Malawi

Knowledge, Attitudes and Practices in Health Survey 1996

DHS

Demographic and Health Surveys
Macro International Inc.

Malâ̂i
 Knowledge, Attitudes and Practices in Health Survey 1996

National Statistical Office
Zomba, Malawi

Macro International Inc. Calverton, Maryland USA

This report summarises the findings of the 1996 Malawi Knowledge, Attitudes and Practices in Health Survey (MKAPH) conducted by the National Statistics Office, Zomba, Malawi. Macro International Inc. provided technical assistance. Funding was provided by the U.S. Agency for International Development (USAID) Mission to Malawi and the United Nations Children's Fund (UNICEF).

Additional information about the MKAPH may be obtained from the National Statistical Office, P.O. Box 333, Zomba, Malawi; Fax 265-523130. Information about the DHS programme may be obtained by contacting DHS, Macro International Inc., 11785 Beltsville Drive, Calverton, MD 20705, USA (Telephone 301-572-0200; Fax 301-572-0999).

CONTENTS

Page

Tables v
Figures vii
Preface ix
Summary of Findings xi
Map of Malawi xvi
CHAPTER 1 INTRODUCTION 1
1.1 Geography and Economy 1
1.2 Population 1
1.3 Health Priorities and Programmes 2
1.4 Objectives, Organisation, and Survey Design 3
1.5 Data Collection and Data Processing 5
CHAPTER 2 CHARACTERISTICS OF HOUSEHOLDS AND RESPONDENTS 7
2.1 Household Population 7
2.2 Housing Characteristics 12
2.3 Characteristics of Survey Respondents 13
CHAPTER 3 FERTILITY REGULATION 17
3.1 Knowledge of Contraception 17
3.2 Ever Use of Contraception 18
3.3 Current Use of Contraception 23
3.4 Number of Children at First Use Contraception 29
3.5 Source of Supply 29
3.6 Reasons for Nonuse 32
3.7 Exposure of Family Planning Messages on Radio 32
CHAPTER 4 CHILD HEALTH 37
4.1 Vaccinations 37
4.2 Vitamin A Coverage 39
4.3 Respiratory Infections 41
4.4 Diarrhoea 45
4.5 Fever 49
CHAPTER 5 MALARIA KNOWLEDGE AND PREVENTIVE PRACTICES 53
5.I Knowledge of Malaria 53
5.2 Anti-malaria Treatment of Pregnant Women at ANC Clinics 53
5.3 Household Preventive Practices 58
CHAPTER 6 HIV/AIDS AND OTHER STDS 61
6.1 Awareness of STDs 61
6.2 Self-Reporting of Recent Sexually Transmitted Diseases 64
6.3 HIV/AIDS Knowledge and Awareness 65
6.4 Perceptions of the Risk of Getting AIDS 76
6.5 Changes in Behaviour 80
6.6 Number of Sexual Partners 82
6.7 Knowledge and Sources of Condoms 87
6.8 Use of Condoms 91
REFERENCES 95
APPENDIX A INTERVIEW RESULTS 97
APPENDIX B ESTIMATES OF SAMPLING ERRORS 101
APPENDIX C DATA QUALITY TABLES 113
APPENDIXD QUESTIONNAIRES 117

TABLES

Page

Table 1.1 Demographic indicators 2
Table 1.2 Results of the household and individual interviews 6
Table 2.1 Household population by age, residence and sex 7
Table 2.2 Population by broad age groups from selected sources 8
Table 2.3 Household composition 9
Table 2.4.1 Educational level of the female household population 10
Table 2.4.2 Educational level of the male household population 11
Table 2.5 School Enrolment 11
Table 2.6 Housing characteristics 13
Table 2.7 Household durable goods 13
Table $2.8 \quad$ Background characteristics of respondents 14
Table 2.9 Level of education of respondents by background characteristics 15
Table 2.10 Access to mass media 16
Table $3.1 \quad$ Knowledge of specific contraceptive methods 18
Table 3.2 Knowledge of contraceptive methods by background characteristics 19
Table 3.3.1 Ever use of contraception: women 21
Table 3.3.2 Ever use of contraception: men 22
Table 3.4.1 Current use of family planning: women 23
Table 3.4.2 Current use of family planning: men 24
Table 3.5.1 Current use of family planning by background characteristics: women 27
Table 3.5.2 Current use of family planning by background characteristics: men 27
Table 3.6 Number of children at first use of contraception 29
Table 3.7 Source of supply for modern contraceptive methods 30
Table 3.8 Time to source of modern contraceptive method 31
Table 3.9 Reasons for not using contraception 32
Table 3.10 Exposure to family planning message on radio 33
Table 3.11 Acceptability of media message on family planning 35
Table $4.1 \quad$ Vaccinations by source of information 38
Table $4.2 \quad$ Vaccinations by background characteristics 40
Table $4.3 \quad$ Vitamin A coverage of children 41
Table $4.4 \quad$ Vitamin A dosage of women 42
Table 4.5 Prevalence of fast or difficult breathing due to chest problems and treatment outside the home 43
Table 4.6 Prevalence of fast or difficult breathing due to blocked nose 45
Table 4.7 Treatment outside the home of fast or difficult breathing due to blocked nose 45
Table $4.8 \quad$ Prevalence of cough and treatment outside the home 46
Table $4.9 \quad$ Prevalence of diarrhoea 47
Table 4.10 Sources of treatment for diarrhoea 48
Table 4.11 Treatment of diarrhoea 49
Table 4.12 Prevalence of fever and treatment outside of home 50
Table 4.13 Treatment of fever at health facilities 52
Table 5.1.1 Knowledge of malaria causation: women 54
Table 5.1.2 Knowledge of malaria causation: men 55
Table 5.2 Women's knowledge of the effects of malaria during pregnancy 56
Table 5.3 Antenatal care clinic visits 57
Table 5.4 Treatment of pregnant women with malaria medication 58
Table 5.5 Modern malaria preventive practices 58
Table 5.6 Traditional malaria preventive practices 59
Table 6.1.1 Knowledge of sexually transmitted diseases: women 62
Table 6.1.2 Knowledge of sexually transmitted diseases: men 63
Table 6.2 Self-reporting of sexually transmitted diseases in the last year 64
Table 6.3 Action taken by respondents who reported having a sexually transmitted disease in the last year 65
Table 6.4.1 Knowledge of AIDS and sources of AIDS information: women 66
Table 6.4.2 Knowledge of AIDS and sources of AIDS information: men 67
Table 6.5.1 Knowledge of AIDS transmission: women 68
Table 6.5.2 Knowledge of AIDS transmission: men 69
Table 6.6.1 Knowledge of ways to avoid AIDS: women 70
Table 6.6.2 Knowledge of ways to avoid AIDS: men 71
Table 6.7.1 Awareness of AIDS-related health issues: women 73
Table 6.7.2 Awareness of AIDS-related health issues: men 74
Table 6.8.1 Perception of the risk of getting AIDS: women 76
Table 6.8.2 Perception of the risk of getting AIDS: men 77
Table 6.9 Perception of the risk of getting AIDS among couples 78
Table 6.10 Reasons for perception of small or no risk of getting AIDS 79
Table 6.11 Reasons for perception of moderate or great risk of getting AIDS 80
Table 6.12.1 AIDS prevention behaviour: women 81
Table 6.12.2 AIDS prevention behaviour: men 82
Table 6.13.1 Number of recent sexual partners: women 83
Table 6.13.2 Number of recent sexual partners: men 84
Table 6.14 Payment for sexual relations 86
Table 6.15.1 Non-regular sexual partners: women 88
Table 6.15.2 Non-regular sexual partners: men 89
Table 6.16.1 Knowledge of condoms: women 90
Table 6.16.2 Knowledge of condoms: men 91
Table 6.17.1 Reasons for using condoms and with whom: women 92
Table 6.17.2 Reasons for using condoms and with whom: men 93
Table 6.18 Use of condoms with non-regular partners 94
Table A10.1 Sample implementation 99
Table B. 1 List of selected variables for sampling errors 106
Table B. 2 Sampling errors - National sample 107
Table B. 3 Sampling errors - Urban sample 108
Table B. 4 Sampling errors - Rural sample 109
Table B. 5 Sampling errors - Northern sample 110
Table B. 6 Sampling errors - Central sample 111
Table B. 7 Sampling errors - Southern sample 112
Table C. 1 Household age distribution 115
Table C. 2 Age distribution of eligible and interviewed women and men 116

