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PREFACE 

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data 

on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, 

HIV/AIDS, malaria, and provision of health services. 

The DHS Spatial Analysis Reports supplement the other series of DHS reports that respond to the increasing 

interest in a spatial perspective on demographic and health data. The principal objectives of all the DHS 

report series are to provide information for policy formulation at the international level and to examine 

individual country results in an international context. 

The topics in this series are selected by The DHS Program in consultation with the U.S. Agency for 

International Development. A range of methodologies is used, including geostatistical and multivariate 

statistical techniques. 

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and 

survey specialists, particularly those engaged in work in low- and middle-income countries, and will be 

used to enhance the quality and analysis of survey data. 

 

Sunita Kishor 

Director, The DHS Program 
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ABSTRACT 

Subnational estimates of the health and demographic indicators recorded in the Demographic and 

Health Surveys Program are of great importance for prioritizing resources and assessing if target levels 

for indicators are being attained. In this report, we examine subnational variation in the under-5 

mortality rate by using small area estimation models with the goal of estimating at the Admin 2 level. 

We describe spatio-temporal modeling and consider discrete spatial models in detail, the possibility of 

including covariates, and accounting for urban/rural stratification, model assessment, and visualization 

of results. We offer recommendations for subnational modeling, describe an analysis pipeline, and 

include R code to perform the various steps, using the SUMMER package. We illustrate methods and 

provide results for Bangladesh, Cameroon, Ethiopia, Kenya, Nepal, Nigeria, Malawi, and Zambia.  

A supplementary appendix is provided at https://dhsprogram.com/publications/publication-

SASAR21-Spatial-Analysis-Reports.cfm. 

Keywords: Bayesian inference, complex survey designs, integrated nested Laplace approximation, 

prevalence mapping, small area estimation, spatial smoothing. 
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1 BACKGROUND AND OBJECTIVES 

1.1 Background 

Most household surveys such as the Demographic Health Surveys (DHS) and Malaria Indicator Surveys 

(MIS) provide reliable estimates of survey indicators primarily at the national level, as well as the first 

subnational administrative level – Admin 1 (states, provinces, or regions). Since national-level estimates 

are useful for comparing nations and aggregating data across large world regions, their natural audience 

includes international policy makers and donors (Li et al. 2019). The analysis at Admin 1 is useful in 

understanding the distribution of health and demographic phenomena, but it does not provide 

comprehensive estimates at lower levels such as the second subnational administrative level (Admin 2), 

where health programs are designed and implemented (Li et al. 2019, Mayala et al. 2019). Admin 2 areas 

are often referred to as districts, counties, cercles, and communes. 

Local officials and in-country partners have long expressed a desire for more localized DHS estimates. 

Countries now have an even greater need for these data because health program planning and 

implementation are increasingly decentralized to the Admin 2 level. Decision-makers at this level are often 

constrained by a lack of routinely available local data for key indicators that would allow for data-driven 

policymaking (Wickremasinghe et al. 2016). A need exists for local data that is routinely produced, 

encompasses a variety of demographic and health subject areas, and is easily accessible and interpretable. 

As local needs demand, these data can be used for priority setting at the Admin 2 level, identification of 

poorly performing localities, and more equitable resource allocation. 

In addition to local needs, international development goals also help drive the demand for Admin 2 

estimates (Utazi et al. 2021). During the last several years and within the framework of the Sustainable 

Development Goals (SDGs), there has been an expressed need to improve the measurement and 

understanding of local geographic patterns to support more decentralized decision-making and more 

efficient program implementation (United Nations General Assembly 2015). In an effort to improve health 

outcomes for all, the SDGs prioritize reducing within-country inequalities because within-country 

heterogeneity was often overlooked when progress was monitored with national averages (Hosseinpoor, 

Bergen, and Magar 2015).  

To better address the need for fine spatial and lower-level estimates, there are three existing options: (i) 

scaling up the nationally representative survey data collection process by increasing the sample size, (ii) 

using data derived from routine health management information systems (HMIS) from health facilities, or 

(iii) using a spatial modeling approach.  

 

Increasing sample size is costly and time-consuming. The HMIS data quality is not always reliable, and the 

data are not easily accessed. Instead, spatial modeling techniques that can leverage existing survey data and 

spatial similarity between survey clusters have become increasingly popular in mapping key development 

indicators (Mayala et al. 2019; Utazi et al. 2018). 

Statistically, the estimation of area-level characteristics at the Admin 2 level falls under the category of 

small area estimation (SAE). There are two philosophically distinct ways of approaching SAE: design-
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based and model-based inference (Skinner and Wakefield, 2017). Design-based methods assess the 

frequentist properties of estimators, and average over all possible samples that could have been drawn, 

under the specified sampling design. In this paradigm, the values of the responses in the population are 

viewed as fixed rather than random. So-called direct estimates, which in the simplest case are just weighted 

estimates, can be used. These adjust for the design and provide an appropriate variance, but are unstable or 

cannot be calculated for most Admin 2 areas because of data sparsity. The DHS surveys are typically 

powered to the Admin 1 level. In this report, we use national and Admin 1 weighted estimates as comparison 

measures for the model-based approaches that are our focus. The classic text on SAE is Rao and Molina 

(2015). 

Model-based approaches can be either frequentist or Bayesian. Frequentist refers to the conventional 

version in which estimators are judged by repeated sampling of the outcome, in contrast to frequentist 

design-based inference in which the data are viewed as fixed, and the indices of the sampled units are 

viewed as random. If a hypothetical infinite population model-based approach is used, a probabilistic model 

is specified for the responses, which are now viewed as random variables. In the context of the DHS 

Program, one must consider the stratification and the cluster sampling to obtain valid inference. Random 

effects modeling and the inclusion of covariates are popular within the model-based approach to SAE, 

because they allow smoothing across space and covariates to provide more reliable estimates. 

Prevalence mapping (Wakefield 2020) is the production of maps that display the prevalence of health and 

demographic outcomes. This approach clearly has large overlap with SAE. The SAE smoothing methods 

often use area-level models, while prevalence mapping uses model-based geostatistics (MBG) methods, 

which specify a continuous spatial model. Examples of prevalence mapping that use area-level SAE 

techniques include HIV prevalence (Gutreuter et al. 2019) and the under- 5 mortality rate (U5MR) (Dwyer-

Lindgren et al. 2014; Li et al. 2019; Mercer et al. 2015). Examples of prevalence mapping with MBG 

include HIV prevalence (Dwyer-Lindgren et al. 2019), malaria (Gething et al. 2016), U5MR (Burstein et 

al. 2019), and vaccination coverage (Mosser et al. 2019; Utazi et al. 2018). 

In this report, we describe a range of models that have been proposed for SAE, and more specifically, a 

class of discrete spatial models, and discuss whether to use covariate information. We provide a 

computational pipeline, along with R scripts that use the SUMMER package (Li et al. 2020), to produce 

Admin 2 level estimates of U5MR.  

1.2 Objectives 

A model-based approach is required to obtain reliable Admin 2 estimates. In this report, we review 

approaches to SAE and focus on a particular model, with a fast computational implementation that we 

believe is a good choice for routine work. The sampling model (assumed distribution for the death indicators 

at the child level) is beta-binomial and is specified at the level of the cluster (enumeration area), uses 

discrete spatial random effects that are specified at the Admin 2 level, and includes urban/rural strata as an 

explanatory variable. Aggregation from the cluster-level mean produces the required Admin 2 estimates. 

The overall objective is to provide practical guidelines for SAE, via a concrete set of models, along with an 

accessible implementation in the SUMMER package. 
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1.3 Report Outline 

In the SAE literature, there are two distinct models: area-level models take a weighted estimate in each area 

as the response, and then smooth, while cluster-level models model the cluster level totals individually. 

Even when only interested in the most recent year, spatio-temporal modeling can be advantageous because 

it leverages temporal smoothing, and can use more data from previous years in order to alleviate sparse data 

in the most recent year. In Section 2 we describe area-level models and in Section 3 we consider cluster-

level models. In each section, we first consider spatial models for a generic binary indicator, before 

extending to space-time models and then estimating U5MR. Section 4 describes model extensions and 

alternative models. In Section 5 we describe the R package SUMMER, which may be used to fit all the 

models that we fit in the report. Section 6 presents summary results for eight countries, and detailed results 

for Zambia. The detailed analyses for the remaining seven countries can be found in the Appendices. Section 

7 provides a concluding discussion. 
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2 AREA-LEVEL MODELS 

2.1 Spatial Modeling of Prevalence 

We will let 𝑖 index the areal units for which estimation is required, with 𝑛 areas in total. Assume there are 

Ni individuals in the population with responses 𝑦𝑖𝑘 , 𝑘 = 1,… ,𝑁𝑖, in area 𝑖, 𝑖 = 1,… , 𝑛. Let 𝑅𝑖 denote the 

set of indices of the individuals sampled by the survey in area 𝑖. A direct estimate in a specific area only 

uses response data on the variable of interest from that area. For simplicity, we assume that the weights are 

simply the reciprocal of the inclusion probabilities. We will also not explicitly index the clusters in this 

section since the discussion is relevant for general designs. Let 𝑑𝑖𝑘 be the design weight associated with 

individual 𝑘 in area 𝑖, whose response is 𝑦𝑖𝑘. Within area 𝑖, the design-based weighted (direct) estimator 

(Hájek 1971; Horvitz and Thompson 1952) is 

 �̂�𝑖
HT = 

∑ 𝑑𝑖𝑘𝑦𝑖𝑘𝑘∈𝑅𝑖

∑ 𝑑𝑖𝑘𝑘∈𝑅𝑖

 . (1) 

The variance of this estimator, 𝑉𝑖
⋆, does not in general have an exact formula and is usually computed with 

either linearization or replication methods (Wolter 2007). In a child mortality context, jackknife methods 

are commonly used, as in Pedersen and Liu (2012). A starting point for SAE analysis is mapping the 

weighted estimates, if there are sufficient data in each area for those to be computed. These weighted 

estimates have excellent properties (if the weights are reliable and stable), such as design consistency, which 

means that as we sample an increasing proportion of the complete population in the area, we approach the 

true proportion of the condition of interest. 

When the data are relatively sparse in an area, the direct estimates will have unacceptably large associated 

uncertainty. In a major advance, Fay and Herriot (1979) introduced a very clever approach that models a 

transformation of the weighted estimate to gain precision by using a random effects model. For binary 

outcomes, one choice of transformation is 𝑍𝑖 = logit(�̂�𝑖
HT). We denote the associated estimated design-

based variance by 𝑉𝑖 (which can be derived from 𝑉𝑖
⋆ using the delta method). 

An area-level model is,  

 𝑍𝑖|𝜃𝑖    ~  𝑁(𝜃𝑖 , 𝑉𝑖)  (2) 

 𝜃𝑖  =  𝛼 + 𝑥𝑖
𝑇𝛽 + 𝑒𝑖  +  𝑆𝑖,  (3) 

where 𝜃𝑖 is the logit of the true proportion in area 𝑖. Area-specific deviations from the regression model are 

modeled by using a pair of random effects. The independent and identically distributed (iid) terms are 

𝑒𝑖  ~ 𝑁𝑖𝑖𝑑 (0, 𝜎𝜖
2), while the collection 𝑺 =  [𝑆1, … , 𝑆𝑛] is assigned a spatial distribution where, recall, n is 

the number of areas. The original Fay-Herriot model did not include the spatial random effects 𝑺, but the 

iid random effects only. Choices for the spatial distribution are described in Banerjee et al. (2015), with 

common forms being the conditional autoregressive (CAR) and intrinsic CAR (ICAR) models. Both of 

these choices capture the concept that, in general, outcomes are likely to be similar in nearby locations. 

