 14.0%          | 9.7%           | 19.7%          |
| 522         | Ahmadnagar                  | 38.1%          | 31.6%          | 45.0%          |
| 523         | Bid                         | 70.7%          | 63.9%          | 76.6%          |
| 524         | Latur                       | 64.7%          | 58.6%          | 70.4%          |
| 525         | Osmanabad                   | 62.1%          | 55.5%          | 68.4%          |
| 526         | Solapur                     | 46.9%          | 42.2%          | 51.7%          |
| 527         | Satara                      | 41.3%          | 35.3%          | 47.5%          |
| 528         | Ratnagiri                   | 64.8%          | 56.1%          | 72.6%          |
| 529         | Sindhudurg                  | 60.4%          | 53.0%          | 67.3%          |
| 530         | Kolhapur                    | 35.1%          | 27.2%          | 43.8%          |
| 531         | Sangli                      | 34.8%          | 28.9%          | 41.2%          |
| 532         | Adilabad                    | 59.3%          | 52.4%          | 65.7%          |
| 533         | Nizamabad                   | 42.1%          | 35.5%          | 48.9%          |
| 534         | Karimnagar                  | 28.0%          | 23.8%          | 32.6%          |
| 535         | Medak                       | 49.9%          | 42.2%          | 57.7%          |
| 536         | Hyderabad                   | 3.4%           | 1.4%           | 8.4%           |
| 537         | Rangareddy                  | 13.0%          | 8.9%           | 18.6%          |
| 538         | Mahbubnagar                 | 51.5%          | 43.8%          | 59.3%          |
| 539         | Nalgonda                    | 38.6%          | 31.3%          | 46.4%          |
| 540         | Warangal                    | 37.4%          | 31.8%          | 43.4%          |
| 541         | Khammam                     | 29.4%          | 23.9%          | 35.6%          |
| 542         | Srikakulam                  | 61.7%          | 54.3%          | 68.6%          |
| 543         | Vizianagaram                | 51.7%          | 44.8%          | 58.5%          |
| 544         | Visakhapatnam               | 43.6%          | 38.2%          | 49.2%          |
| 545         | East Godavari               | 48.9%          | 42.2%          | 55.7%          |
| 546         | West Godavari               | 36.7%          | 30.7%          | 43.2%          |
| 547         | Krishna                     | 26.0%          | 21.3%          | 31.4%          |
| 548         | Guntur                      | 19.2%          | 14.4%          | 25.2%          |
| 549         | Prakasam                    | 33.5%          | 27.2%          | 40.4%          |
| 550         | Sri Potti Sriramulu Nellore | 41.7%          | 34.8%          | 48.8%          |
| 551         | Y.S.R.                      | 26.0%          | 21.1%          | 31.7%          |
| 552         | Kurnool<br>Anantapur        | 35.1%<br>33.2% | 27.5%          | 43.5%          |
| 553<br>554  | Chittoor                    | 38.5%          | 28.7%<br>32.7% | 38.1%<br>44.6% |
| 555         | Belgaum                     | 52.5%          | 46.9%          | 58.0%          |
| 556         | Bagalkot                    | 66.2%          | 59.2%          | 72.6%          |
| 557         | Bijapur                     | 70.6%          | 64.0%          | 76.4%          |
| 558         | Bidar                       | 68.3%          | 61.3%          | 74.5%          |
| 559         | Raichur                     | 71.2%          | 65.2%          | 76.6%          |
| 560         | Koppal                      | 65.7%          | 58.3%          | 72.4%          |
| 561         | Gadaq                       | 74.5%          | 69.5%          | 79.0%          |
| 562         | Dharwad                     | 41.9%          | 33.0%          | 51.4%          |
| 563         | Uttara Kannada              | 50.6%          | 43.1%          | 58.0%          |
| 564         | Haveri                      | 63.9%          | 56.6%          | 70.5%          |