FIGURES

Page
Figure 2.1 Population Pyramid of Malawi 8
Figure 2.2 Percentage of the Population Age 6-24 Enrolled in School by Age and Sex 12
Figure 3.1.1 Percentage of Currently Married Women Who Know Specific Modern Methods, 1992 and 1996 20
Figure 3.1.2 Percentage of Currently Married Men Who Know Specific Modern Methods, 1992 and 1996 20
Figure 3.2 Use of Specific Contraceptive Methods among Currently Married Women 25
Figure 3.3.1 Trend in Current Use of Modern Methods among Currently Married Women, by Age, 1992 and 1996 25
Figure 3.3.2 Trend in Current Use of Modern Methods among Currently Married Men, by Age, 1992 and 1996 26
Figure 3.4.1 Trend in Current Use of Modern Methods among Currently Married Women, by Background Characteristics, 1992 and 1996 28
Figure 3.4.2 Trend in Current Use of Modern Methods among Currently Married Women, by Background Characteristics, 1992 and 1996 28
Figure 3.5 Distribution of Women by Source of Supply for Modern Contraceptive Methods 31
Figure 3.6.1 Percentage of Women who Heard a Family Planning Message on the Radio, 1992 and 1996 34
Figure 3.6.2 Percentage of Men who Heard a Family Planning Message on the Radio, 1992 and 1996 34
Figure $4.1 \quad$ Percentage of Children Age 12-23 Months Who Received Specific Vaccinations by 12 Months of Age 38
Figure 4.2 Percentage of Children under Five Who Had Received at Least One Dose of Vitamin A by Background Characteristics 42
Figure $4.3 \quad$ Percentage of Children with Fast or Difficult Breathing Due to Chest Problems, by Age 44
Page
Figure $4.4 \quad$ Percentage of Children under Five with Fever in the Two Weeks Preceding the Survey, and of Those Taken to a Hospital or Health Centre, the Percent Diagnosed with Malaria, by Age 51
Figure 5.1.1 Percentage of Women who Know that Malaria Can Be Transmitted by Mosquito Bite, by Background Characteristics 56
Figure 5.1.2 Percentage of Men who Know that Malaria Can Be
Transmitted by Mosquito Bite, by Background Characteristics 57
Figure 6.1 Among Women and Men who Have Heard of AIDS, the Percentage Reporting Various Ways to Avoid AIDS 72
Figure 6.2.1 Among Women Who Have Heard of AIDS, the Percentage Who Know of Certain AIDS-related Health Issues, by Education 75
Figure 6.2.2 Among Men Who Have Heard of AIDS, the Percentage Who Know of Certain AIDS-related Health Issues, by Education 75
Figure 6.3 Distribution of Women and Men by Their Perceived Risk of Contracting AIDS 78
Figure $6.4 \quad$ Distribution of Currently Married Women and Men by Number of Partners in the Four Weeks Preceding the Survey 85

PREFACE

The fieldwork for the Malawi Knowledge, Attitudes, and Practices in Health (MKAPH) Survey was carried out by the National Statistical Office from the end of June to the beginning of October 1996. Data processing was completed in November 1996 and the preliminary report was released in January 1997.

The objective of the MKAPH survey was to provide information for monitoring programmes of the Ministry of Health and Population (MOHP). Data werc collected on contraceptive prevalence, immunisations, vitamin A supplementation, malaria prophylaxis among pregnant women, childhood illnesses. Information was also gathered on knowledge, attitudes, and practices of women and men regarding HIV/AIDS and other sexually transmitted diseases.

The MKAPH survey was a nationally representative sample survey designed to provide estimates of family planning and health indicators for the three administrative regions of the country, urban and rural areas, and Malawi as a whole. Four types of questionnaires were used: the Houschold Questionnaire, the Women's Questionnaire, the Men's Questionnaire, and the Carctaker's Questionnaire, which was administered to the primary care givers of children under five years of age. Some clements of the Demographic and Health Survey (DHS) core questionnaires were used in the MKAPH, but many questions were designed to meet the particular needs of public health programmes in Malawi.

I would like to thank the USAID Mission to Malawi for providing the financial support for implementing the MKAPH survey and for contracting with Macro International Inc. (Macro) of Calverton, Maryland to provide technical assistance. Thanks also go to UNICEF for giving us additional financial support. I would also like to thank the NSO team, which carried out the survey with exemplary efficiency under difficult field conditions. Finally, my gratitude goes to the people of Malawi, who patiently responded to survey interviews.
L. F. Golosi

Commissioner for Census and Statistics

SUMMARY OF FINDINGS

The Malawi Knowledge, Attitudes, and Practices in Health Survey (MKAPH) is a nationally representative survey of 2,683 women age $15-49,2,658$ men aged $15-54$, and 2,418 children aged $0-59$ months. The MKAPH was implemented by the National Statistical Office (NSO) of Malawi. Major funding for the survey was provided by the U.S. Agency for International Development (USAID) mission in Malawi. Additional funding came from UNICEF. The Demographic and Health Division of Macro International (U.S.A.) provided technical assistance under a contract with USAID/Malawi. Data collection was carried out from June to early October 1996.

The 1996 MKAPH was designed to provide information on malaria prevention, immunisation, management of childhood illnesses, fertility regulation, marriage and partner relations, and sexually transmitted diseases (STDs) including AIDS. Results are for use by the Ministry of Health and Population (MOHP) for monitoring and planning programmes in child and maternal health, AIDS, other STDs, and family planning.

Fertility regulation. Knowledge of modern methods of contraception has risen in the four years since the 1992 Malawi Demographic and Health Survey (MDHS). In 1996 knowledge of at least one modern method of contraception increased from 88 percent for women 15-49 to 96 percent; for men the increase was from 94 percent to 99 percent. Knowledge of a modern means of birth control is now almost universal in Malawi.

Among currently married women, current use of modern contraceptive methods has risen from 7 percent in 1992 to 14 percent in 1996. The most widely used modern method is injectables (6 percent) followed by the pill (3 percent), and female sterilisation (3 percent).

Use of modern methods varies among currently married women according to their background characteristics. Prevalence of modern methods among urban married women (29 percent) is more than twice as high as among their rural counterparts (13 percent). Prevalence of modern methods also rises with increasing education of women. Regional differentials in usage of modern methods are small.

Government-sponsored facilities remain the main source of modern contraceptives. Most women obtained their methods from a government facility (25 percent from government hospitals, 24 percent from government health centres, and 9 percent from government dispensaries/maternity clinics/mobile clinics.) Thirty-one percent of current users reported the private medical sector (e.g., private hospitals) as their source.

Vaccinations and vitamin A. Prevalence of complete vaccination (BCG, DPT 1-3, polio 1-3, and measles) before the first birthday among children 12-23 months of age at the time of the survey was 55 percent compared with 67 percent in 1992. At the time of interview, caretakers of children aged 12-23 months were able to show health cards for 89 percent of these children compared with 86 percent in 1992.

Prevalence of at least once dose of vitamin A administered before the MKAPH to under-five children was 16 percent. Prevalence of vitamin A among these children was 19 percent in urban areas and 15 percent in rural areas. Prevalence was higher among children whose caretakers had secondary or higher education (23 percent) than among those whose caretakers had primary education (16 percent) or no formal education (15 percent).

Vitamin A is given to nursing mothers in Malawi to provide indirect supplementation for children through breast milk. Prevalence of vitamin A dosage among women who had given birth was therefore ascertained. Twenty-three percent of mothers reported receiving vitamin A within 8 weeks of the last birth while another 13 percent reported receiving vitamin A after 8 weeks.