Such similarity can be due to unmeasured covariates that are associated with the outcome of interest. The 

ICAR model has the form 
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𝑆𝑖|𝑆𝑗 , 𝑗 ∈ 𝒩𝑖~𝑁(
1

𝑚𝑖
∑ 𝑆𝑗 ,

𝜎𝑠
2

𝑚𝑖
𝑗∈𝒩𝑖

) , 

where 𝒩𝑖 is the set of neighbors of area 𝑖, and 𝑚𝑖 is the number of such neighbors. Hence, the random effect 

𝑆𝑖 is smoothed to the mean of the neighbors of area 𝑖 spatial contributions, where neighbors are commonly 

defined as sharing a boundary. This choice is somewhat arbitrary but has been shown to be useful for 

defining a smoothing model in many applications. The inclusion of iid and ICAR random effects 

corresponds to the popular Besag, York, Mollié (BYM) model introduced by Besag et al. (1991). The ICAR 

choice is a Markov random field (MRF) model, which offers computational advantages (Rue and Held 

2005). The MRF models may be fit with either a frequentist or Bayesian approach in which priors are placed 

on the fixed effects (the 𝛽′𝑠) and on the variances/spatial dependence parameters. Design-based consistency 

is achieved (if the priors do not assign zero probability density to the true 𝜃𝑖), since the 𝑉𝑖 term will tend to 

zero and the bias due to the random effects smoothing disappears asymptotically. 

There are two practical difficulties with this approach. The direct estimates may be on the boundary for a 

summary parameter that is not on the whole real line. For example, in the binary case we may have �̂�𝑖
𝐻𝑇 

equal to 0 or 1. In this case, 𝑍𝑖 will be undefined. Further, a transform of the weighted estimator may not 

share the same design-based properties as the untransformed estimator, such as being design unbiased. 

These problems may be alleviated by using an unmatched sampling and linking model (You and Rao 2002). 

A second difficulty is that reliable variance estimates 𝑉𝑖 may be unavailable, particularly for areas with few 

samples. In this case, variance smoothing can be used (Rao and Molina 2015, Section 6.4.1). 

2.2 Space-Time Modeling of Prevalence 

We now extend the model of the previous section to the situation in which spatially indexed data are 

available over time. In this case, we can exploit the tendency of demographic indicators to be smooth over 

time, in the absence of shocks such as natural disasters or abrupt outbreaks of conflict. Now let �̂�𝑖,𝑡
HT 

represent the weighted estimate in area 𝑖 and (say) year 𝑡 with 𝑍𝑖,𝑡 = logit(�̂�𝑖,𝑡
HT). An area-level temporal 

model is, 

 𝑍𝑖,𝑡|𝜃𝑖,𝑡   ~  𝑁(𝜃𝑖,𝑡 , 𝑉𝑖,𝑡)  (4) 

 𝜃𝑖,𝑡  =  𝛼 + 𝑥𝑖,𝑡
𝑇 𝛽 + 𝑒𝑖  +  𝑆𝑖⏟    

𝑆𝑝𝑎𝑡𝑖𝑎𝑙
𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡𝑠

+ 𝜏𝑡  +  𝜆𝑡⏟    
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙

𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡𝑠

+ 𝛿𝑖,𝑡⏟
𝑆𝑝𝑎𝑐𝑒−𝑇𝑖𝑚𝑒
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

,  (5) 

where 𝜃𝑖,𝑡 is the logit of the true proportion in area 𝑖 and year 𝑡, 𝑉𝑖,𝑡 is the design-based variance estimate, 

𝑒𝑖 and 𝑆𝑖 are (as before) random effects indexed by space that are iid and have spatial structure, 𝜏𝑡 are iid 

temporal random effects, 𝜆𝑡 are temporal random effects with structure in time, and 𝛿𝑖,𝑡 are random effects 

that model the space-time interaction (deviations from the main effects of space and time). The temporal 

smoothing models that we heavily utilize are random walk models that are local smoothers. Random walk 

1 (RW1) models have, 

𝜆𝑡 − 𝜆𝑡−1 ∼ 𝑁𝑖𝑖𝑑 (0, 𝜎𝜆
2), 
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so that the contribution at time 𝑡, 𝜆𝑡, are pulled toward the previous value. Random walk 2 (RW2) models 

have, 

(𝜆𝑡 − 𝜆𝑡−1) − (𝜆𝑡−1 − 𝜆𝑡−2) ∼ 𝑁𝑖𝑖𝑑 (0, 𝜎𝜆
2), 

so that adjacent slopes are encouraged to be similar. The interaction terms 𝛿𝑖,𝑡 can be one of the type I to 

IV interactions, as described in Knorr-Held (2000). The type I model assumes the 𝛿𝑖,𝑡 are iid, the type II 

model has smooth functions of time (RW2, say) crossed with iid space, the type III has smooth functions 

of space (ICAR) crossed with iid time, and the type IV model has smooth functions of space crossed with 

a smooth function of time (RW2 crossed with ICAR). More details of the smoothers are provided in the 

next section. For the model to be identifiable, the necessary sum-to-zero constraints are imposed on each 

group of random effects. These constraints are complex (Knorr-Held 2000) but are the default choice in the 

SUMMER package. 

2.3 Space-Time Modeling of U5MR 

For composite indicators such as U5MR, the direct estimates require additional modeling. The SUMMER 

package implements the discrete hazards model described in Mercer et al. (2015). In this section, we focus 

on the estimation of U5MR. Following previous work by Mercer et al. (2015), we use discrete time survival 

analysis to estimate age-specific monthly probabilities of dying in user-defined age groups. We assume 

constant hazards within the age bands. The default choice uses the monthly age bands 

[0,1), [1,12), [12,24), [24,36), [36,48), [48,60). 

In standard demographic notation, we let 𝑞𝑥𝑎
𝑖𝑡

𝑛𝑎  be the probability of death in age group [𝑥𝑎 , 𝑥𝑎 + 𝑛𝑎) in 

area 𝑖 and year 𝑡, where 𝑥𝑎 and 𝑛𝑎 are the start and end of the 𝑎-th age group. Using a synthetic cohort 

approach (in which a hypothetical child passes through the six age bands in a single year), the U5MR for 

area 𝑖 and year 𝑡 is calculated as 

 �̂�𝑖,𝑡
HT = �̂�0

𝑖𝑡
60 = 1 −∏ (1 − �̂�𝑥𝑎

𝑖𝑡
𝑛𝑎 )6

𝑎=1   (6) 

The constant one-month hazards in each age band can be estimated by fitting a weighted logistic regression 

model (Binder 1983): 

 logit( 𝑞𝑚
𝑖𝑡

1 ) = 𝛽𝑎[𝑚],
𝑖𝑡   (7) 

where 

 𝑎[𝑚] =

{
 
 

 
 
1 if 𝑚 = 0,
2 if 𝑚 = 1,… ,11,
3 if 𝑚 = 12,… ,23,
4 if 𝑚 = 24,… ,35,
5 if 𝑚 = 36,… ,47,
6 if 𝑚 = 48,… ,59.

  (8) 
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The design-based variance of logit(�̂�𝑖,𝑡
HT) may then be estimated using the delta method, although 

resampling methods such as the jackknife can also be used (Pedersen and Liu 2012). The smoothing of the 

direct estimates can then proceed by using the space-time model described in equations (4) and (5).  

When multiple surveys exist, one may choose to either model the survey-specific effects as fixed or random 

(for example, Mercer et al. (2015) describe a random effects model), or first aggregate the direct estimates 

from multiple surveys to obtain a ‘meta-analysis’ estimate in each area and time period (Li et al. 2019). To 

mitigate the sparsity of available data in each year, Li et al. (2019) also consider a yearly temporal model, 

while the direct estimates are calculated over multiyear periods. All these variations can be fit with the 

SUMMER package, which we describe in Section 5. Mercer et al. (2015) and Li et al. (2019) used these 

smoothed direct models in a space-time context, with spatial ICAR and temporal random walk components, 

along with a space-time interaction term. This implicitly implies that the spatial, temporal, and spatio-

temporal random effects are shared across all age bands. 

Unfortunately, when moving to Admin 2, the data become very sparse, and it is not generally possible to 

form (6) for all areas and years. If there are only a small number of area-year combinations in which an 

estimate and variance cannot be reliably formed, then it is possible to “fill-in” these observations by using 

the approach described by Godwin and Wakefield (2021). However, for most situations in which Admin 2 

yearly estimates are required, a cluster-level model-based approach is required, as we describe in the next 

section. 
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3 CLUSTER-LEVEL MODELS 

Battese et al. (1988) describe a nested error regression model at the level of the sampling unit (thus, the 

name unit-level models). For DHS data, the units correspond to clusters (that is, enumeration areas that are 

the basic sampling units of the DHS), and this contrasts with the area-level models considered in the 

previous section, in which the data from all clusters in an area are combined. We begin with a model that is 

defined over space only for a binary response, before extending to space-time for a prevalence and then 

space-time for U5MR. Cluster-level models directly model the observed responses in a conventional model-

based approach. Since the weights do not appear in the formulation, we must adjust for the sampling design 

using terms within the model. In general, model terms may be included to acknowledge stratification, while 

random effects account for the dependence of responses in the same cluster aspect of the design. A further 

complication for SAE is that we must aggregate from the cluster level to the area level. This step was not 

necessary in the area-level models since they directly model at the required scale. 

3.1 Spatial Modeling of Prevalence 

Let 𝑌𝑐 denote the number of events occurred in cluster 𝑐, and 𝑛𝑐 denote the number of individuals at risk 

𝑐 = 1, … , 𝐶 . An important distinction is that the random variables are now the responses 𝑌𝑐 , whereas in 

design-based inference, it is the units that are selected which are treated as random. Consider an 

overdispersed binomial, cluster-level model, 

 𝑌𝑐  | 𝑝𝑐 , 𝑑 ~ BetaBinomal(𝑛𝑐 , 𝑝𝑐 , 𝑑)  (9) 

 𝑝𝑐  = expit(𝛼 +  𝑥𝑐
𝑇𝛽 + ℯ𝑖[𝑆𝑐]  +  𝑆𝑖[𝑆𝑐] )  (10) 

where 𝑝𝑐 is the risk associated with cluster 𝑐, 𝛼 is the intercept, 𝑥𝑐 are cluster-specific covariates, with 𝛽 

the accompanying log odds ratios, and 𝑑 the overdispersion parameter. Overdispersion (excess-binomial 

variation) is commonly seen when modeling health and demographic variables over space and time. Here, 

we attribute the overdispersion to the cluster sampling (dependence within clusters). The marginal variance 

is var(𝑌𝑐|𝑝𝑐 , 𝑑) = 𝑛𝑐𝑝𝑐(1 − 𝑝𝑐)[1 + (𝑛𝑐 − 1)𝑑] so that small values of 𝑑 correspond to little 

overdispersion.  