| 565         | Bellary                     | 50.2%          | 40.7%          | 59.7%          |
| 566         | Chitradurga                 | 58.8%          | 52.0%          | 65.4%          |
| 567         | Davanagere                  | 43.8%          | 35.4%          | 52.6%          |

| District ID | District name                  | Estimate       | Lower          | Upper          |
|-------------|--------------------------------|----------------|----------------|----------------|
| 568         | Shimoga                        | 37.4%          | 29.1%          | 46.5%          |
| 569         | Udupi                          | 53.8%          | 48.5%          | 59.1%          |
| 570         | Chikmagalur                    | 48.8%          | 41.5%          | 56.2%          |
| 571         | Tumkur                         | 55.6%          | 48.4%          | 62.6%          |
| 572         | Bangalore                      | 3.9%           | 2.3%           | 6.5%           |
| 573         | Mandya                         | 44.2%          | 37.5%          | 51.1%          |
| 574         | Hassan                         | 45.4%          | 38.9%          | 52.0%          |
| 575         | Dakshina Kannada               | 45.1%          | 39.8%          | 50.5%          |
| 576         | Kodagu                         | 52.1%          | 45.2%          | 58.9%          |
| 577         | Mysore                         | 32.2%          | 25.3%          | 39.9%          |
| 578         | Chamarajanagar                 | 61.4%          | 54.4%<br>56.8% | 68.0%          |
| 579<br>580  | Gulbarga<br>Yadgir             | 63.5%<br>81.1% | 56.6%<br>74.7% | 69.6%<br>86.2% |
| 580<br>581  | Kolar                          | 39.1%          | 32.4%          | 46.2%          |
| 582         | Chikkaballapura                | 50.1%          | 43.2%          | 57.0%          |
| 583         | Bangalore Rural                | 31.6%          | 26.4%          | 37.3%          |
| 584         | Ramanagara                     | 43.7%          | 37.0%          | 50.7%          |
| 585         | North Goa                      | 15.2%          | 11.0%          | 20.8%          |
| 586         | South Goa                      | 11.6%          | 8.2%           | 16.1%          |
| 587         | Lakshadweep                    | 53.8%          | 43.9%          | 63.5%          |
| 588         | Kasaragod                      | 47.0%          | 42.8%          | 51.2%          |
| 589         | Kannur                         | 43.4%          | 37.2%          | 49.9%          |
| 590         | Wayanad                        | 66.6%          | 60.3%          | 72.3%          |
| 591         | Kozhikode                      | 48.0%          | 40.5%          | 55.7%          |
| 592         | Malappuram                     | 54.1%          | 46.2%          | 61.8%          |
| 593         | Palakkad                       | 49.3%          | 38.5%          | 60.2%          |
| 594         | Thrissur                       | 32.3%          | 28.0%          | 37.0%          |
| 595         | Ernakulam                      | 20.1%          | 15.4%          | 25.8%          |
| 596         | Idukki                         | 52.8%          | 45.5%          | 60.0%          |
| 597         | Kottayam                       | 37.4%          | 30.5%          | 44.8%          |
| 598         | Alappuzha                      | 35.7%          | 29.5%          | 42.4%          |
| 599         | Pathanamthitta                 | 42.0%          | 37.6%          | 46.6%          |
| 600         | Kollam                         | 39.6%          | 35.2%          | 44.1%          |
| 601         | Thiruvananthapuram             | 47.3%          | 39.2%          | 55.6%          |
| 602         | Thiruvallur                    | 10.9%          | 7.8%           | 14.9%          |
| 603         | Chennai                        | 1.4%           | 0.6%           | 3.4%           |
| 604         | Kancheepuram                   | 11.9%          | 8.5%           | 16.3%          |