Childhood illnesses. Information on the prevalence of symptoms of acute respiratory infection (ARI), diarrhoea, and fevers among children 0-59 months of age in the two weeks before the interview was gathered from the children's caretakers. In the MKAPH survey, acute respiratory infection was defined as the presence of fast or difficult breathing due to illness in the chest.

Twelve percent of under-five children were reported by their caretakers as having fast or difficult breathing due to chest problems. Of children with ARI, 46 percent received care from hospitals or clinics, 26 percent from shops selling medicines, and small proportions from a variety of other sources including traditional healers.

Other respiratory symptoms which did not include chest involvement were also reported by caretakers for the two weeks preceding the survey. Seven percent of under-five children were reported to have had blocked nose while 38 percent had cough without fast or difficult breathing due to chest illness. As with ARI symptoms, these symptoms were more common among children older than 6 months. Hospitals or clinics were the most common sources of outside care for children with blocked nose and cough without chest problems.

Sixteen percent of children under five were reported by caretakers to have had diarrhoea in the two weeks before the survey, while 2 percent were said to have had bloody diarrhoea. Diarrhoea prevalence increased markedly after six months of age and then declined to a low among children aged 48-59 months. Thirty-two percent of children who had had diarrhoea received care from hospitals or clinics. Fifty percent of the diarrhoea cases were given a solution prepared from ORS packets, and 5 percent received recommended home fluids. Thirty percent received neither ORS nor recommended fluids.

Malaria is endemic in Malawi; therefore, the MKAPH questioned caretakers of under-five children about the presence of fever in their children during the two weeks preceding the survey. Forty-five percent of children were reported to have had fever symptoms. As with other childhood infections, there was a marked increase in prevalence after six months of age. Prevalence was also higher in rural areas than in urban areas and among children with less educated caretakers. Thirty-five percent of children with fevers received care from a modern health facility (hospital or clinic) and 33 percent from a shop selling medicines. Sixty-six percent of children taken to a hospital or health centre were diagnosed as having malaria. Of children taken to a medical facility because of fever, 87 percent were given a prescription for malaria medication, and 94 percent of these received the medication.

Malaria knowledge and preventive practices. Information regarding knowledge of malaria transmission was collected during the male and female interviews. Female respondents who were pregnant were also asked whether they had received malaria prophylaxis during ante-natal clinic visits. During the household interview, informants were also questioned about household preventive practices.

Forty-three percent of women aged 15-49 and 67 percent of men 15-54 responded correctly that malaria is transmitted by mosquito bites. Knowledge of the mosquito vector was higher in urban than in rural areas, and rose sharply with increasing education of both men and women. Women were asked about complications during pregnancy caused by malaria. Twenty-seven percent of female respondents were able to cite abortion or stillbirth as consequences of malaria. Smaller proportions mentioned anemia in the mother and low birth weight.

Forty percent of women who said they were pregnant at the time of interview had visited an antenatal care (ANC) clinic at least once. Of these women, 55 percent had been offered malaria medication for prophylaxis or treatment of symptoms. Virtually all women (99 percent) who reported that they were offered malaria medication during an ANC clinic said that they had taken the medication.

The MKAPH survey inquired about household use of mosquito coils, spray insecticides, and mosquito nets. Five percent of households reported purchasing a mosquito coil in the past month. Two percent of households reported purchasing a bed net in the year preceding the survey. Three percent of households reported that all household members were covered by nets during the night before the interview, while 8 percent of households reported the presence of at least one net. Prevalence of coil, insecticide, and mosquito net usage was higher in urban areas than in rural areas.

Questions were also asked about the use by households of certain traditional anti-malarial practices. Thirty-one percent of households reported burning herbs or leaves; 14 percent burned or spread animal dung; and 20 percent burned a fire in the house. Traditional anti-malarial practices were more common among rural than urban households.

HIV-AIDS and other sexually transmitted diseases (STDs). AIDS is by far the best known STD in Malawi. Eighty-five percent of women and 92 percent of men reported that they knew of AIDS when asked (without prompting) to name any STDs. When those women and men who did not mention AIDS without prompting were asked if they had heard of the disease, the proportions who said they had heard of AIDS rose to 99 percent for men and 97 percent for women.

When asked without prompting to name the STDs they knew, 58 percent of women and 70 percent of men cited gonorrhoea, while 44 percent of women and 63 percent of men mentioned "buboes," a term widely used in Malawi to refer to swollen inguinal lymph nodes associated with syphilis and chancroid. Thirteen percent of women and 4 percent of women were unable to name any STD. Knowledge of STDs varies in predictable ways; it is more prevalent among residents of urban areas than rural areas and rises with increasing level of education.

Five percent of male respondents reported having an STD in the past 12 months compared with 1 percent of females. Men were asked if they had experienced urethral discharge or pain on urination during the past 12 months. The proportion of men reporting either of these symptoms was 5 percent. Ninety-two percent of women and 75 percent of men with STDs reported they had sought treatment while 96 percent of women and 65 percent of men said they had informed their partners that they were infected.

A major focus of the MKAPH survey was knowledge and behaviour relating to HIV-AIDS. The most common source of knowledge about AIDS mentioned by respondents was the radio: 93 percent of men and 76 of women reported receiving information about AIDS from the radio. Other prevalent information sources were friends and relatives (43 percent of women and 39 percent of men), and clinic workers (38 percent of women and 31 percent of men).

Knowledge of valid ways to prevent AIDS is more widespread among men than women. Twentyeight percent of women and 53 percent of men were able to cite at least two valid ways of avoiding AIDS. The most widely mentioned, valid preventive measures were having only one sex partner (cited by 67 percent of women and 47 percent of men), and using a condom (23 percent of women and 47 percent of men). For both men and women, knowledge of valid ways to prevent AIDS was more common in urban areas and among the better educated.

Women reported higher levels of perceived personal risk of getting AIDS than men. Forty-seven percent of women saw themselves as having "moderate" or "great" risk compared with 17 percent of men. Among women and men who were married or in union, the discrepancy in perceived personal risk was even greater; 54 percent of women reported moderate or high risk compared with 17 percent of men.

Women, much more than men, attributed moderate or high risk of getting AIDS to the infidelity of their spouse or partner. Twenty-six percent of women stated that their moderate or great risk was due to a spouse or partner having another partner, while 56 percent cited suspicions about the fidelity of the spouse or partner. The largest proportion of men (51 percent) attributed their moderate or great risk to having multiple partners, a finding which tends to confirm the assertions of women that their greatest risk of AIDS is partner infidelity. Only 7 percent of men attributed moderate or great risk to their spouses or partners having other partners.

Men reported having more sexual partners than did women. Nineteen percent of married women and men reported one extra-spousal relationship. Three percent of married men reported at least two nonspousal partners, while no married women reported two or more non-spousal sexual relationships. Among unmarried women, 28 percent reported one sexual partner while 1 percent claimed two or more. For unmarried men, the comparable percentages were 45 percent and 9 percent. Less than 1 percent of currently married women reported at least one non-regular partner, compared with 6 percent of currently married men. Among unmarried respondents, 7 percent of women and 39 percent of men reported a non-regular partner.

Condoms are important in AIDS prevention. Ninety-one percent of women and 98 percent of men had heard of condoms. Among women and men who knew of condoms, 71 percent of females and 89 percent of males knew a source for condoms. Among women and men who reported having sexual intercourse with a non-regular partner during the 12 months preceding the survey, 24 percent of women and 43 percent of men reported using a condom during the last sexual encounter with a non-regular partner in the 12 -month period.

MALAŴI

ZAMBIA

CHAPTER 1

INTRODUCTION

1.1 Geography and Economy

Situated in southeast Africa, Malawi is bordered on the north by Tanzania, on the west by Zambia, and on the south and east by Mozambique. Malawi is approximately 900 kilometres in length and ranges in width from 80 to 160 kilometres. The country has a total area of 118,486 square kilometres, of which 94,276 is land. The remaining area consists mainly of Lake Malawi, which is about 475 kilometres long and runs down Malawi's eastern boundary with Mozambique.