With respect to the model specified by (9) and (10), we have two area-level random effects: an independent 

contribution 𝑒𝑖 ∼𝑖𝑖𝑑 N(0, 𝜎𝑒
2) and an intrinsic conditional autoregressive (ICAR) spatial component 

[𝑆1, … , 𝑆𝑛] ∼ ICAR(𝜎𝑠
2, 𝜙). The notation here 𝑖[𝑠𝑐] reads as, “the area 𝑖 within which the cluster 𝑠𝑐 

resides.” Hence, we use the BYM2 parameterization (Riebler et al. 2016), which consists of an overall 

variance parameter 𝜎2 for the random effects 𝑒𝑖 and 𝑆𝑖, and a parameter, 𝜙, that represents the proportion 

of this variance that is ICAR. In all analyses we use penalized complexity (PC) priors (Simpson et al. 2017) 

on variance and correlation components such as 𝜎2 and 𝜙. 

In the absence of cluster-level covariates (so 𝑥𝑐  =  𝑥𝑖[𝑆𝑐] for all clusters c in area i) and stratification, we 

can aggregate in the above setting to the area level in a straightforward fashion to give the area-level risk: 

𝑝𝑖  = expit(𝛼 + 𝑥𝑖
𝑇𝛽 + 𝑒𝑖  +  𝑆𝑖),        𝑖 = 1,… , 𝑛. 
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This calculation is straightforward since we have assumed that risk is constant within the area. 

Now suppose we have a binary stratification variable, which for concreteness we will label as urban/rural. 

In DHS surveys, it is typical for there to be oversampling of urban clusters relative to rural clusters. The 

extent of bias is often difficult to determine from the extent of the oversampling of clusters alone, since 

urban and rural clusters typically contain, on average, different numbers of households, and have differing 

numbers of children. The oversampling can potentially lead to bias, since rural risk is often different from 

urban risk. In this case, if one ignores the oversampling, we will distort the area risk because we have a 

nonrepresentative sample. For distortion to occur we need there to be both: (i) an association between 

urban/rural and the response, and (ii) oversampling of urban or rural clusters. 

To make the stratification adjustment clear, we write the model as: 

 𝑝𝑐  = expit(𝛼 +  𝛾 × 𝐼(𝑠𝑐 ∈ urban)  + 𝑥𝑖[𝑆𝑐]
𝑇 𝛽 + ℯ𝑖[𝑆𝑐]  +  𝑆𝑖[𝑆𝑐] ) ,  (11) 

with 𝐼(𝑠𝑐 ∈ urban) = 1 if cluster 𝑐 is urban, so that 𝛼 is the intercept for rural clusters and 𝛼 + 𝛾 for urban 

clusters. To obtain the area-level risk, we need to mix the rural and urban risks for the aggregated risk: 

 𝑝𝑖  = 𝑞𝑖 × expit(𝛼 + 𝑥𝑖
𝑇𝛽 + 𝑒𝑖  +  𝑆𝑖) + (1 − 𝑞𝑖) × expit(𝛼 + 𝛾 + 𝑥𝑖

𝑇𝛽 + 𝑒𝑖  +  𝑆𝑖). (12) 

where 𝑞𝑖, the proportion of the relevant population in area 𝑖 that is rural and 1 − 𝑞𝑖 the proportion that is 

urban. The definition of urban/rural is from the time at which the sampling frame was created, for example, 

based on the most recent census. The DHS does not change the urban/rural classification at the time of the 

survey. It does not matter if a rural cluster has become urban, because the original classification is what is 

relevant (since this is what defines the geographical partition by which sampling is carried out). We discuss 

the urban and rural modeling in more detail in Section 3.3. 

3.2 Space-Time Modeling of Prevalence 

The space-time version of model (11) is 

 𝑝𝑐,𝑡  = expit(𝜂𝑐,𝑡 + 𝜏𝑡)  

 𝜂𝑐,𝑡  = 𝛼 + 𝛼𝑡 × 𝐼(𝑠𝑐 ∈ rural) 

 + (𝛾 + 𝛾𝑡) × 𝐼(𝑠𝑐 ∈ urban) 

 + 𝑥𝑖[𝑆𝑐],𝑡 
𝑇 𝛽 + ℯ𝑖[𝑆𝑐]  +  𝑆𝑖[𝑆𝑐] + 𝛿𝑖[𝑆𝑐],𝑡 ,  (13) 

where 𝜏𝑡 is an iid normal temporal term that we discuss in more detail shortly, 𝛼 is the intercept for rural 

clusters, and 𝛼 + 𝛾 is the intercept for urban clusters (both are with respect to time 𝑡 = 0), and 𝛼𝑡 and 𝛾𝑡 

are the time-varying parameters for the rural and urban clusters, respectively. These parameters are both 

assigned RW2 smoothing priors to acknowledge that we expect similarity over time. For the iid shocks 𝜏𝑡 

it is a contextual choice as to whether these terms are included in the fitted curves. If one believes they 

correspond to the ‘true’ signal, then we would include, while if we think they reflect local biases (recall 

bias, for example), then we should not include. The default in the SUMMER package is to exclude these 

terms. Further discussion is provided in the next section. 
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To obtain the area-level risk over time, we need to mix the rural and urban risks to provide the aggregated 

risk: 

   𝑝𝑖,𝑡  =  𝑞𝑖,𝑡 × expit(𝛼 + 𝛼𝑡 + 𝑥𝑖,𝑡
𝑇 𝛽 + 𝑒𝑖  +  𝑆𝑖 + 𝛿𝑖,𝑡) 

 +  (1 −  𝑞𝑖,𝑡) × expit(𝛼 + 𝛾 + 𝛾𝑡 + 𝑥𝑖,𝑡
𝑇 𝛽 + 𝑒𝑖  +  𝑆𝑖 + 𝛿𝑖,𝑡)  (14) 

where 𝑞𝑖,𝑡 is the proportion of the relevant population in the area that is rural in year 𝑡, and 1 − 𝑞𝑖,𝑡 is the 

proportion of the relevant population in the area that is urban. 

3.3 Space-Time Modeling of U5MR 

We assume a discrete hazards model as before in Section 2.3. We consider a beta-binomial model for the 

probability (hazard) of death from month 𝑚 to 𝑚 + 1 at cluster location 𝑠𝑐 in year 𝑡, because we expect 

overdispersion. Assuming constant hazards within age bands, we assume that the number of deaths 

occurring within age band 𝑎[𝑚], in cluster 𝑐 and at time 𝑡, follow the beta-binomial distribution, 

 𝑌𝑎[𝑚],𝑐,𝑡  | ℎ𝑎[𝑚],𝑐,𝑡 , 𝑑 ∼ BetaBinomial(𝑛𝑎[𝑚],𝑐,𝑡 ,  ℎ𝑎[𝑚],𝑐,𝑡 , 𝑑) , (15) 

where ℎ𝑎[𝑚],𝑐,𝑡 is the monthly hazard within age band 𝑎[𝑚], in cluster 𝑐, at time 𝑡, and 𝑑 is the 

overdispersion parameter. 

In general, we want to model the hazards as a function of space, time, child’s age, and urban/rural strata. 

Since the sparsity of data do not support using most of the possible interactions, parsimonious choices must 

be made. 

▪ Age Terms: We consider 𝑎 = 1,… ,6 age bands (as in (8)), in the sense of having 6 intercepts, and 

allow 𝑎⋆ = 1,2,3 time trends – one each for the first two age bands, and a final common trend for 

the remaining 4 age bands (the default choice in the SUMMER package). We write this as, 

 𝑎⋆[𝑚] = {
1 if 𝑚 = 0,
2 if 𝑚 = 1,… ,11,
3 if 𝑚 = 12,… ,59.

   (16) 

We could include 6 time trends, one for each age band, but for the sake of parsimony, we focus 

modeling efforts on the earlier ages, where deaths are more prevalent. 

▪ Spatial and Spatio-Temporal Terms: The spatial jumps 𝑒𝑖 and 𝑆𝑖, and the space-time interactions 

𝛿𝑖,𝑡 are assumed to act equally on all child age groups. We also include an iid temporal ‘shock’ 𝜏𝑡. 

As discussed in the last section, it is a contextual choice as to whether they are used in predictions. 

The default in the SUMMER package is not to include, which results in smoother temporal 

trajectories. If we do not include, we can think of the temporal jumps as localized bias terms, or 

short scale variation that we do not trust as ‘real,’ and that takes attention away from the more 

persistent temporal trends. If there were conflicts and natural disasters that are localized in time to 

specific years, then we may wish to include the 𝜏𝑡 terms. The concern is that we would oversmooth 

in such situations. 
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▪ Urban/Rural Adjustments: We include separate urban and rural temporal terms to acknowledge 

the sampling design. Since urban clusters are often oversampled and have different risk from 

rural clusters, it is important to acknowledge this in the model (Paige et al. 2020). We assume 

urban/rural associations are the same in all areas and so do not depend on 𝑖. We also need to 

decide in which age groups the urban/rural associations are constant across (we choose the 3 age 

bands (16)), so that we have three odds ratio parameters. Because the true urban/rural 

classification is not constant over time and the association is likely to change over time, we allow 

different odds ratios over time, although we encourage smoothness through the use of RW2s on 

the log odds ratio parameters. We emphasize that we are including these terms to acknowledge 

the design, and not to model ‘true’ urban/rural differences in risk. 

The latent logistic model we use for the 8 country analyses in Section 6 is, 

 ℎ𝑚,𝑐,𝑡    =  expit(𝜂𝑚,𝑐,𝑡 + 𝜏𝑡)  (17) 

 𝜂𝑚,𝑐,𝑡    =  𝛼𝑎[𝑚] + 𝛼𝑎⋆[𝑚],𝑡
⋆ × 𝐼(𝑠𝑐 ∈  rural ) 

 +  (𝛾𝑎⋆[𝑚] + 𝛾𝑎⋆[𝑚],𝑡
⋆ ) × 𝐼(𝑠𝑐 ∈  urban ) 

 +  𝑥𝑖,𝑡
𝑇 𝛽 + 𝑆𝑖[𝑠𝑐] + 𝑒𝑖[𝑠𝑐] + 𝛿𝑖[𝑠𝑐],𝑡.  (18) 

This form includes a collection of terms that are used for prediction and a number that are not. The 𝜏𝑡 are 

unstructured (iid) temporal effects that allow for perturbations over time (in the aggregation process below 

we exclude these terms in our area-level estimates, see the previous discussion). We include spatial main 

effects 𝑆𝑖 and 𝑒𝑖 and the space-time interactions 𝛿𝑖,𝑡, and the covariate model 𝑥𝑖,𝑡
𝑇 𝛽 (with area-level 

covariates) as before. As discussed, we have 6 age intercepts for rural (𝛼𝑎) (the baseline values), and then 

3 urban adjustments (𝛾𝑎⋆
⋆ ). Over time, we have 3 temporal smoothers for each of the rural, 𝛼𝑎⋆[𝑚],𝑡, and 

urban clusters, 𝛾𝑎⋆[𝑚],𝑡. Figure 1 shows the estimates of the hazard rates for Zambia over time, color coded 

by age band, and with different line types corresponding to urban and rural. Because of the log scale, we 

can see the parallel curves for the 4 older age bands, and the constant association with urban/rural for these 

4 age groups. For the neonatal group, there is a slight increase in hazard over time, while for the other age 

bands there are decreases, which are more pronounced for the last 4, which are forced to have the same 

temporal trend. Although U5MR is typically lower in urban than rural areas (Yaya et al. 2019), we observe 

the opposite in Zambia. In general, the urban/rural association becomes less pronounced over time, which 

is consistent with urbanization that is occurring in reality, although the urban/rural cluster labels remain 

constant, so that we have a type of measurement error in the label. See Section 3.4 for more discussion. 
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Figure 1 Hazard rates (urban/rural) over time for 6 age bands. There are 3 temporal trends for 0–1 month, 
1–12 months, and for all age groups >12 months (i.e., the last 4 age groups). Similarly, there are 
3 urban/rural hazard rate adjustments. 