| 605         | Vellore                        | 20.9%          | 15.2%          | 28.1%          |
| 606         | Tiruvannamalai                 | 32.8%          | 25.0%          | 41.7%          |
| 607         | Viluppuram                     | 41.2%          | 34.9%          | 47.9%          |
| 608         | Salem                          | 21.0%          | 14.8%          | 28.9%          |
| 609         | Namakkal                       | 12.9%          | 9.6%           | 17.2%          |
| 610         | Erode                          | 9.9%           | 7.3%           | 13.3%          |
| 611         | The Nilgiris                   | 23.7%          | 18.3%          | 30.2%          |
| 612         | Dindigul                       | 31.8%          | 24.6%          | 40.1%          |
| 613         | Karur                          | 19.1%          | 13.0%          | 27.2%          |
| 614         | Tiruchirappalli                | 25.1%          | 19.9%          | 31.2%          |
| 615         | Perambalur                     | 35.0%          | 27.8%          | 43.0%          |
| 616         | Ariyalur                       | 50.2%          | 42.8%          | 57.5%          |
| 617         | Cuddalore                      | 45.4%          | 37.6%          | 53.4%          |
| 618         | Nagapattinam                   | 38.1%          | 31.3%          | 45.5%          |
| 619         | Thiruvarur                     | 54.9%          | 47.0%          | 62.5%          |
| 620         | Thanjavur                      | 51.3%          | 44.2%          | 58.4%          |
| 621         | Pudukkottai                    | 57.9%          | 49.9%          | 65.6%          |
| 622         | Sivaganga                      | 41.7%          | 34.1%          | 49.6%          |
| 623<br>624  | Madurai                        | 20.1%          | 14.7%          | 26.8%          |
| 624         | Theni                          | 21.9%          | 15.6%          | 29.7%          |
| 625<br>626  | Virudhunagar                   | 22.3%          | 16.6%<br>35.6% | 29.3%          |
| 626         | Ramanathapuram<br>Thoothukkudi | 40.5%          |                | 45.6%          |
| 627<br>628  | Tirunelveli                    | 29.4%<br>22.5% | 22.3%<br>17.2% | 37.5%<br>28.9% |
| 628<br>629  | Kanniyakumari                  | 38.3%          | 31.6%          | 28.9%<br>45.5% |
| 630         | Dharmapuri                     | 23.7%          | 17.6%          | 45.5%<br>31.3% |
| 030         | Dhannapun                      | 23.170         | 17.070         | 51.5%          |

| District ID | District name          | Estimate | Lower | Upper |
|-------------|------------------------|----------|-------|-------|
| 631         | Krishnagiri            | 35.2%    | 28.7% | 42.4% |
| 632         | Coimbatore             | 12.0%    | 8.7%  | 16.3% |
| 633         | Tiruppur               | 7.4%     | 5.1%  | 10.5% |
| 634         | Yanam                  | 6.9%     | 4.0%  | 11.7% |
| 635         | Puducherry             | 12.2%    | 9.0%  | 16.3% |
| 636         | Mahe                   | 12.3%    | 9.1%  | 16.5% |
| 637         | Karaikal               | 24.3%    | 19.4% | 29.9% |
| 638         | Nicobars               | 43.5%    | 35.1% | 52.3% |
| 639         | North & Middle Andaman | 51.2%    | 43.7% | 58.7% |
| 640         | South Andaman          | 9.1%     | 6.2%  | 13.0% |

# Appendix Table A.8 District-level estimates of household use of solid fuel for cooking, Nepal DHS 2016

| Province    | District name | Estimate | Lower | Upper |
|-------------|---------------|----------|-------|-------|
| Central     | Bagmati       | 33.3%    | 28.8% | 37.6% |
| Central     | Janakpur      | 88.3%    | 82.0% | 92.3% |
| Central     | Narayani      | 66.1%    | 57.4% | 73.7% |
| Eastern     | Koshi         | 61.0%    | 53.6% | 67.2% |
| Eastern     | Mechi         | 66.7%    | 56.4% | 75.6% |
| Eastern     | Sagarmatha    | 91.8%    | 85.0% | 96.0% |
| Far Western | Mahakali      | 80.9%    | 73.4% | 86.6% |
| Far Western | Seti          | 85.4%    | 78.6% | 89.9% |