Malawi is divided into three main administrative areas-the Northern Region, the Central Region, and the Southern Region. Below the regional level there are 25 districts, five in the Northern Region, nine in the Central, and 11 in the Southern Region. Within each district there are administrative subdivisions known as Traditional Authorities, which are presided over by chiefs. The smallest administrative unit is the village.

The East African Rift Valley runs through much of Malawi from north to south. The Rift Valley includes the vast extent of Lake Malawi and the Shire River, which drains the southern reaches of Malawi and empties into the Zambezi River in Mozambique. To the west and south of Lake Malawi are arable plains, rolling hills, and high mountains whose peaks range from about 1,700 to 3,000 metres above sea level.

The climate is tropical continental with some maritime influences. Temperature and rainfall vary with proximity to Lake Malawi and altitude, which ranges from 37 metres where the Shire River crosses into Mozambique to 3,000 metres at the peak of Mount Mulanje.

Natural resources consist of limestone, and largely unexploited deposits of uranium, coal, and bauxite. Land use consists of about 25 percent arable land, 20 percent meadows and pastures, 50 percent forests and woodland, and 5 percent miscellaneous uses. The last census (1987) listed the labor force by sector as follows: agriculture, 43 percent; manufacturing, 16 percent; personal services, 15 percent; commerce, 9 percent; construction, 7 percent; miscellaneous services, 4 percent; and other permanently employed, 6 percent.

Agriculture comprises 31 percent of the gross domestic product (GDP), services comprise 55 percent, and industry accounts for another 14 percent of the GDP. Malawi's main exports are tobacco, tea, coffee, peanuts, and wood products. Agriculture makes up about 90 percent of export earnings. Over the past decade, the growth rate of real GDP has increased from about 3 percent per annum in 1988 to almost 10 percent per annum in 1995.

1.2 Population

Malawi has had population censuses in 1891, 1901, 1911, 1921, 1926, 1931, 1945, 1956, 1966, 1977, and 1987. A national census will be conducted in 1998. Other sources of population data include the Malawi Population Change Survey of 1970-72, the Malawi Demographic Survey (1982), the Malawi Labour Force Survey (1983), the Survey of Handicapped Persons (1983), the Family Formation Survey (1984) and the Demographic and Health Survey (1992). Table 1.1 shows demographic indicators derived from the last two national censuses and other sources.

The population has grown rapidly. In 1901, the total population was estimated at 737,000 . Between 1901 and 1977, the annual growth rate was estimated to be 2.6 percent. The 1977-87 intercensal growth rate was 3.2 percent excluding refugees. As a result, the total population has increased from $5,547,460$-as enumerated in the 1977 census-to about 10 million in 1997.

Along with population growth has come increasing population density. As indicated in Table 1.1, population density increased from 59 persons per square kilometre in 1977 to about 116 persons per square kilometre in 1996.

Table.1.1 Demographic indicators				
Selected demographic indicators for Malawi, 1977-1995				
	Census year		Recent estimates ${ }^{\text {a }}$	
Indicator	1977	1987		
Population ${ }^{\text {b }}$	5,547,460	7,988,507	10,931,100	
Intercensal growth rate ${ }^{\text {c }}$		-3.2	3.2	
Total area (sq. km.)	118,486	118,486	118,486	
Land area (sq. km.)	94,276	94,276	94,276	
Density (pop./sq. km.)	59	85	116	
Women of childbearing as percentage of female population	45.1	44.2	44.2	
Sex ratio	93	94	97	
Crude birth rate	48.3	41.2	41.2	
Total fertility rate	7.6	$7.6{ }^{\text {d }}$	6.7	
Crude death rate	25.0	14.1	-	
Infant mortality rate	165	151	134	
Life expectancy:				
Male	39.2	41.4	53	
Female	42.4	44.6	54	
${ }^{8}$ From National Statistical Office, Ministry of Economic Planning and Development Govermment of Malawi, 1997 ${ }^{6}$ De facto population ${ }^{\text {c }}$ Natural increase (excludes migration, refugees) ${ }^{\mathrm{d}}$ Based on the 1984 Family Formation Survey (National Statistical Office, 1987)				

Rapid population growth has meant increasing pressure on the GDP. This is clearly seen with regard to maize production. The Government of Malawi has estimated that, by the year 2000, about $2,268,000$ metric tonnes of maize per annum will be required to achieve minimum food self-sufficiency for the nation, whereas the current output of maize per annum is about 841,000 tonnes short of this goal.

To curb rapid population growth, the Government of Malawi adopted a National Population Policy in 1994. This policy is designed to reduce population growth to a level compatible with Malawi's social and economic goals (OPC, 1994). Strategies to achieve this objective include improved family planning and health care programmes, increased school enrolments with emphasis on raising the proportion of female students to 50 percent of total enrolments, and wider employment opportunities, particularly in the private sector.

1.3 Health Priorities and Programmes

The objective of health policy in Malawi is to develop a sound health care delivery system capable of preventing and curing disease. Because of high childhood and maternal morbidity and mortality, the health needs of mothers and children under five years of age are high priorities. Service delivery is being improved
by extending coverage, so that basic curative services for common illnesses such as malaria, diarrhoea, and acute respiratory infection are widely available along with immunisations and family planning. Information, education, and communication (IEC) programmes are used to increase the prevalence of effective preventive behaviour. Training of providers is being upgraded. Management systems are being reorganised to improve collaboration between units of the Ministry of Health and Population (MOHP) and to improve cost effectiveness. (MOHP, 1995).

The MOHP has also launched a major initiative to reduce the prevalence of AIDS and other sexually transmitted diseases. The first AIDS case was confirmed in Malawi in 1985. Screening of blood supplies began at that time.

Coordination of AIDS control activities is provided by the AIDS Secretariat (AIDSEC) under the supervision of the National AIDS Committee (NAC). The first medium-term AIDS control plan (MTP I) was implemented in 1987. MTP I was followed in I994 by MTP II, which will run until 1998. Under the Second MTP, the emphasis is on preventive information, education, and communication (IEC); counseling, social support and case management; blood supply monitoring; and epidemiology and surveillance. (AIDSEC, 1994).

1.4 Objectives, Organisation, and Survey Design

Objectives

The primary objectives of the MKAPH were to provide information on malaria prevention, family planning, immunisation, management of childhood illnesses, marriage and partner relations, and STDs including AIDS. Specifically, the objectives were as follows:

- Collect information on methods used to prevent malaria infection.
- Establish current contraceptive prevalence.
- Gather from caretakers of children under age five information on vaccination coverage and the prevalence of diarrhoea, respiratory infection, and fevers among under-five children during the two weeks preceding the survey.
- Collect information on current and past partner relations in and outside of marriage among women aged 15-49 and men 15-54.
- Collect information on knowledge, attitudes, and practices regarding AIDS and STDs among women aged 15-49 and men aged 15-54.

In fulfilling these objectives, the MKAPH findings provide data for monitoring current programmes of the Ministry of Health and Population and for planning future public health activities. Additionally, the immunisation and contraceptive prevalence sections of the MKAPH contain information which can be compared with the 1992 Malawi Demographic and Health Survey (MDHS) to provide updated estimates of the extent of immunisation and contraceptive usage.

Organisation

The 1996 Malawi Knowledge, Attitudes, and Practices in Health (MKAPH) Survey was conducted by the National Statistical Office (NSO) from June through the first week of October 1996. Financial support was provided by the U. S. Agency for International Development (USAID) mission in Malawi and UNICEF.

Technical assistance was provided by Macro International Inc. (Macro) of Calverton, Maryland, through a contract with USAID.

Survey Design

The area sampling frame used for the MKAPH survey consisted of the 8,652 enumeration areas (EA) from the 1987 Malawi Census. For the MKAPH, six sampling strata were identified, with an urban and a rural stratum for each of the three regions of the country. The MKAPH sample of households was selected in two stages.