 

The estimated U5MRs in rural and urban regions of area 𝑖 and at time 𝑡 are,  

U5MR𝑖,𝑡,𝑅 = 1 −∏ [
1

1 + exp(𝛼𝑎[𝑚] + 𝛼𝑎[𝑚],𝑡
⋆ + 𝑆𝑖 + 𝑒𝑖 + 𝛿𝑖,𝑡)

]

59

𝑚=0

       

U5MR𝑖,𝑡,𝑈 = 1 −∏ [
1

1 + exp(𝛼𝑎[𝑚] + 𝛾𝑎⋆[𝑚]
∗ + 𝛾𝑎⋆[𝑚],𝑡

∗ + 𝑆𝑖 + 𝑒𝑖 + 𝛿𝑖,𝑡)
]  ,           

59

𝑚=0

 

for the default choice of age bands. The aggregate risk in area 𝑖 and in year 𝑡 is 

 𝑝𝑖,𝑡 = 𝑞𝑖,𝑡 × U5MR𝑖,𝑡,𝑅 + (1 − 𝑞𝑖,𝑡) × U5MR𝑖,𝑡,𝑈  (21) 

where 𝑞𝑖,𝑡 and 1 − 𝑞𝑖,𝑡 are the proportions of the under-5 population in area 𝑖 that are rural and urban in 

year 𝑡. The process by which we estimate 𝑞𝑖,𝑡 is described in the next section. 

Beyond point estimates, we obtain the full posterior of U5MR𝑖,𝑡, so that various summaries can be reported 

or mapped. The SUMMER package uses samples from an approximation to the posterior to allow inference 

for U5MR𝑖,𝑡. The estimate constructed for U5MR is not relevant to any child, because that child would 

have to experience the hazards for each age group simultaneously in time period 𝑡, rather than moving 

through age groups over multiple time periods. Nevertheless, the resulting U5MR is a useful summary and 

the conventional measure used to inform on child mortality. 

(19) 

(20) 
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3.4 Creating an Urban/Rural Stratification Surface 

We now discuss how the 𝑞𝑖,𝑡 can be estimated. From the DHS reports, or census summary tables, we can 

obtain the fractions of the complete population that are rural at the Admin 1 level, at the time of the census 

from which the DHS sampling frame was constructed. Using WorldPop population density surfaces 

(Stevens et al. 2015) from the year of census sampling frame construction, we can define an area-specific 

population density threshold that will provide the correct proportion at the Admin 1 level. The WorldPop 

population density estimates are available on a 1 × 1km grid, and given the thresholding procedure just 

described, we are able to define each point of the grid as urban or rural. 

We can then obtain the 0–5 population at each grid point. Other populations can be used as the response 

dictates. For example, if we are examining female educational attainment for a certain age group, we can 

use population estimates for that age group. We assume that the same Admin 1 threshold applies in each of 

the constituent Admin 2 areas. Summing up the grid points within an Admin 2 geographical area therefore 

provides the fraction of the 0–5 population that is urban/rural. 

The sampled clusters are not included in this classification process. Thus, one can use the urban/rural grid 

to assign the sampled clusters to urban/rural, and then can compare with the classification used in the survey. 

This is for the year of the census. To go forward in time (to obtain 𝑞𝑖,𝑡), we can use the same classification, 

in most countries, since the sampling frame is not updated. Hence, the urban/rural grid labels are constant 

over time, although the fractions will change because the WorldPop population density grid values change 

across years. 

It might appear strange that the urban/rural classification of grid points is constant over time, because 

urbanization is typically occurring. However, the original sampling frame for urban/rural classification is 

what is relevant, because this defines the stratification that is then used for sampling. In the same way, the 

design weights are also constant over time. To account for the stratification, one needs to model the 

association between the design variable and the hazard, and since the relationship may change over time, 

we include a time-varying association parameter. 
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4 ADDITIONAL CONSIDERATIONS 

4.1 Covariate Modeling 

Incorporating auxiliary information as covariates in area-level or cluster-level models can improve the 

accuracy of the resulting small area estimates (Rao and Molina 2015). Auxiliary information for a given 

covariate that is available at the cluster-level can be incorporated in the cluster-level linear predictor models 

in an obvious way. With covariates that vary within areas, the difficulty with a nonlinear model is the 

aggregation step to obtain the Admin 2 estimate of the area-level risk. The difficulty is that the aggregation 

requires a population density surface and a covariate surface. The population density surface is estimated, 

and the covariate surface may also be estimated. In practice, it is difficult to assess how closely these 

correspond to the true population density and the true covariate surface. For illustration, assume we have a 

risk model 

𝑝(𝑠) = expit(𝛼 + 𝑥(𝑠)𝑇𝛽 + 𝑆(𝑠)), 

where 𝛼 is the intercept, 𝑥(𝑠) are covariates measured at cluster spatial location 𝑠 with associated log odds 

ratios 𝛽, and 𝑆(𝑠) is the latent residual (logit) risk at location 𝑠. Then the aggregated risk in area 𝑖 is  

 𝑝𝑖 = ∫ 𝑝(𝑠) × 𝑞(𝑠) 𝑑𝑠 ≈ ∑ 𝑝(𝑠𝑙) × 𝑞(𝑠𝑙)
𝑀𝑖
𝑙=1𝐴𝑖

 (22) 

where 𝑞(𝑠) is the population density at 𝑠 (normalized to integrate to 1 over 𝐴𝑖) and we have approximated 

the integral in area i using a grid indexed by l = 1,…, Mi grid points. We emphasize that the covariate surface 

x(𝑠𝑙) is required at all of the grid points 𝑠𝑙. 

For continuous outcomes with an identity link function, prediction is straightforward when we have area-

level mean covariate values. However, when using a binary response model for which cluster-level 

probabilities undergo nonlinear transformation, covariate information is required for all individuals. This 

means that we need cluster-specific covariate information for all clusters in the sampling frame, as well as 

estimates of the population for each cluster. Thus, generating predictions from a model with cluster-level 

covariates can be difficult in a setting where we have incomplete covariate information for our entire 

population, which is often the case for low- and middle-income countries (LMICs). 

With the cluster-level linear predictor (18), the simplest approach is to add area-level covariates, which use 

values that are constant for each cluster in a given area. Hence, we add 𝑥𝑖,𝑡
𝑇 𝛽, where 𝛽 are the associated 

log odds ratios. For example, the area-level covariates can be population-weighted averages of pixel-level 

surfaces. For both binary and continuous responses, prediction is straightforward because the effect of a 

covariate is identical for all individuals belonging to an area and there is no within-area variation in the risk, 

unless we model the urban/rural strata. 

Cluster-level covariate models are more appealing than area-level covariate alternatives since they are 

closer to the mechanism of action and reduce the possibility of ecological bias (Wakefield 2008), which 

arises when one tries to interpret area-level association as relevant to the individuals within the areas 

(though for prediction this is less important, although the loss of information in using an area-level summary 
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is still important). Using satellite-derived fine-scale maps of covariates such as vegetation or nighttime 

lights has become popular for creating maps of poverty indicators. However, when Admin 2 estimates for 

LMICs are the target, maps of urban/rural classifications, population density, and covariates are typically 

estimates and may exhibit biases and large uncertainties. These biases are not well understood, and data 

sources that provide uncertainty estimates often only provide marginal uncertainty at each location. More 

work is needed to understand the effects of uncertainty in the covariate map as well as uncertainty in 

population density. Jittering, or adding random noise to the data, in the cluster locations, which is commonly 

done for confidentiality purposes, would introduce further error in estimating cluster-level covariate 

information. This means that continuous spatial models are appealing and necessary for fine-scale maps of 

indicators, although this does not imply that they should be the default choice for producing reliable areal 

estimates.  

4.2 Continuous Spatial Models 

The modeling strategy suggested in this report for producing Admin 2 estimates is to use discrete spatial 

models. We encourage the use of these models due to their ease of implementation and benefits in terms of 

aggregation. However, a key component of recent works on subnational estimation of U5MR (Burstein et 

al. 2019; Golding et al. 2017; Wakefield et al. 2019) has been to produce fine-scale spatio-temporal maps. 

In the Appendix we provide more details on these models, and here content ourselves with references to the 

literature on continuous models. Stein (1999) provides extensive discussion of the theoretical aspects of 

continuous spatial models, while Diggle and Giorgi (2019) offer a practical guide to their use in the context 

of public health applications. Heaton et al. (2018) provide an extensive simulation study that compares 

various implementations of continuous spatial models. Paige et al. (2020) include detailed simulation 

studies that compare discrete and continuous spatial models and provide support for our use of the former. 

We favor discrete spatial models because we aim for admin estimates. A summary of our position is that 

we do not need to capture continuous spatial variation and aggregation gives an additional source of 

inaccuracy due to imprecise fine-scale population information. We acknowledge, however, the potential for 

traditional geostatistical models to pick up more local spatial variation that does not fit with administrative 

borders. 

4.3 Aggregation 

In this report we focus on Admin 2 estimation, although it can be of interest to aggregate these estimates to 

the Admin 1 or national level for model checking. We focus on aggregating Admin 2 to Admin 1. In this 

section, let 𝑖 be the Admin 1 area index and 𝑗 be the Admin 2 area index. We use 𝑇𝑖 to denote the set of 

indices of Admin 2 areas within Admin 1 area 𝑖, such that 𝑗 ∈ {𝑇𝑖} indicates that Admin 2 area 𝑗 is within 

Admin 1 area 𝑖. 

First, we calculate the proportion of the population in Admin 2 area 𝑗 with respect to its upper area-level 

Admin 1 area 𝑖. Let 𝑓𝑖𝑗 be this fraction and let 𝑞𝑖𝑗 denote population density within Admin 2 area 𝑗. We 

obtain population density from WorldPop surfaces for the under-5 population and we treat them as known 

without uncertainty. The calculation follows as 

 𝑓𝑖𝑗 =
𝑞𝑖𝑗

∑ 𝑞𝑖𝑗𝑗∈𝑇𝑖

   (23) 
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Aggregation to the upper area-level is carried out to give the estimand, 

 𝑝𝑖 = ∑ 𝑝𝑖𝑗𝑗∈𝑇𝑖 × 𝑓𝑖𝑗   (24) 

where 𝑝𝑖 is the U5MR at Admin 1 area 𝑖 and 𝑝𝑖𝑗 is U5MR at Admin 2 area 𝑗, which is within Admin 1 area 

𝑖. The aggregated Admin 1 U5MR is a convex combination of U5MR at Admin 2 level with ∑ 𝑓𝑖𝑗𝑗∈𝑇𝑖 = 1. 