| Mid Western | Karnali       | 92.6%    | 85.8% | 95.9% |
| Mid Western | Rapti         | 81.0%    | 71.6% | 87.9% |
| Mid Western | Bheri         | 80.0%    | 71.1% | 86.5% |
| Western     | Dhawalagiri   | 92.9%    | 87.5% | 95.8% |
| Western     | Gandaki       | 54.3%    | 47.2% | 60.9% |
| Western     | Lumbini       | 65.2%    | 56.8% | 72.2% |

| Appendix Table A.9 | Province-level estimates of household use of solid fuel for cooking, the |
|--------------------|--------------------------------------------------------------------------|
|                    | Philippines NDHS 2017                                                    |

| Region                                                   | Province ID | Province name       | Estimate | Lower         | Upper          |
|----------------------------------------------------------|-------------|---------------------|----------|---------------|----------------|
| Autonomous region in Muslim Mindanao (ARMM)              | 1           | Lanao Del Sur       | 88.3%    | 77.8%         | 94.6%          |
| Autonomous region in Muslim Mindanao (ARMM)              | 2           | Sulu                | 94.6%    | 86.8%         | 98.5%          |
| Autonomous region in Muslim Mindanao (ARMM)              | 3           | Tawi-tawi           | 89.6%    | 76.0%         | 96.8%          |
| Cordillera Administrative region (CAR)                   | 4           | Abra                | 73.3%    | 63.1%         | 81.5%          |
| Cordillera Administrative region (CAR)                   | 5           | Apayao              | 82.9%    | 73.6%         | 89.5%          |
| Cordillera Administrative region (CAR)                   | 6           | Benguet             | 11.0%    | 6.9%          | 16.0%          |
| Cordillera Administrative region (CAR)                   | 7           | Ifugão              | 61.1%    | 53.0%         | 68.8%          |
| Cordillera Administrative region (CAR)                   | 8           | Kalinga             | 69.2%    | 61.5%         | 75.9%          |
| Cordillera Administrative region (CAR)                   | 9           | Mountain Province   | 44.1%    | 36.2%         | 52.1%          |
| National Capital region (NCR)                            | 10          | Metropolitan Manila | 4.0%     | 2.9%          | 5.2%           |
| Region I (Ilocos region)                                 | 11          | llocos Norte        | 47.4%    | 33.8%         | 60.5%          |
| Region I (Ilocos region)                                 | 12          | llocos Sur          | 47.1%    | 36.5%         | 57.5%          |
| Region I (llocos region)                                 | 13          | La Union            | 51.9%    | 38.8%         | 66.1%          |
| Region I (llocos region)                                 | 14          | Pangasinan          | 56.7%    | 45.2%         | 67.3%          |
| Region II (Cagayan Valley)                               | 15          | Cagayan             | 66.5%    | 50.3%         | 78.9%          |
| Region II (Cagayan Valley)                               | 16          | Isabela             | 59.0%    | 46.1%         | 70.4%          |
| Region II (Cagayan Valley)                               | 17          | Nueva Vizcaya       | 61.8%    | 52.7%         | 69.9%          |
| Region II (Cagayan Valley)                               | 18          | Quirino             | 68.2%    | 59.0%         | 76.3%          |
| Region III (Central Luzon)                               | 10          | Bataan              | 19.2%    | 11.3%         | 29.1%          |
| Region III (Central Luzon)                               | 20          | Balaan<br>Bulacan   | 19.2%    | 10.7%         | 29.1%          |
|                                                          | 20          |                     |          | 29.1%         |                |
| Region III (Central Luzon)<br>Region III (Central Luzon) | 21          | Nueva Ecija         | 41.0%    | 29.1%<br>7.3% | 53.8%          |