In the first stage, 106 enumeration areas were selected from the 1987 census. This was done by choosing a systematic sample with random entry of 106 EAs from the 225 EAs of the 1992 MDHS, which was a subset of the 1987 census EAs. Because Malawi has a predominantly rural population, urban areas were over-sampled to ensure that the sampling errors for the urban domain would not be unacceptably large. The Northern Region also comprises a small proportion of the total and was similarly over-sampled to control sampling errors. Over-sampling by region and urban location means that the MKAPH sample is not self weighting at the national level, but it is self-weighting within each of the six strata determined by regional and urban-rural location.

Within each of the 106 EAs, a complete household listing and mapping were done from April through May 1996. For the listing and mapping, permanent NSO enumerators were trained. Institutional populations (army barracks, police camps, hospitals, etc.) were not listed.

In the second stage, a systematic sample of households was selected from the household list compiled for each EA. The sampling interval for each EA was proportional to its size based on the results from the listing. In selected households, all women 15-49, men 15-54, and children under five years were eligible for the survey. Information for each eligible child was gathered from the mother or principal caretaker.

Four types of questionnaires were used for the MKAPH: the Household Questionnaire, the Women's Questionnaire, the Men's Questionnaire, and the Caretaker's Questionnaire. Some elements of the standard DHS Questionnaire were used in all four questionnaires-e.g., the household schedule, the contraceptive usage table, and the immunisation module. However, many questions, particularly in the Caretaker's Questionnaire, were specially designed to meet the data collection needs of public health programmes in Malawi.

The Household Questionnaire was used to list all the usual members and visitors of households in the sample. Basic information was collected on the characteristics of each person listed, including age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. Mothers or caretakers of children under five were similarly identified and interviewed using the Caretaker's Questionnaire. In addition, the Household Questionnaire collected information on characteristics of the household's dwelling units, such as the source of water, type of toilet facilities, materials used for the floor of the house, ownership of various consumer goods, and household practices for preventing malaria infection.

The Women's Questionnaire was used to collect information on all women aged 15-49 living in sample households. These women were asked questions on the following topics:

- Background characteristics (education, residential history, etc.)
- Reproduction and antenatal care
- Knowledge and use of family planning methods
- Marital status and partner relations
- Awareness and risk-related behaviour regarding AIDS and other STDs.

The Men's Questionnaire was administered to all males aged 15-54 living in households in the MKAPH sample. Men were asked most of the same questions that were addressed to women. The Men's Questionnaire omitted questions on pregnancy and antenatal care. However, men were asked some questions on STD symptoms such as urethritis and genital ulceration that were not asked of women.

The Caretaker's Questionnaire was asked of each person, male or female, who was the individual most responsible for taking care of each child under five identified in the Household Questionnaire. In most cases, the caretaker was the mother of a child. In other cases, when the mother was living away from the household or was deceased, the caretaker was someone else closely connected to the child and familiar with the child's immunisations and recent health history. The Caretaker's Questionnaire contained questions on the following aspects of a child's health:

- Immunisation and vitamin A dosage
- Symptoms of illness in the past two weeks
- Management of respiratory illnesses, fever, and diarrhoea symptoms that occurred in the past two weeks.

The MKAPH questionnaires were pretested in March 1996. Nine interviewers consisting of seven nurses, and two additional persons with prior survey experience were hired and trained to carry out the pretest. Most of these individuals were later selected to serve as field supervisors and editors for the main survey. The Chichewa and Tumbuka questionnaires were field tested during a one-week period in the town of Zomba and surrounding villages in the Southern Region. Approximately 200 pretest interviews were conducted. Subsequent discussions with the pretest interviewers contributed to refinement of the questionnaires.

Training of field staff for the main survey was conducted over a three-week period during May and June 1996 at Chilema Training Centre outside Zomba. Staff of the National Statistical Office trained 42 persons, most of whom were qualified nurses. The training course consisted of instruction in interviewing techniques, field procedures, a detailed review of the questionnaires, mock interviews between trainees, and field practice in villages around Chilema which were not included in the MKAPH sample. Ten persons selected as supervisors or field editors were given additional training in methods of questionnaire editing, data quality control, and coordination of fieldwork. Thirty-five trainees were selected for the field teams. The remaining seven were offered employment as data-entry personnel. Of these seven, five accepted data-entry positions.

1.5 Data Collection and Data Processing

The MKAPH fieldwork was carried out by five interviewing teams which were assigned to five areas covering the Northern, Central, and Southern Regions. Each team consisted of one supervisor, one field editor, three female interviewers, and two male interviewers. Each team was assigned a vehicle and a driver. The work of the field teams was coordinated by NSO officers. Data collection was carried out from June 22 through October 5, 1996.

Table 1.2 shows response rates for the MKAPH survey. A total of 3,035 households were selected in the sample, of which 2,830 were found to be occupied. Of these households, 2,798 were interviewed, yielding a household response rate of 99 percent.

In the interviewed households, 2,737 eligible women were identified and, of these, 2,683 were interviewed, yielding a response rate of 98 percent for women. The number of men identified was 2,861 , of which 2,658 were successfully interviewed for a 93 percent response rate. The main reason for nonresponse among women and men was failure to be at home despite repeated visits to the household. The lower response rate among men as compared to women was due to the more frequent and longer absences of men from the household. There were no major differences between urban and rural response rates.

The number of children under five years who were listed in household schedules was 2,433 . The number of interviews conducted with caretakers of these children was 2,418 , yielding a response rate for under-five children of 99 percent.

Table 1.2 Results of the household and individual interviews			
Number of households, number of interviews, and response rates, Malawi 1996			
Sample/response rate	Residence		
	Urban	Rural	Total
Household interviews			
Households sampled	1,426	1,609	3,035
Households found	1,341	1,489	2,830
Houscholds interviewed	1,318	1,480	2,798
Houschold response rate	98.3	99.4	98.9
Individual interviews			
Number of eligible women	1,354	1,383	2,737
Number of eligible women intervicwed	1,333	1,350	2,683
Eligible woman response rate	98.4	97.6	98.0
Individual interviews			
Number of eligible men	1,585	1,276	2,861
Number of eligible men interviewed	1,454	1,204	2,658
Eligible man response rate	91.7	94.4	92.9
Individual interviews			
Number of eligible children	1,122	1,311	2,433
Number of eligible children interviewed	1,117	1,301	2,418
Eligible child response rate	99.6	99.2	99.4

All questionnaires were returned to the NSO for data processing, which consisted of office editing, coding of open-ended questions, data entry, and correcting computer-identified errors. The data were processed on five desktop computers, one of which was purchased for the MKAPH survey. Data entry and editing were done using the Integrated System for Survey Analysis (ISSA). Data entry began on July 8 and was completed on October 22, 1996.

CHAPTER 2

CHARACTERISTICS OF HOUSEHOLDS AND RESPONDENTS

The purpose of this chapter is to provide a short descriptive summary of selected socioeconomic characteristics of the household population and the individual survey respondents, such as age, sex, residence, and educational level. These data provide a context for the interpretation of demographic and health indices, and also furnish an approximate indication of the representativeness of the survey.

2.1 Household Population

The MKAPH household questionnaire was used to collect data on the demographic and social characteristics of all usual residents of the sampled households, and visitors who had spent the previous night in the household. ${ }^{1}$

Age-Sex Composition

The distribution of the MKAPH household population is shown in Table 2.1, by five-year age groups, according to urban-rural residence and sex. The distribution is summarised by the population pyramid pictured in Figure 2.1. The distribution is typical of a high-fertility population, with an ever-widening pyramid base, reflecting a continually growing population.