For estimation, we obtain the posterior distribution of 𝜋(𝑝𝑖|𝒚) by sampling 

𝑝𝑖
(𝑠)
= ∑ 𝑝𝑖𝑗

(𝑠)

𝑗∈𝑇𝑖

× 𝑓𝑖𝑗  , 

where 𝑝𝑖𝑗
(𝑠)

 are posterior draws from 𝜋(𝑝𝑖𝑗|𝒚), 𝑠 = 1, . . . , 𝑆, which we obtain from the Admin 2-level beta-

binomial model. 

It is important to note that if one is primarily interested in estimates at a particular level, it is more often 

preferable to model at that level since one does not have to perform aggregation, which can add error. 

4.4 Model Assessment 

We validate the smoothed direct, stratified Admin 1 level beta-binomial, and stratified Admin 2 level beta-

binomial models by removing data from one Admin 1 area at a time in the final time period. Predictions for 

the omitted area are compared against the direct estimate for that area, and the predictions of the Admin 2 

level beta-binomial model are aggregated to the Admin 1 level with the associated population weights of 

the constituent Admin 2 areas. This validation method allows us to evaluate the models’ accuracy. We 

exclude data in the time period with the latest survey due to its importance for the purpose of estimation in 

the survey year. 

We consider a number of scoring rules and metrics to help evaluate model performance: relative bias, 

(absolute) bias, root mean square error (RMSE), and 80% and 95% CI width. Given central predictions 

from the model, �̂� = (�̂�1, . . . , �̂�𝑚)
𝑇 and direct estimates 𝒑 = (𝑝1, . . . , 𝑝𝑚) for the m Admin 1 areas, we 

calculate the overall scoring rules and metrics for a country as: 

RelativeBias(�̂�, 𝒑) =
1

𝑚
∑100

𝑚

𝑖=1

%×
�̂�𝑖 − 𝑝𝑖
𝑝𝑖

 

Bias(�̂�, 𝒑) =
1

𝑚
∑1000

𝑚

𝑖=1

× (�̂�𝑖 − 𝑝𝑖) 

RMSE(�̂�, 𝒑) = √
1

𝑚
∑(�̂�𝑖 − 𝑝𝑖)

2

𝑚

𝑖=1

 .  

 

(25) 

(26) 

(27) 
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We use percentage units for relative bias, and children per thousand births units for absolute bias. Given the 

average scoring rules for each country, we then average with equal weight over all countries to obtain the 

overall scoring rules and metrics for each model.  

Relative bias can be used for determining how much larger the predictions are relative to the direct estimates 

as a percentage, while bias measures the mean absolute differences between the direct estimates and 

predictions. RMSE can be approximately viewed as the typical error in the predictions. 

A useful property of relative bias is that it acknowledges inherent differences in errors that depend on the 

scale of what is being predicted. A disadvantage is that if some direct estimates are very close to zero due 

to noise in the data, predictions only slightly higher on an absolute scale can potentially result in relative 

biases that are very large. Such biases are due entirely to noise in the direct estimates rather than any 

substantial fault in the predictions. Significant relative bias is therefore not unexpected for unbiased models. 



 

19 

5 THE SUMMER SOFTWARE 

The models discussed in this report can be fitted with the R package SUMMER (Li et al. 2021, 2020). The 

SUMMER package provides a general framework for smoothing and mapping prevalence with complex 

survey data. For the estimation of child mortality, the SUMMER package provides the pipeline to process 

DHS birth records and fit both area-level and cluster-level models, and specifically, direct, smoothed direct, 

and model-based estimates with different model specifications. Fully Bayesian estimation techniques are 

used that utilize the integrated nested Laplace approximation (INLA) computational machinery as described 

by Rue et al. (2017). This technique has been extensively investigated in the context of spatial modeling, 

such as in Osgood-Zimmerman and Wakefield (2020), and the work of Blangiardo and Cameletti (2015), 

Krainski et al. (2018), Moraga (2019), and Gómez-Rubio (2020). 

The SUMMER package can also be used for SAE with other binary and continuous outcomes. The package 

has been successfully utilized for a range of data including the estimation of mortality rates (Li et al. 2019; 

Mercer et al. 2015; Schlüter and Masquelier 2021), HIV prevalence (Wakefield et al. 2020) and vaccination 

coverage (Dong and Wakefield 2021). In addition to model fitting, the package provides a collection of 

visualization tools that summarize and present estimated prevalences. 

Recently, the SUMMER package was used to obtain the official United Nations Inter-agency Group for 

Mortality Estimation (UN IGME) yearly estimates (1990–2018) of U5MR at Admin 2 level for 22 countries 

in Africa and Asia (UN IGME 2021). A variant of the beta-binomial sampling model described in Section 

3.3 was used with: 1. cluster-level modeling, 2. space-time smoothing, 3. country-specific models, 4. 

Bayesian inference, 5. overdispersion, 6. benchmarking to UN IGME national U5MR estimates, 7. HIV 

adjustment, and 8. informative visualization. These eight characteristics, along with the beta-binomial 

likelihood, lead to the model label of BB8. In the work of this report, we do not incorporate benchmarking 

or HIV adjustment, although this is possible with the SUMMER package. 

A standardized description of the materials and code for reproducing the work are available at 

https://github.com/wu-thomas/SUMMER-DHS 

An example piece of SUMMER code is given below. The documentation describes the syntax in detail, but 

many of the arguments are self-explanatory. The arguments beginning with pc concern the PC hyperpriors 

that we use. 

### Stratified beta-binomial model at Admin 2 

fit.strat.admin2 <- smoothCluster(data = mod.dat,  

family = "betabinomial", 

      Amat = admin2.mat,  

      year_label = 2010:2018, 

strata.time.effect = TRUE, 

      time.model = "rw2", st.time.model = "ar1", 

      type.st = 4, pc.st.slope.u = 1, pc.st.slope.alpha = 0.01, 

      age.groups = c("0", "1-11", "12-23", "24-35", "36-47", "48-59"), 

      age.n = c(1, 11, 12, 12, 12, 12), 

      age.rw.group = c(1, 2, 3, 3, 3, 3), 

      age.strata.fixed.group = c(1, 2, 3, 3, 3, 3)) 

https://github.com/wu-thomas/SUMMER-DHS
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6 U5MR MODELING IN EIGHT COUNTRIES 

6.1 Eight Country Summary 

In this section, we present results obtained from eight DHS surveys (we use the last survey available in 

each country), which used the cluster-level model described in Section 3.3 and were implemented in the 

SUMMER package. We selected countries with a variety of numbers of Admin 1 and Admin 2 areas – the 

list of surveys and the number of admin areas are summarized in Table 1. Although our principal aim is to 

utilize estimates for the most recent period, we use the retrospective nature of full birth history data to fit a 

model to 9 years of data. The extra years of data aid in estimation, since we can leverage temporal similarity 

of rates. 

Table 1 Numbers of Admin 1 and Admin 2 areas and survey years for the eight countries in the 
analysis  

Country DHS survey year Admin 1 areas Admin 2 areas 

Bangladesh 2018 7 64 
Cameroon 2018 10 58 
Ethiopia 2016 11 79 
Kenya 2014 47 301 
Malawi 2015 3 28 
Nepal 2016 5 13 
Nigeria 2018 37 774 

Zambia 2018 10 72 

 

Figures 2–9 show the estimated U5MR and width of the 95% credible intervals. The Admin 2 level 

estimates are mapped for each country at the year of the survey. The estimates are produced from the beta-

binomial model, given by equations (15), (17), and (18). Because the scales are different in the different 

figures and the surveys were conducted in different years, direct comparison is not possible. In general, we 

see spatial structure in the U5MR estimates, in that two areas that are neighbors have more similar risk than 

two areas that are far apart. We also see substantial variation across Admin 2 regions in each country. 

The right-hand plots show that there is significant uncertainty in many of the Admin 2 areas, with the width 

of the 95% credible intervals routinely greater than 60 deaths per 1,000 live births. Comparison of the left 

and right figures reveals that the areas with higher U5MR estimates have relatively higher uncertainty, 

which stems from the mean-variance relationship of the beta-binomial. These plots are included to indicate 

the inherent uncertainty, although the Bayesian machinery allows one also to examine many other 

summaries such as the probabilities of exceedance of certain values, which may be more suitable for 

answering public health questions. We include such plots later in the report. 

Tables 2 and 3 provide three number summaries of U5MR in each country at the Admin 1 and Admin 2 

level, respectively. The 5th percentiles and 95th percentiles show that there is considerable subnational 

variation in each country. The median indicates the estimated U5MR in a typical area. Cameroon and 

Nigeria have relatively high levels of U5MR at the time of the survey, while Bangladesh and Nepal have 

relatively low levels of U5MR. In general, the range of subnational variation is greater at the Admin 2 level. 

For Nigeria, the ratio of the 95th to 5th percentile of the distribution of posterior medians is 3.7 for Admin 1 

and 4.7 for Admin 2, which is considerable. Due to the small number of Admin 1 areas in most countries, 

the quantiles are approximated, and can only serve as a rough guide for the subnational variation. In general, 
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there is large variation across areas. Understanding this variation and equalizing the burden of U5MR is 

clearly a public health priority. The aim is to have equal and low risk in all subnational regions. 