| 0 ( )                                                    |             | Pampanga            | 10.5%    |               | 14.6%          |
| Region III (Central Luzon)                               | 23          | Tarlac              | 48.5%    | 40.5%         | 56.4%          |
| Region III (Central Luzon)                               | 24          | Zambales            | 43.6%    | 31.0%         | 56.1%          |
| Region III (Central Luzon)                               | 25          | Aurora              | 66.5%    | 49.3%         | 80.0%          |
| Region IV-A (Calabarzon)                                 | 26          | Batangas            | 46.6%    | 21.6%         | 71.3%          |
| Region IV-A (Calabarzon)                                 | 27          | Cavite              | 9.8%     | 6.5%          | 14.0%          |
| Region IV-A (Calabarzon)                                 | 28          | Laguna              | 15.0%    | 9.9%          | 21.2%          |
| Region IV (Southern Tagalog)                             | 29          | Marinduque          | 74.2%    | 64.6%         | 82.3%          |
| Region IV (Southern Tagalog)                             | 30          | Mindoro Occidental  | 86.4%    | 73.6%         | 94.3%          |
| Region IV (Southern Tagalog)                             | 31          | Mindoro Oriental    | 66.8%    | 52.6%         | 78.3%          |
| Region IV (Southern Tagalog)                             | 32          | Palawan             | 84.9%    | 65.2%         | 95.0%          |
| Region IV-A (Calabarzon)                                 | 33          | Quezon              | 61.9%    | 42.8%         | 76.6%          |
| Region IV-A (Calabarzon)                                 | 34          | Rizal               | 12.3%    | 8.5%          | 16.9%          |
| Region IV (Southern Tagalog)                             | 35          | Romblon             | 80.0%    | 66.9%         | 89.5%          |
| Autonomous region in Muslim Mindanao (ARMM)              | 36          | Basilan             | 94.9%    | 90.1%         | 97.7%          |
| Region IX (Zamboanga Peninsula)                          | 37          | Zamboanga Del Norte | 90.2%    | 80.9%         | 95.3%          |
| Region V (Bicol region)                                  | 38          | Albay               | 70.4%    | 60.2%         | 79.1%          |
| Region V (Bicol region)                                  | 39          | Camarines Norte     | 72.5%    | 61.9%         | 80.7%          |
| Region V (Bicol region)                                  | 40          | Camarines Sur       | 61.1%    | 47.1%         | 72.8%          |
| Region V (Bicol region)                                  | 41          | Catanduanes         | 72.3%    | 60.6%         | 82.0%          |
| Region V (Bicol region)                                  | 42          | Masbate             | 89.9%    | 77.9%         | 96.6%          |
| Region V (Bicol region)                                  | 43          | Sorsogon            | 77.0%    | 66.6%         | 85.2%          |
| Region VI (Western Visayas)                              | 44          | Aklan               | 82.7%    | 73.8%         | 89.4%          |
| Region VI (Western Visayas)                              | 45          | Antique             | 91.5%    | 83.8%         | 96.3%          |
| Region VI (Western Visayas)                              | 46          | Capiz               | 86.9%    | 79.8%         | 92.2%          |
| Region VI (Western Visayas)                              | 47          | Guimaras            | 90.6%    | 84.5%         | 94.6%          |
| Region VI (Western Visayas)                              | 48          | lloilo              | 84.8%    | 77.0%         | 90.3%          |
| Region VI (Western Visayas)                              | 49          | Negros Occidental   | 78.1%    | 64.4%         | 86.4%          |
| Region VII (Central Visayas)                             | 50          | Bohol               | 86.7%    | 69.2%         | 95.8%          |