Table 2.1 Household population by age, residence and sex									
Percent distribution of the de facto household population by age, according to sex and residence, Malawi 1996									
		Urban			Rura]			Total	
Age	Male	Female	Total	Male	Female	Total	Male	Female	Total
0-4	15.5	16.2	15.9	17.7	17.2	17.5	17.4	17.1	17.3
5-9	13.2	14.4	13.8	16.1	15.3	15.7	15.7	15.2	15.4
10.14	13.3	16.5	14.9	15.9	13.7	14.7	15.5	14.0	14.7
15-19	11.8	11.8	11.8	9.1	9.7	9.4	9.5	9.9	9.7
20-24	11.5	10.0	10.8	7.7	8.3	8.0	8.2	8.5	8.4
25-29	8.3	8.6	8.5	5.3	5.8	5.6	5.7	6.1	5.9
30-34	7.2	7.0	7.1	5.5	5.5	5.5	5.7	5.6	5.7
35-39	5.6	4.6	5.1	4.3	4.2	4.2	4.5	4.3	4.3
40-44	3.6	3.5	3.6	3.7	5.0	4.4	3.7	4.9	4.3
45-49	3.8	2.2	3.0	4.1	3.3	3.7	4.1	3.2	3.6
50-54	1.7	2.1	1.9	2.7	3.6	3.2	2.6	3.4	3.0
55-59	1.6	1.0	1.3	2.2	2.7	2.5	2.2	2.5	2.3
60-64	1.0	0.9	0.9	2.0	1.9	1.9	1.9	1.7	1.8
65-69	0.8	0.3	0.6	1.4	2.1	1.8	1.3	1.9	1.6
70-74	0.4	0.4	0.4	0.9	1.0	1.0	0.9	1.0	0.9
75-79	0.1	0.3	0.2	0.7	0.5	0.6	0.6	0.5	0.5
80+	0.1	0.1	0.1	0.4	0.3	0.3	0.4	0.2	0.3
Missing/Don't know	0.5	0.0	0.3	0.0	0.1	0.1	0.1	0.1	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	765	720	1,486	4,887	5,476	10,369	5,652	6,197	11,855

[^0]Figure 2.1
Population Pyramid of Malawi

Table 2.2 compares the population age structure found in the MKAPH with that of the 1992 MDHS and the censuses of 1987 and 1977; dependency ratios ${ }^{2}$ are also shown. The current dependency ratios in Malawi are typical of those found in other African countries. With approximately 47 percent of the population under age 15 and 3 percent over age 64, there is one dependent person for each adult in the population. As in many growing populations, old age dependency is minimal compared with child dependency.

Table.2.2 Population by broad age groups from selected sources

Percent distribution of the population by broad age groups, and dependency ratios, selected sources, Malawi

Age	MKAPH 1966 MDHS			Census	
	De jure	De facto	De facto	1987	1977
<15	47.1	47.4	47.3	46.0	44.6
15.64	49.4	49.1	48.6	50.0	50.9
65+	3.4	3.4	4.0	4.0	4.5
Missing/Don't know	0.1	0.1	0.1	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0
Dependency ratio	1.02	1.04	1.05	1.00	0.96

[^1]
Household Composition

Table 2.3 presents the percent distribution of households by sex of the household head, size of the household, and kinship structure within the household. One in four Malawian households is headed by a woman; rural households are more likely than urban households to be headed by a woman (27 and 17 percent, respectively). Single heads of household are found in one-third of households; there is little difference between the proportion of single heads of household in rural compared with urban areas. Twenty-five percent of household heads are single females compared with only 8 percent who are single males. In rural areas, the proportion of single female heads of household (26 percent) is more than four times greater than the proportion of single male heads of household (6 percent).

The average household size is 4.3 persons. The MKAPH did not find major urban/rural differentials in household size. The most common relationship between adults in the household sample in both urban and rural households is one in which two adults of the opposite sex are living together. This kind of relationship characterised 41 of urban households and 45 percent of the rural households. Of the remaining households, most have three or more related adults resident (27 percent of households).

Table 2.3 Houschold composition			
Percent distribution of households by sex of head of household, household size, and kinship structure, according to urban-rural residence, Malawi 1996			
Residence			
Characteristic	Urban	Rural	Total
Household headship			
Male	83.4	73.0	74.3
Female	16.5	27.0	25.7
Single household headship			
Male	19.1	6.4	8.0
Female	16.2	25.8	24.7
Total	35.3	32.2	32.6
Number of usual members			
1	11.6	9.2	9.5
2	14.6	15.5	15.4
3	17.6	16.7	16.8
4	14.1	16.9	16.6
5	11.1	14.3	13.9
6	11.5	11.7	11.7
7	7.3	6.1	6.2
8	4.5	5.1	5.0
9+	7.5	4.5	4.9
Total	100.0	100.0	100.0
Mean size	4.4	4.3	4.3
Relationship of adults			
One adult	18.5	20.4	20.1
Two related adults:			
Of opposite sex	40.7	45.3	44.8
Of same sex	6.2	4.6	4.8
Three or more related adults	27.5	27.3	27.3
Other	7.0	2.3	2.9
Note: Table is based on de jure members; i.e., usual residents.			

Education

Tables 2.4.1 and 2.4.2 show the distribution of the de facto male and female population (age six and above) by the highest level of education attended and the median number of years of education completed. Overall, 21 percent of males and 37 percent of females have never been to school. Once in school, males tend to progress further in their schooling; 8 percent of males, but only 3 percent of females, have been to secondary school, and the median number of years of schooling is higher among males than females at almost every age.

Tables 2.4.1 and 2.4.2 also show school attendance by urban-rural residence and region. While the vast majority of urban residents have had some schooling, the male/female differential persists. Ninety-two percent of urban men and 86 percent of urban women have had some schooling. But for the nearly 90 percent of Malawians that live in rural areas, lack of formal education is not uncommon. Forty percent of rural women and nearly one-quarter of rural men have never attended school. Only 1 percent of rural women and 5 percent of men have attended secondary school. The Northern region has higher levels of school attendance among both women and men than the Central and Southern regions, which have roughly similar levels of attendance. Eighty percent of females and 90 percent of males in the Northern
region have been to school. In the Central and Southern regions, approximately 60 percent of females and 80 percent of males have been to school.

The overall median number of years of schooling is estimated at a little over one year for women and three years for men. The median for women is four times as high in urban areas as in rural areas, while for men, the urban median is just twice as high as the rural median. The median number of years of schooling for women is three times as high in the Northern Region compared with the Central and Southern Regions; for men, the median is also higher in the Northern Region, but compared with the Central and Southern Regions the difference is less marked than for women.

Literacy rates follow similar patterns. A household member was classified as literate if he or she had attended secondary school or could read and write English, Chichewa, or Tumbuka. Overall, 55 percent of males are reported as literate compared with 36 percent females. As with median years of schooling, literacy is higher for both females and males in urban areas than in rural areas. For females, the percentage who are literate is higher in the Northern Region compared with the Central and Southern Regions, while for males, there is little difference between the Northern and Southern Regions, both of which have higher male literacy rates than the Central Region.

Table 2.4.1 Educational level of the female household population
Percent distribution of the de facto female household population age six and over by highest level of education attended, and median number of years of schooling, according to selected background characteristics, Malawi 1996

Background characteristic	Level of education					Total	Median years of schooling	Percent literate	Number of females
	$\begin{gathered} \text { No } \\ \text { education } \end{gathered}$	Primary	Secondary	Higher	Don't know/ Missing				
Age ${ }^{1}$									
6-9	29.4	70.1	0.0	0.0	0.5	100.0	0.8	9.6	739
10-14	10.9	88.5	0.6	0.0	0.0	100.0	2.4	46.3	868
15-19	23.5	70.8	5.5	0.2	0.0	100.0	3.6	58.3	614
20-24	35.5	57.3	7.1	0.2	0.0	100.0	2.8	47.8	526
25-29	41.4	52.4	5.7	0.5	0.0	100.0	2.5	45.1	380
30-34	41.8	54.6	3.1	0.5	0.0	100.0	2.4	45.0	349
35-39	47.7	46.7	5.2	0.4	0.0	100.0	0.9	36.8	263
40-44	54.9	43.3	1.8	0.0	0.0	100.0	0.0	31.7	302
45-49	51.9	46.0	1.8	0.2	0.0	100.0	0.0	31.5	195
50-54	68.9	29.4	1.2	0.3	0.2	100.0	0.0	18.5	213
55-59	64.0	35.5	0.0	0.5	0.0	100.0	0.0	21.0	153
60-64	66.4	33.3	0.0	0.1	0.2	100.0	0.0	18.0	108
65+	78.4	20.7	0.0	0.0	0.9	100.0	0.0	9.3	221
Realdence									
Uban	13.8	70.2	14.3	1.5	0.1	100.0	4.3	61.4	581
Rural	40.2	58.5	1.2	0.0	0.1	100.0	1.0	32.6	4,354
Region									
Northerm	19.8	77.0	3.0	0.2	0.0	100.0	3.4	46.5	583
Central	36.0	61.5	2.2	0.1	0.3	100.0	1.2	35.0	2,037
Southern	42.5	54.1	3.1	0.2	0.0	100.0	1.0	34.2	2,315
Total	37.1	59.9	2.7	0.2	0.1	100.0	1.3	36.0	4,936