Table 2 Spread of Admin 1 estimates (rate per 1,000 live births) for the year of the survey 

 
Country 

DHS Survey 
year 5th Percentile Median 95th Percentile 

1 Bangladesh 2018 35.1 38.7 42.8 
2 Cameroon 2018 46.5 80.2 115.1 
3 Ethiopia 2016 40.0 62.9 85.9 
4 Kenya 2014 28.2 42.8 68.4 
5 Malawi 2015 47.5 55.7 59.8 
6 Nepal 2016 31.4 34.1 38.8 
7 Nigeria 2018 49.5 98.7 181.3 
8 Zambia 2018 36.4 52.7 74.0 

 
Table 3 Spread of Admin 2 estimates (rate per 1,000 live births) for the year of the survey 

 Country 
DHS Survey 

year 5th Percentile Median 95th Percentile 

1 Bangladesh 2018 31.3 35.8 43.1 
2 Cameroon 2018 51.6 79.4 113.2 
3 Ethiopia 2016 44.5 65.1 87.5 
4 Kenya 2014 27.9 42.0 75.8 
5 Malawi 2015 44.4 53.2 71.6 
6 Nepal 2016 30.0 34.0 38.5 
7 Nigeria 2018 44.9 92.2 209.0 
8 Zambia 2018 25.8 45.7 86.0 

 

Figure 2 U5MR estimates and uncertainty at year of survey for Bangladesh 

 
 (a) U5MR estimates, Bangladesh 2018 (b) Width of 95% credible intervals, Bangladesh 

  2018 
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Figure 3 U5MR estimates and uncertainty at year of survey for Cameroon 

 
 (a) U5MR estimates, Cameroon 2018 (b) Width of 95% credible intervals, Cameroon 

2018 

 
Figure 4 U5MR estimates and uncertainty at year of survey for Ethiopia 

 
 (a) U5MR estimates, Ethiopia 2018 (b) Width of 95% credible intervals, Ethiopia 2018  
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Figure 5 U5MR estimates and uncertainty at year of survey for Kenya 

 
 (a) U5MR estimates, Kenya 2014 (b) Width of 95% credible intervals, Kenya 2014 
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Figure 6 U5MR estimates and uncertainty at year of survey for Malawi 

     
 (a) U5MR estimates, Malawi 2015 (b) Width of 95% credible intervals,  

  Malawi 2015 

 
Figure 7 U5MR estimates and uncertainty at year of survey for Nepal 

 
 (a) U5MR estimates, Nepal 2016 (b) Width of 95% credible intervals, Nepal 2016 
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Figure 8 U5MR estimates and uncertainty at year of survey for Nigeria 

 
 (a) U5MR estimates, Nigeria 2018 (b) Width of 95% credible intervals, Nigeria 2018 

 
Figure 9 U5MR estimates and uncertainty at year of survey for Zambia 

 
 (a) U5MR estimates, Zambia 2018 (b) Width of 95% credible intervals, Zambia 2018 

  



 

27 

6.2 Validation 

Table 4 summarizes the cross-validation metrics for all countries. The cross-validation experiment was 

devised with the following steps. For the final 3-year period, all data were removed from a single Admin 1 

area, and this was repeated for each Admin 1 area. The metrics given by (25), (26), and (27) were calculated 

for each country, and also summed, with equal weight, across countries. Two beta-binomial cluster-level 

models were fitted, one with the spatial and spatio-temporal model specified at the Admin 1 level, and the 

other at the Admin 2 level; the cluster-level models we used were described in Section 3.3. We also fit an 

area-level smoothed direct model at Admin 1 (recall that the direct and smoothed direct models are not 

tenable at Admin 2, due to data sparsity). For the Admin 2 level model, we aggregate the beta-binomial 

model with spatial and spatio-temporal terms specified at the Admin 2 level, using the method described in 

Section 4.3. To compare estimates from yearly beta-binomial model with direct estimates for a 3-year 

window, we also aggregated draws from 3 years, as described in Section 4.3, to form a single posterior 

distribution of estimates. 

Overall, the Admin 1 level beta-binomial model performed the best in terms of relative bias, bias, and 

RMSE. The Admin 1 level beta-binomial model RMSE was 0.015 compared to the smoothed direct and 

Admin 2 level beta-binomial model RMSEs of 0.017 and 0.027, respectively. This indicated better overall 

central predictions for the Admin 1 level beta-binomial model. The Admin 1 level beta-binomial model 

relative bias was also the closest to zero at 10.9%, compared to the relative bias of the smoothed direct and 

Admin 2 level beta-binomial models, which were 12.9% and 17.3%, respectively. The bias of the Admin 1 

level beta-binomial model was 0.6 children per thousand births compared to 1.3 for the smoothed direct 

model and -0.2 for the Admin 2 level beta-binomial model. 

Although the Admin 2 level beta-binomial model had the smallest absolute bias, it also had the largest 

RMSE. This suggests that modeling at a finer spatial scale than that of the predictions does not necessarily 

improve predictive performance, and can in fact, make the predictions worse. The relatively poor 

performance of the Admin 2 level beta-binomial model (when predicting at the Admin 1 level) may be due 

in part to variability induced by the process of aggregating predictions to coarser spatial scales. This latter 

additional variability is a result of uncertainty in the aggregation fractions. 

We observed fairly large relative biases (over 10%) for Kenya, Nepal, Cameroon, and Bangladesh. In all 

cases, this is due to outlier Admin 1 areas, whose individual relative biases were sometimes in the hundreds 

of percent due to the direct estimates being very close to zero. In Kenya, for example, we observed relative 

biases in Laikipia and Tharaka-Nithi of 426% and 493%, respectively for the smoothed direct model, with 

direct estimates of just 8.4 and 7.2 deaths per thousand births, respectively. These were the two smallest 

direct estimates of all 47 Admin 1 areas in Kenya. It is therefore possible that the large relative biases of all 

models for Kenya, Nepal, Cameroon, and Bangladesh are due to noise in the direct estimates for a small 

number of Admin 1 areas. 
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Table 4 Validation results for both the smoothed direct model, and the beta-binomial Admin 1 
and Admin 2 models, first averaged over Admin 1 areas within each country, and then 
averaged over all countries. Bias is reported in children per thousand births. 

Country Model 
Relative 

Bias Bias RMSE 

Bangladesh Smoothed Direct 13.6 1.7 0.012 
 Beta-Binomial Admin 1 10.8 0.8 0.012 
 Beta-Binomial Admin 2 10.4 0.6 0.012 
Cameroon Smoothed Direct 14.8 2.7 0.023 
 Beta-Binomial Admin 1 17.5 5.3 0.019 
 Beta-Binomial Admin 2 32.6 4.7 0.042 
Ethiopia  Smoothed Direct 5.1 0.9 0.014 
 Beta-Binomial Admin 1 -1.9 -2.4 0.014 
 Beta-Binomial Admin 2 -1.5 -2.3 0.017 
Kenya  Smoothed Direct 38.5 1.0 0.022 
 Beta-Binomial Admin 1 31.2 -0.9 0.021 
 Beta-Binomial Admin 2 44.9 -1.0 0.029 
Malawi  Smoothed Direct 2.2 0.5 0.004 
 Beta-Binomial Admin 1 -0.7 -1.1 0.004 
 Beta-Binomial Admin 2 -1.0 -1.1 0.003 
Nepal Smoothed Direct 15.9 2.5 0.013 
 Beta-Binomial Admin 1 25.4 5.5 0.015 
 Beta-Binomial Admin 2 23.7 5.0 0.014 
Nigeria Smoothed Direct 5.9 -0.9 0.032 
 Beta-Binomial Admin 1 2.2 -2.0 0.020 
 Beta-Binomial Admin 2 27.2 -5.4 0.077 
Zambia Smoothed Direct 7.4 2.1 0.014 
 Beta-Binomial Admin 1 2.8 -0.2 0.015 
 Beta-Binomial Admin 2 2.4 -1.8 0.018 
Overall Smoothed Direct 12.9 1.3 0.017 
 Beta-Binomial Admin 1 10.9 0.6 0.015 
 Beta-Binomial Admin 2 17.3 -0.2 0.027 

 

6.3 Detailed Results for Zambia 

The Admin 2 estimates of U5MR can have substantial uncertainties even after space-time smoothing. Here 

we further explore the uncertainties of the estimates by using Zambia as an example. The same set of figures 

for the other countries are included in the Appendices. As we noted in Section 2, direct (weighted) estimates 

provide a reliable summary when there are sufficient clusters in each area. Unfortunately, it will rarely be 

possible to obtain yearly Admin 2 direct estimates due to data sparsity. But we may often be able to produce 

yearly Admin 1 estimates, or Admin 2 estimates using data summed over years.  
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Figure 10 panel (a) shows a map of direct estimates at Admin 1 in the period 2016-2018, while panel (b) 

displays the smoothed direct (Fay-Herriot) estimates. We plot the estimates against each other in panel (c), 

and we see some smoothing, although the highest and lowest points are not attenuated. 

Figure 10 Comparison of direct and smoothed direct estimates, Zambia Admin 1, 2016-2018 

  
 (a) Direct estimates (b) Smoothed direct estimates 

 
(c) Direct versus smoothed direct estimates 
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The direct and smoothed direct estimates adjust for the complex design via the weighting and the use of an 

appropriate variance calculation. The model-based approaches that are required for yearly Admin 2 

estimation must contain appropriate terms to acknowledge the design. One check is to form Admin 1 

estimates and compare them with the direct estimates. One would expect some shrinkage, but not systematic 

differences, either shifted higher or lower. We can also further aggregate to the national level. In Figure 11, 

we plot the aggregated beta-binomial estimates versus the yearly direct estimates. We aggregate by using 

the method described in Section 4.3. We see that the aggregated beta-binomial estimates are much smoother 

over time and have reduced uncertainty when compared to the direct estimates. We emphasize that we 

would not use Admin 2 modeling to produce Admin 1 level or national estimates. Our model is designed 

for Admin 2 estimates, and for Admin 1 level estimates, it is better to use an Admin 1 level model, and 

similarly, for a national estimate, one should just pool all the data and form a national weighted estimate. A 

primary reason for this advice is the uncertainty in the aggregation process. 

Figure 11 Aggregated beta-binomial national estimates versus direct national estimates, over time, and 
with 95% error bands, Zambia 

 

  



 

31 

Figure 12 shows the posterior probability of the U5MR in each Admin 2 region exceeding the national 

U5MR at 2018. For a more stable estimate, we use the national rate during the period 2016–2018 (and its 

associated uncertainty), which is 56.2 per 1,000 live births. The national weighted estimate has an 

associated asymptotic distribution and if we use this distribution as a likelihood, and assume a flat prior on 

the national estimate, we can take the asymptotic distribution as an approximate posterior and then sample 

from this distribution. With samples from both the posterior distribution for the U5MR in the area, and 

samples from the posterior for the national average, it is then straightforward to calculate the exceedance 

probability. We are assuming that the two posterior distributions are independent, which is not quite true, 

although the dependence will be inconsequential, unless there are few areas that contribute to the national 

average. The pattern in this map is obviously similar to the left panel of Figure 9, although this map may 

be more useful for public health officials. For example, two of the most northerly Admin 2 regions have 

probabilities close to 1 of having U5MR greater than the national level. 

Figure 12 Probability for Admin 2 estimates exceeding national direct estimates (Zambia 2018) 
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In Figure 13 we plot the urban to rural odds ratios for three age bands against year. Although there is a 

larger amount of uncertainty, we see stronger associations in the neonatal and > 12 months age groups, 

with the odds ratio becoming closer to 1 in the later years. 

Figure 13 Odds ratios (urban/rural) over time for the age bands 0–1 month, 1–12 months, >12 months 
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Figure 14 shows the trends across time of U5MR for Admin 1 regions in Zambia. Figure 15 shows the 

equivalent plot for Admin 2 regions in Zambia. The overall trend is downward, although there is strong 

subnational variation across areas, as was shown in Tables 2 and 3. 

Figure 14 Trends of U5MR for Admin 1 areas in Zambia over time 

 

Figure 15 Trends of U5MR for Admin 2 areas in Zambia over time 
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Ridgeplots provide further insights into the uncertainty of estimation in each area. Showing all 72 of the 

Admin 2 posterior distributions in one plot would be too cluttered. As an illustration, therefore, Figure 16 

shows the posterior distributions for U5MR in the Admin 2 regions that are contained in the Admin 1 region 

of Luapula. The large uncertainty is clear, particularly for Nchelenge and Chiengi. 

Figure 16 Ridgeplot representation of posterior distribution of U5MR for Admin 2 areas in Luapula (Zambia 
2018) 
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Figure 17 shows the posterior distribution of rankings of a subset of Admin 2 area in Zambia, where 1 

indicates the area with the lowest U5MR among all areas, and 72 indicates the area with the highest U5MR. 