| Region VII (Central Visayas)                             | 51          | Cebu                | 55.6%    | 45.2%         | 64.0%          |
| Region VII (Central Visayas)                             | 52          | Negros Oriental     | 77.7%    | 62.3%         | 88.0%          |
| Region VII (Central Visayas)                             | 53          | Siguijor            | 85.6%    | 80.1%         | 90.3%          |
| Region VIII (Eastern Visayas)                            | 54          | Biliran             | 65.2%    | 51.3%         | 76.8%          |
| egion VIII (Eastern Visayas)                             | 54<br>55    | Eastern Samar       | 83.1%    | 68.5%         | 92.3%          |
| tegion VIII (Eastern Visayas)                            | 55          | Leyte               | 71.7%    | 58.0%         | 92.3%<br>81.7% |
|                                                          |             |                     |          |               |                |
| Region VIII (Eastern Visayas)                            | 57          | Northern Samar      | 79.2%    | 67.5%         | 87.7%          |
| Region VIII (Eastern Visayas)                            | 58          | Southern Leyte      | 84.2%    | 72.6%         | 92.3%          |
| Region VIII (Eastern Visayas)                            | 59          | Samar               | 81.8%    | 67.9%         | 91.0%          |
| Region X (Northern Mindanao)                             | 60          | Bukidnon            | 77.8%    | 65.9%         | 86.6%          |
| Region X (Northern Mindanao)                             | 61          | Camiguin            | 83.0%    | 76.7%         | 88.0%          |
| Region X (Northern Mindanao)                             | 62          | Misamis Occidental  | 89.5%    | 81.1%         | 94.9%          |
| Region X (Northern Mindanao)                             | 63          | Misamis Oriental    | 71.8%    | 61.3%         | 80.4%          |

| Region                                      | Province ID | Province name     | Estimate | Lower | Upper |
|---------------------------------------------|-------------|-------------------|----------|-------|-------|
| Region XI (Davao Region)                    | 64          | Compostela        | 82.5%    | 73.3% | 88.9% |
| Region XI (Davao Region)                    | 65          | Davao del Norte   | 68.8%    | 60.7% | 76.1% |
| Region XI (Davao Region)                    | 66          | Davao Del Sur     | 69.1%    | 61.0% | 76.2% |
| Region XI (Davao Region)                    | 67          | Davao Oriental    | 89.1%    | 76.9% | 95.8% |
| Region XII (Soccsksargen)                   | 68          | Saranggani        | 88.2%    | 79.9% | 93.8% |
| Region XII (Soccsksargen)                   | 69          | South Cotabato    | 80.8%    | 73.1% | 86.7% |
| Region X (Northern Mindanao)                | 70          | Lanao Del Norte   | 78.8%    | 69.8% | 86.4% |
| Region XII (Soccsksargen)                   | 71          | North Cotabato    | 91.8%    | 85.2% | 96.0% |
| Region XII (Soccsksargen)                   | 72          | Sultan Kudarat    | 89.6%    | 82.5% | 94.3% |
| Region XIII (Caraga)                        | 73          | Agusan Del Norte  | 66.9%    | 58.1% | 74.5% |
| Region XIII (Caraga)                        | 74          | Agusan Del Sur    | 87.5%    | 79.3% | 93.2% |
| Region XIII (Caraga)                        | 75          | Surigao Del Sur   | 80.1%    | 68.0% | 89.1% |
| Region IX (Zamboanga Peninsula)             | 76          | Zamboanga Sibugay | 92.7%    | 85.8% | 96.8% |
| Region IX (Zamboanga Peninsula)             | 77          | Zamboanga Del Sur | 77.6%    | 63.6% | 87.8% |
| Region XIII (Caraga)                        | 78          | Dinagat           | 78.3%    | 70.0% | 85.2% |
| Region XIII (Caraga)                        | 79          | Surigao Del Norte | 84.4%    | 70.6% | 93.1% |
| Autonomous region in Muslim Mindanao (ARMM) | 80          | Maguindanao       | 93.2%    | 88.0% | 96.6% |
| Autonomous region in Muslim Mindanao (ARMM) | 81          | Shariff Kabunsuan | 83.4%    | 75.1% | 89.3% |