${ }^{1}$ Excludes 4 women for whom age was not reported

Table 2.5 shows the percentage of the de facto household population age 6-24 years currently enrolled in school by age, sex, and urban/rural residence. The MKAPH found that 64 percent of children age 6-10 are currently attending school. Enrolment rises to 77 percent among children age 11 to 15 years,
and then falls abruptly after age 15 ; only one-third of those age 16 to 20 years are attending school. Boys and girls achieve the same levels of enrolment up to age 15 in both urban and rural areas. But while boys and girls are now equally likely to start school, boys are far more likely to stay in school longer (see Figure 2.2). Only 21 percent of girls age 16-20 are currently in school, while nearly half of boys of the same age are in school.

Table 2.4.2 Educational level of the male household population									
Percent distribution of the de facto male household population age six and over by highest level of education attended, and median number of years of schooling, according to selected background characteristics, Malawi 1996									
	Level of education						Median years of schooling	Percent literate	Number of males
Background characteristic	No education	Primary	Secondary	Higher	Don't know/ Missing	Total			
Age ${ }^{1}$									
$6-9$	32.7	66.8	0.0	0.0	0.9	100.0	0.7	9.3	741
10.14	11.3	88.7	0.0	0.0	0.0	100.0	2.2	44.2	877
15-19	7.4	86.2	6.3	0.1	0.0	100.0	4.7	76.3	534
20-24	16.5	64.4	17.9	1.3	0.0	100.0	5.2	70.2	466
25-29	19.7	61.5	16.3	2.4	0.2	100.0	5.2	66.4	324
30-34	18.5	66.7	11.7	3.0	0.0	100.0	5.9	74.9	322
35-39	20.9	65.0	11.7	2.4	0.0	100.0	5.5	68.0	252
40.44	21.6	60.3	16.0	2.0	0.1	100.0	5.0	73.1	211
45.49	25.9	66.4	7.2	0.5	0.0	100.0	4.1	68.6	231
50-54	20.2	68.1	9.3	2.4	0.0	100.0	5.4	77.7	147
55-59	39.4	55.7	4.2	0.7	0.0	100.0	2.8	55.0	122
60-64	44.6	52.9	1.8	0.8	0.0	100.0	1.0	54.8	106
$65+$	43.8	55.4	0.8	0.0	0.0	100.0	2.2	60.0	182
Residence									
Urban	7.8	66.7	21.8	3.3	0.4	100.0	6.3	72.8	625
Rural	23.0	71.9	4.5	0.5	0.1	100.0	2.5	52.0	3,897
Region									
Northern	11.3	78.6	8.4	1.7	0.0	100.0	4.4	55.7	539
Central	24.1	69.9	5.5	0.3	0.3	100.0	2.4	51.3	1,873
Southern	20.4	70.4	7.7	1.3	0.2	100.0	2.9	57.9	2,110
Total	20.9	71.2	6.9	0.9	0.2	100.0	2.8	54.9	4,522

Table 2.5 School enrolment

Percentage of the de facto household population age 6-24 years enrolled in school, by age, sex, and residence, Malawi 1996

	Male			Female			Total		
Age	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural	Total
6 -10	82.5	59.4	61.9	87.8	63.8	66.5	85.2	61.5	64.2
11-15	86.5	77.1	78.3	82.5	73.6	74.8	84.4	75.4	76.5
6-15	84.5	67.6	69.5	85.0	68.3	70.4	84.8	67.9	70.0
16-20	60.8	44.5	47.3	41.0	17.4	20.6	51.5	30.1	33.3
21-24	15.3	5.9	7.9	5.1	2.4	2.8	10.7	3.9	5.1

Figure 2.2
Percentage of the Population Age 6-24
Enrolled in School by Age and Sex

2.2 Housing Characteristics

Physical characteristics of the household have an important bearing on environmental exposure to disease, and also reflect the household's socioeconomic status. Information on the characteristics of sampled households is shown in Table 2.6.

Overall, only 4 percent of households in Malawi have electricity, but there is a significant difference between urban and rural areas. Twenty-seven percent of urban households have electricity compared with less than I percent of rural households.

The vast majority (84 percent) of urban households have access to piped water; half of these households have access to a public tap. Sixty-seven percent of rural households obtain their water from a well; 27 percent from a protected (covered) well or borehole, and 39 percent from an unprotected well. Overall, half of all households (53 percent) obtain their water from a source that can be considered unsafe (i.e., unprotected well or natural resources).

Two-thirds of households use a traditional pit latrine-78 percent of urban households and 65 percent of rural households. In urban areas, the second most common facility is a flush toilet (16 percent). In rural areas, nearly all households without a traditional pit latrine do not use any facility at all (34 percent).

The MKAPH collected data on the number of rooms used for sleeping. The number of persons per sleeping room is considered a measure of crowding. The average number of persons per sleeping room is 2.6 and urban/rural differences are minor.

Table 2.6 Housing characteristics			
Percent distribution of households by housing characteristies, according to residence, Malawi 1996			
Characteristic	Residence		Total
	Urban	Rural	
Electricity			
Yes	26.5	0.6	3.8
No	73.3	99.3	96.1
Total	100.0	100.0	100.0
Source of drinking water			
Piped into residence	12.1	0.4	1.8
Piped into yard/plot	29.8	1.8	5.2
Public tap	42.5	10.6	14.4
Protected well/borehole	10.1	27.3	25.2
Unprotected well	3.2	39.2	34.9
River/stream/spring	0.4	18.9	16.7
Lake/pond/dam	0.3	1.8	1.6
Other	1.6	0.0	0.2
Total	100.0	100.0	100.0
Sanitation facility			
Own flush toilet	13.7	0.4	2.0
Shared flush toilet	2.2	0.0	0.3
Traditional pit toilet	77.8	65.3	66.9
Ventilated improved pit latrine	2.0	0.2	0.4
No facility/bush	4.3	33.5	30.0
Other	0.0	0.1	0.1
Missing/Don't know	0.1	0.4	0.4
Total	100.0	100.0	100.0
Persons per sleeping room			
1-2	64.4	57.1	58.0
$3-4$	30.2	31.5	31.4
5-6	3.8	6.7	6.3
$7+$	1.0	0.9	0.9
Missing/Don't know	0.7	3.8	3.4
Total	100.0	100.0	100.0
Mean persons per sleeping room $2.4 \quad 2.6 \quad 2.6$			
Number of households	340	2,458	2,798

Table 2.7 shows the percentage of households owning certain durable goods by urban-rural residence. Ownership of durable consumer goods is a rough measure of household disposable income. Among the selected durable goods, a radio is present in 43 percent of households, although this varies greatly by residence; 39 percent of rural households and 73 percent of urban households own a radio. A bicycle is present in 29 percent of households, and a car in just 1 percent of households. Most households (85 percent) have a paraffin lamp.