The uncertainty in the rankings is apparent.  

Figure 17 Admin 2 U5MR ranking in Zambia, 2018. On the left we show the regions with the highest U5MR, 
and on the right are those with the lowest U5MR. 
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We end the discussion of different visual summaries by showing True Classification Probability (TCP) 

maps. The concept, originally described in Dong and Wakefield (2021), is to allow only a smaller number 

of colors on maps. Our previous maps effectively use a continuous color legend to represent the posterior 

summary estimate. Figure18 (a) illustrates with 𝐾 = 2 colors. Areas in blue have a greater than 0.5 chance 

that the posterior distribution is greater than 45.62, while areas in yellow have less than 0.5. For any area, 

there is a corresponding complementary probability of less than 0.5 of incorrect classification. Across areas, 

we can report the average TCP, which here is 0.76. One way of interpreting this number is to randomly pick 

an area, and then ask about the probability that it is correctly colored. As we increase the number of colors, 

this probability will decrease. We illustrate with 𝐾 = 3 and 𝐾 = 4 in Figures 18 (b) and (c), and have 

ATCPs of 0.62 and 0.50, respectively. Thus, as we increase the number of colors, the correct classification 

of areas decreases. The thresholds are set according to the quantiles of the posterior samples for U5MR in 

all Admin 2 areas in 2018. See Dong and Wakefield (2021) for full details. 

Figure 18 Average True Classification Probabilities (ATCP) for (a) K = 2, (b) K = 3, and (c) K = 4 for Zambia 
in 2018 

    
 (a) 𝐾 = 2  (b) 𝐾 = 3 

 
(c) 𝐾 = 4 
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6.4 Covariate Modeling 

We summarize some simple covariate modeling exercises and, specifically, we explore the use of area-level 

covariate information in our models. We do not fit models with covariates that carry at the cluster-level, 

because of the aggregation difficulties discussed in Section 4.1. The SUMMER package is equipped to use 

area-level covariates in the cluster-level model. Using covariate maps obtained from WorldPop, we fitted 

the cluster-level model to the Zambia DHS data with fixed effects for five area-level covariates: night time 

lights (National Oceanic and Atmospheric Administration), elevation (National Oceanic and Atmospheric 

Administration), vegetation (National Aeronautics and Space Administration), travel time to nearest 

settlement (Malaria Atlas Project), and precipitation (Climatic Research Unit gridded Time Series). We 

entered the covariates at both Admin 1 and Admin 2, but we only discuss the latter here. Results for the 

Admin 1 level covariate model are discussed in the Appendix. 

Table 5 summarizes the posterior distributions on the fixed effects (𝛽 in equation (18)). The 95% credible 

interval for vegetation does not include zero, which indicates an association between U5MR risk and this 

covariate, and higher vegetation levels are associated with lower risk. Elevation shows some association 

with higher elevation being associated with higher risk. 

Table 5 Fixed effects posterior summaries for cluster-level model with Admin 2 level covariates 

Covariates 2.5th Percentile Posterior Median 97.5th Percentile 

Travel Time -0.081 0.112 0.304 

Elevation -0.015 0.162 0.347 

Vegetation -0.463 -0.279 -0.096 

Night Time Lights -0.194 -0.021 0.154 

Precipitation -0.125 -0.021 0.081 
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Figure 19 shows the yearly small area estimates from both the base model, with no covariates, and the 

covariate model, along with 95% interval estimates. We see virtually no difference between the point or 

interval estimates, although the covariate model estimates are somewhat less smooth. 

In conclusion, the area-level estimates at both the Admin 1 and Admin 2 levels were not substantially 

different from those obtained via the base (no covariate) model. This suggests that the area-level covariates 

are not able to capture much of the between-area variation in risk. Although our initial analysis found no 

improvement from including area-level covariate information in our cluster-level model, cluster-level 

covariates could conceivably provide more useful information. More work is needed to develop effective 

methods for incorporating covariate information for estimation of child mortality rates at the subnational 

level. In particular, the aggregation aspect, which is far more difficult for cluster-level covariates, requires 

further examination. 

Figure 19 Comparison of yearly Admin 2 U5MR estimates for the beta-binomial cluster level model with 
Admin 2 level covariates and base (no covariate) model 
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Figure 20 confirms the lack of impact of the covariate modeling, and shows maps of point estimates and 

uncertainty estimates under the base and covariate models. It is difficult to see any differences in either 

map. 

Figure 20 Comparison of 2018 admin 2 U5MR (a) point and (b) uncertainty estimates for Zambia using 
cluster-level model with Admin 2 level covariates and base model 

 
(a) Point estimates 

 
(b) Width of the 95% interval estimates 
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7 DISCUSSION 

In this report, we have described models for conducting small area estimation of U5MR across Admin 2 

regions. We recommend including discrete spatial random effects at the inferential level, Admin 2, and 

exploring the use of an urban/rural fixed effect to acknowledge stratification in the design. 

The models we propose are smoothing models in time and space, and apply shrinkage. Such models 

improve inference for the complete collection of areas, but introduce bias in order to reduce variance. This 

is beneficial overall, although it may produce poorer estimates than the direct estimates in some areas by 

over-shrinking. While this shrinkage decreases with increasing sample size, it may take attention away from 

highs in particular areas that do not have abundant data. 

Area-level models, such as those proposed by Fay and Herriot (1979), do not require an aggregation step, 

since they use direct modeling at the level of inference. Unfortunately, it is generally not feasible to use 

such models at the Admin 2 level because of data sparsity. Cluster-level models, such as the one we 

recommend, can overcome this difficulty. Aggregation is required to move from the cluster to the area level, 

and this requires information on the under-5 population at risk, perhaps by urban/rural status. This step 

introduces an extra level of uncertainty. If the population estimates are inaccurate, inaccurate U5MR 

estimates may result. The Fay-Herriot models avoid this, since they directly model the weighted estimates 

and population information is encoded in these weights. Such an approach also accounts for other aspects 

of the design and implementation such as the PPS sampling and the nonresponse adjustment, neither of 

which are accounted for in the cluster-level models. These shortcomings mean that it is important to 

compare Admin 1 aggregated estimates with direct estimates. We would expect to see shrinkage, which 

manifests itself in a reduced range of the cluster-level estimates. Estimates that overall tend to be lower or 

higher may indicate that the modeled estimates are biased. We are working on methods for benchmarking 

(adjusting estimates to known totals), which may be useful at the national level if reliable estimates are 

available. 

If the number of Admin 2 areas is large relative to the number of clusters, then smoothing methods are 

likely to fail because of the paucity of information. In LMICs, it is difficult to find accurate covariates at 

the cluster level, the level at which covariates will be the most beneficial. Aggregation with cluster-level 

covariates is also difficult. 

Finally, the models we have described will not correct for systematic problems with the raw survey data. 

 



 

42 

REFERENCES 

Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2015. Hierarchical Modeling and Analysis for Spatial 

Data. Second Edition. New York, USA: Chapman and Hall/CRC Press. 

https://doi.org/10.1201/b17115. 

Battese, G. E., R. M. Harter, and W. A. Fuller. 1988. “An Error-Components Model for Prediction 

of County Crop Areas Using Survey and Satellite Data.” Journal of the American Statistical 

Association 83 (401): 28–36. 

https://doi.org/10.2307/2288915. 

Besag, J., J. York, and A. Mollié. 1991. “Bayesian Image Restoration, with Two Applications in 

Spatial Statistics.”  Annals of the Institute of Statistics and Mathematics 43 (1): 1–59. 

https://doi.org/10.1007/BF00116466. 

Binder, D. 1983. “On the Variances of Asymptotically Normal Estimators from Complex Surveys.” 

International Statistical Review 51 (3): 279–292. 

https://doi.org/10.2307/1402588. 

Blangiardo, M. and M. Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with R-

INLA. Chichester, UK: John Wiley and Sons, Ltd.  

https://www.wiley.com/en-us/Spatial+and+Spatio+temporal+Bayesian+Models+with+R+INLA-p-

9781118326558. 

Burstein, R., N. J. Henry, M. L. Collison, L. B. Marczak, A. Sligar, S. Watson, N. Marquez, M. 

Abbasalizad-Farhangi, M. Abbasi, F. Abd-Allah, et al. 2019. “Mapping 123 Million Neonatal, 

Infant and Child Deaths Between 2000 and 2017.” Nature 574 (7778): 353–358. 

https://doi.org/10.1038/s41586-019-1545-0. 

Diggle, P. J. and E. Giorgi. 2019. Model-based Geostatistics for Global Public Health: Methods and 

Applications. Boca Raton, FL, USA: Chapman and Hall/CRC. 

https://doi.org/10.1201/9781315188492. 

Dong, T. and J. Wakefield. 2021. “Modeling and Presentation of Health and Demographic 

Indicators in a Low- and Middle-Income Countries Context.” Vaccine 39 (18): 2584–2594. 

doi:10.1016/j.vaccine.2021.03.007. 

Dwyer-Lindgren, L., F. Kakungu, P. Hangoma, M. Ng, H. Wang, A. D. Flaxman, F. Masiye, and E. 

Gakidou. 2014. “Estimation of District-Level Under-5 Mortality in Zambia using Birth History 

Data, 1980–2010.” Spatial and Spatio-Temporal Epidemiology 11: 89–107. 

https://doi.org/10.1016/j.sste.2014.09.002. 

Dwyer-Lindgren, L., M. A. Cork, A. Sligar, K. M. Steuben, K. F. Wilson, N. R. Provost, B. K. 

Mayala, J. D. VanderHeide, M. L. Collison, J. B. Hall, et al. 2019. “Mapping HIV Prevalence in 

Sub-Saharan Africa between 2000 and 2017.” Nature 570 (7760): 189-193. 

https://doi.org/10.1038/s41586-019-1200-9. 



 

43 

Fay, R. E. and R. A. Herriot. 1979. “Estimates of Income for Small Places:  An Application of 

James–Stein Procedure to Census Data.” Journal of the American Statistical Association 74 (366a): 

269–277. 

https://doi.org/10.1080/01621459.1979.10482505. 

Gething, P. W., D. C. Casey, D. J. Weiss, D. Bisanzio, S. Bhatt, E. Cameron, K. E. Battle, U. 

Dalrymple, J. Rozier, P. C. Rao, et al. 2016. “Mapping Plasmodium Falciparum Mortality in Africa 

between 1990 and 2015.” New England Journal of Medicine 375 (25): 2435–2445. 

https://doi.org/10.1056/NEJMoa1606701. 

Godwin, J. and J. Wakefield. 2021. “Space-Time Modeling of Child Mortality at the Admin 2 Level 

in a Low and Middle Income Countries Context.” Statistics in Medicine 40 (7): 1593-1638.  

https://doi.org/10.1002/sim.8854. 

Golding, N., R. Burstein, J. Longbottom, A. J. Browne, N. Fullman, A. Osgood-Zimmerman, L. 

Earl, S. Bhatt, E. Cameron, D. C. Casey, et al. 2017. “Mapping Under-5 and Neonatal Mortality in 

Africa, 2000–15: A Baseline Analysis for the Sustainable Development Goals.” The Lancet 390 

(10108): 2171–2182. 

https://doi.org/10.1016/S0140-6736(17)31758-0. 

Gómez-Rubio, V. 2020. Bayesian Inference with INLA. Boca Raton, FL, USA: Chapman and 

Hall/CRC Press. 

https://doi.org/10.1201/9781315175584. 

Gutreuter, S., E. Igumbor, N. Wabiri, M. Desai, and L. Durand. 2019. “Improving Estimates of 

District HIV Prevalence and Burden in South Africa using Small Area Estimation Techniques.” 

PLoS One 14 (2): e0212445. 

https://doi.org/10.1371/journal.pone.0212445. 

Hájek, J. 1971. “Comment on ‘An Essay on the Logical Foundations of Survey Sampling, Part I’.” 

by D. Basu. In Foundations of Statistical Inference, edited by V. Godambe and D. Sprott. Toronto, 

Canada: Holt, Rinehart, and Winston.  

Heaton, M. J., A. Datta, A. O. Finley, R. Furrer, J. Guinness, R. Guhaniyogi, F. Gerber, R. B. 

Gramacy, D. Hammerling, M. Katzfuss, et al. 2018. “A Case Study Competition among Methods for 

Analyzing Large Spatial Data.” Journal of Agricultural, Biological, and Environmental Statistics 24 

(3): 398-425. 

https://doi.org/10.1007/s13253-018-00348-w. 

Horvitz, D. G. and D. J. Thompson. 1952. “A Generalization of Sampling Without Replacement 

from a Finite Universe.” Journal of the American Statistical Association 47 (260): 663–685. 

http://dx.doi.org/10.1080/01621459.1952.10483446. 

Hosseinpoor, A. R., N. Bergen, A. Schlotheuber, and J. Grove. 2015. “Measuring Health 

Inequalities in the Context of Sustainable Development Goals.” Bulletin of the World Health 

Organization 96 (9): 654–659. 

http://dx.doi.org/10.2471/BLT.18.210401. 

 



 

44 

Knorr-Held, L. 2000. “Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk.” 

Statistics in Medicine 19 (17-19): 2555–2567. 

Krainski, E. T., V. Gómez-Rubio, H. Bakka, A. Lenzi, D. Castro-Camilo, D. Simpson, F. Lindgren, 

F., and H. Rue. 2018. Advanced Spatial Modeling with Stochastic Partial Differential Equations 

Using R. and INLA. New York, USA: Chapman and Hall/CRC Press. 

Li, Z. R., B. D. Martin, T. Dong, G.-A. Fuglstad, J. Godwin, J. Paige, A. Riebler, S. Clark, and J. 

Wakefield. 2020. “Space-time Smoothing of Demographic and Health Indicators Using the R 

Package SUMMER.”  

https://arxiv.org/pdf/2007.05117.pdf. 

Li, Z. R., Y. Hsiao, J. Godwin, B. D. Martin, J. Wakefield, and S. J. Clark. 2019. “Changes in the 

Spatial Distribution of the Under-Five Mortality Rate: Small-Area Analysis of 122 DHS Surveys in 

262 Subregions of 35 Countries in Africa.” PLoS One 14 (1): e0210645. 

https://doi.org/10.1371/journal.pone.0210645. 

Li, Z. R., B. D. Martin, Y. Hsiao, J. Godwin, J. Paige, J. Wakefield, S. J. Clark, G.-A. Fuglstad, and 

A. Riebler. 2021. SUMMER: Small-Area-Estimation Unit/Area Models and Methods for Estimation 

in R. R package version 1.2.1. 

https://www.r-pkg.org/pkg/SUMMER. 

Mayala, B., T. Dontamsetti, T. D. Fish, and T. N. Croft. 2019. Interpolation of DHS Survey Data at 

Subnational Administrative Level 2. DHS Spatial Analysis Reports No. 17. Rockville, Maryland, 

USA. 

https://dhsprogram.com/pubs/pdf/SAR17/SAR17.pdf. 

Mercer, L., J. Wakefield, A. Pantazis, A. Lutambi, H. Mosanja, and S.J. Clark. 2015. “Small Area 

Estimation of Childhood Mortality in the Absence of Vital Registration.” Annals of Applied 

Statistics  9 (4): 1889–1905. 

http://www.jstor.org/stable/43826448. 

Moraga, P. 2019. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny.  

Boca Raton, FL, USA: CRC Press. 

https://doi.org/10.1201/9780429341823. 

Mosser, J. F., W. Gagne-Maynard, P. C. Rao, A. Osgood-Zimmerman, N. Fullman, N. Graetz, R. 

Burstein, R. L. Updike, P. Y. Liu, S. E. Ray, et al. 2019. “Mapping Diphtheria-Pertussis-Tetanus 

Vaccine Coverage in Africa, 2000–2016: A Spatial and Temporal Modelling Study.” The Lancet  

393 (10183): 1843–1855. 

https://doi.org/10.1016/S0140-6736(19)30226-0. 

Osgood-Zimmerman, A. and J. Wakefield. 2020. Template Model Builder (TMB), a Flexible 

Alternative to the Integrated Nested Laplace Approximation. Pending publication.  

https://arxiv.org/pdf/2103.09929.pdf. 

Paige, J., G.-A. Fuglstad, A. Riebler, and J. Wakefield. 2020. “Model-Based Approaches to 

Analysing Spatial Data from Complex Surveys.” Journal of Survey Statistics and Methodology.  



 

45 

Pedersen, J. and J. Liu. 2012. “Child Mortality Estimation: Appropriate Time Periods for Child 

Mortality Estimates from Full Birth Histories.”  PLoS Medicine 9 (8): e1001289. 

https://doi.org/10.1371/journal.pmed.1001289. 

Rao, J. N. K. and I. Molina. 2015. Small Area Estimation, Second Edition. New York, USA: John 

Wiley. 

https://www.wiley.com/en-us/Small+Area+Estimation%2C+2nd+Edition-p-9781118735787. 

Riebler, A., S. H. Sørbye, D. Simpson, and H. Rue. 2016. “An Intuitive Bayesian Spatial Model for 

Disease Mapping that Accounts for Scaling.” Statistical Methods in Medical Research 25 (4): 1145–

1165. 

https://doi.org/10.1177%2F0962280216660421. 

Schlüter, B-S. and B. Masquelier. 2021. “Space-Time Smoothing of Mortality Estimates in Children 

Aged 5-14 in Sub-Saharan Africa.”  PLoS One 16 (1): e0245596. 

https://doi.org/10.1371/journal.pone.0245596. 

Simpson, D., H. Rue, A. Riebler, T. Martins, and S. Sørbye. 2017. “Penalising Model Component 

Complexity: A Principled, Practical Approach to Constructing Priors.”  Statistical Science 32 (1):  

1–28. 

https://doi.org/10.1214/16-STS576. 

Skinner, C. and J. Wakefield. 2017. “Introduction to the Design and Analysis of Complex Survey 

Data.” Statistical Science 32 (2): 165–175. 

https://doi.org/10.1214/17-STS614. 

Stein, M. L. 1999. Interpolation of Spatial Data: Some Theory for Kriging. New York, USA: 

SpringerVerlag. 

https://doi.org/10.1007/978-1-4612-1494-6. 

Stevens, F. R., A. E. Gaughan, C. Linard, and A. J. Tatem. 2015. “Disaggregating Census Data for 

Population Mapping using Random Forests with Remotely-Sensed and Ancillary Data.” PloS One 

10 (2): e0107042. 

https://doi.org/10.1371/journal.pone.0107042. 

United Nations Inter-Agency Group for Child Mortality Estimation (UN IGME). 2021. Subnational 

Under-five Mortality Estimates, 1990–2019: Estimates Developed by the United Nations Inter-

agency Group for Child Mortality Estimation. New York, USA: United Nations Children’s Fund. 

https://childmortality.org/. 

United Nations General Assembly. 2015. Transforming our World: The 2030 Agenda for 

Sustainable Development. New York, USA: United Nations Population Fund. 

https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20

Development%20web.pdf. 

Utazi, C. E., J. Thorley, V. A. Alegana, M. J. Ferrari, S. Takahashi, C. J. E. Metcalf, J. Lessler, and 

A. J. Tatem. 2018. “High Resolution Age-Structured Mapping of Childhood Vaccination Coverage 

in Low and Middle Income Countries.” Vaccine 36 (12): 1583–1591. 

https://doi.org/10.1016/j.vaccine.2018.02.020. 



 

46 

Utazi, C. E., K. Nilsen, O. Pannell, W. Dotse-Gborgbortsi, and A. J. Tatem. 2021. “District-Level 

Estimation of Vaccination Coverage: Discrete vs. Continuous Spatial Models.” Statistics in 

Medicine 40 (9): 2197-2211. 

https://doi.org/10.1002/sim.8897. 

Wakefield, J. 2008. “Ecologic Studies Revisited.” Annual Review of Public Health 29: 75–90. 

https://doi.org/10.1146/annurev.publhealth.29.020907.090821. 

Wakefield, J. 2020. “Prevalence Mapping.” In Wiley StatsRef: Statistics Reference Online, 1–7, 

Chichester, UK: John Wiley & Sons, Ltd.  

https://doi.org/10.1002/9781118445112.stat08238. 

Wakefield, J., G.-A. Fuglstad, A. Riebler, J. Godwin, K. Wilson, and S. Clark. 2019. “Estimating 

Under Five Mortality in Space and Time in a Developing World Context.” Statistical Methods in 

Medical Research 28 (9): 2614–2634. 

https://doi.org/10.1177%2F0962280218767988. 

Wakefield, J., T. Okonek, and J. Pedersen. 2020. “Small Area Estimation for Disease Prevalence 

Mapping.” International Statistical Review 88 (2): 398–418. 

https://doi.org/10.1111/insr.12400. 

Wickremasinghe, D., I. E. Hashmi, J. Schellenberg, and B. I. Avan. 2016. “District Decision-

Making for Health in Low-Income Settings: A Systematic Literature Review.” Health Policy and 

Planning 31 (Supplement 2): ii12–ii24. 

https://doi.org/10.1093/heapol/czv124. 

Wolter, K. 2007. Introduction to Variance Estimation, Second Edition. New York, USA: Springer-

Verlag.   

https://link.springer.com/content/pdf/10.1007%2F978-0-387-35099-8.pdf. 

Yaya, S., O. A. Uthman, F. Okonofua, and G. Bishwajit. 2019. “Decomposing the Rural-Urban Gap 

in the Factors of Under-Five Mortality in Sub-Saharan Africa? Evidence from 35 Countries.” BMC 

Public Health 19 (1): 1-10.  

https://doi.org/10.1186/s12889-019-6940-9. 

You, Y. and J. Rao. 2002. “Small Area Estimation Using Unmatched Sampling and Linking 

Models.” Canadian Journal of Statistics 30 (1): 3–15. 

https://doi.org/10.2307/3315862. 

 


	Front Matter
	Title Page
	Acknowledgements/Information and Citation
	Contents
	Tables
	Figures
	Preface
	Abstract
	Acronyms and Abbreviations

	1 - Background and Objectives
	2 - Area-Level Models
	3 - Cluster-Level Models
	4 - Additional Considerations
	5 - The Summer Software
	6 - U5MR Modeling in Eight Countries
	7 - Discussion
	References