Table 2.7 Household durable goods			
Percentage of households possessing specific durable consumer goods, by urban-rural residence, Malawi 1996			
		ence	
Durable goods	Urban	Rural	Total
Radio	73.0	38.6	42.8
Paraffin lamp	85.7	85.1	85.2
Oxcart	0.4	1.7	1.5
Bicycle	24.0	29.6	29.0
Motorcycle	1.7	0.5	0.6
Private car	6.2	0.7	1.4
Number of households	340	2,458	2,798

2.3 Characteristics of Survey Respondents

Background characteristics of the 2,683 women and 2,658 men interviewed in the MKAPH are presented in Table 2.8. The distribution of respondents by age is similar for women and men; the proportion of respondents in each age group declines with increasing age (as it does for the population as a whole).

Three-quarters of female respondents are currently in a union (73 percent); this is higher than the proportion of men who are currently in a union (65 percent). "Currently in union" refers to persons who are either "married" or "living together." In subsequent tables, these two categories are combined and referred to as "currently married" or "currently in union." Respondents who are currently married, widowed, divorced, or no longer living together (separated) are referred to as "ever married." "Single" refers to persons who have never been married. One-third of male respondents are single, compared with only 17 percent of women. The 1992 MDHS found that women marry, on average, 5 to 6 years earlier than men.

Malawi is predominantly rural; fewer than one out of five persons lives in an urban area. The proportion of males in urban areas (16 percent) is slightly higher than that of females (13 percent). Men are more likely to migrate to urban areas in search of work. For both sexes, the largest proportion of the population is in the Southern region (47 percent), followed closely by the Central region. The distribution of MKAPH respondents by ethnicity is very similar for women and men. One-third of respondents are Chewa, one-quarter are Lomwe, and one-quarter are Yao or Ngoni. Other ethnic groups comprise the remaining 15 percent of respondents.

Table 2.8 Background characteristics of respondents
Percent distribution of women and men by selected background characteristics, Malawi 1996

Background characteristic	Women			Men		
	Weighted percent	Number of women		Weighted percent	Number of men	
		Weighted	Unweighted		Weighted	Unweighted
Age						
15-19	23.0	618	626	21.5	572	600
20-24	19.6	526	548	18.5	492	519
25-29	14.6	391	435	13.2	351	377
30-34	13.7	368	388	12.7	338	345
35-39	10.1	270	260	10.0	265	277
40-44	11.7	313	262	8.7	231	205
45-49	7.3	196	164	9.4	249	212
50-54	NA	NA	NA	6.0	160	123
Marital status						
Never married	16.9	453	511	32.9	873	986
Married	62.4	1,675	1,708	58.2	1,546	1,446
Living together	10.1	272	185	6.4	171	141
Widowed	3.2	87	86	0.5	14	15
Divorced	4.6	123	110	1.6	42	43
Separated	2.7	73	83	0.4	11	26
Residence						
Urban	13.1	350	1,333	16.4	437	1,454
Rural	86.9	2,333	1,350	83.6	2,221	1,204
Region 11.7						
Northern	11.7	313	622	12.5	331	605
Central	41.7	1,118	1,038	40.8	1,084	1,042
Southern	46.7	1,253	1,023	46.8	1,243	1,011
Education						
No education	39.7	1,064	733	17.6	468	310
Primary	55.2	1,481	1,571	68.6	1,824	1,686
Secondary	4.9	131	353	12.0	319	579
Higher	0.3	7	26	1.7	46	83
Ethnicity						
Chewa	34.2	917	722	33.6	892	719
Tumbuka	6.2	166	342	6.7	179	334
Lomwe	24.3	651	509	25.2	671	548
Tonga	2.8	74	107	1.8	49	73
Yao	15.2	407	370	16.2	430	394
Sena	3.2	87	70	2.5	67	58
Nkhonde	0.5	14	41	0.2	6	26
Ngoni	10.8	290	400	10.7	285	396
Other	2.9	77	122	3.0	79	110
Total	100.0	2,683	2,683	100.0	2,658	2,658

The proportion of women who have never been to school is double that of men (40 versus 18 percent). Women are much less likely to reach secondary school (5 percent) than men (14 percent). Table 2.9 shows the distribution of women and men by the highest level of education attended, according to age, residence, and region. Younger women and men are typically more educated than older women and men. For example, approximately half of women and one-quarter of men in their 40 s have never been to school,

Table 2.9 Level of education of respondents by background characteristics								
Percent distribution of women and men by the highest level of education attended, according to selected background characteristics, Malawi 1996								
	Highest level of education				Total	Number of women/ men		
Background characteristic		Primary	Secondary	Higher				
WOMEN								
Age								
15-19	24.2	70.0	5.5	0.2	100.0	618		
20-24	35.4	57.0	7.5	0.1	100.0	526		
25-29	41.9	51.9	5.7	0.5	100.0	391		
30-34	43.5	52.9	3.1	0.5	100.0	368		
35-39	47.8	46.8	5.1	0.3	100.0	270		
40-44	55.2	42.9	1.9	0.0	100.0	313		
45-49	52.1	45.7	1.9	0.3	100.0	196		
Residence								
Rural	43.4	54.6	2.0	0.0	100.0	2,333		
Region								
Northern	19.1	74.7	5.8	0.3	100.0	313		
Central	39.0	57.0	3.8	0.2	100.0	1,118		
Southern	45.4	48.7	5.5	0.3	100.0	1,253		
Total	39.7	55.2	4.9	0.3	100.0	2,683		
MEN								
Age								
15-19	7.0	85.8	7.0	0.1	100.0	572		
20-24	14.5	65.7	18.3	1.5	100.0	492		
25-29	21.3	60.5	15.6	2.6	100.0	351		
30-34	18.9	65.6	12.2	3.4	100.0	338		
35-39	22.2	65.4	9.1	3.3	100.0	265		
40-44	23.6	57.8	16.8	1.8	100.0	231		
45-49	27.1	64.5	7.8	0.5	100.0	249		
50-54	23.5	67.8	6.6	2.0	100.0	160		
Residence								
Urban	6.5	56.5	31.9	5.1	100.0	437		
Rural	19.8	71.0	8.1	1.1	100.0	2,221		
Region								
Northern	7.8	75.4	14.1	2.7	100.0	331		
Central	22.6	67.6	9.3	0.5	100.0	1,084		
Southern	15.9	67.7	13.8	2.6	100.0	1,243		
Total	17.6	68.6	12.0	1.7	100.0	2,658		

whereas only one-quarter of women and 7 percent of men age 15-19 have never been to school. Urban-rural educational differentials are also large. Not only are rural residents far more likely than urban residents to have no schooling, they are also far less likely to obtain any secondary schooling. Rural residents are twice as likely as urban residents to have never been to school. And only 2 percent of rural women and 9 percent of rural men have had any secondary schooling, whereas 26 percent of urban women and 37 percent of urban men have had some secondary schooling.

All respondents were asked whether they read a newspaper or magazine at least once a week and also whether they listen to the radio at least once a week. This information can be useful to programme planners in designing strategies to disseminate family health messages. Table 2.10 shows that 10 percent of women and 20 percent of men read a newspaper or magazine and 60 percent of women and 79 percent of men listen to the radio at least once a week. Not surprisingly, reading a newspaper or magazine is positively associated with level of education. Family planning and health messages disseminated through the print media will obviously miss a significant proportion of the population. Until education is more nearly universal, radio messages will receive a far wider audience than printed messages. But even listening to the radio is positively correlated with education. While nine out of ten women with secondary or higher education listen to the radio at least once a week, only half of women who have never been to school do.

Urban and rural differentials in media contact are quite large. One-third of urban women read a newspaper or magazine at least once a week, while only 6 percent of rural women do. Likewise among men, nearly half of urban men read a newspaper or magazine while only 15 percent of rural men do. Urban-rural differentials in radio listening also exist, but media contact through radio is significantly higher than contact through print media among both groups.

Table 2.10 Access to mass media
Percentage of women and men who usually read a newspaper or magazine once a week or listen to radio once a week, by selected background characteristics, Malawi 1996

Background characteristic	Mass media		Number of women/ men
	Read newspaper weekly	$\begin{gathered} \text { Listen to } \\ \text { radio } \\ \text { weekly } \end{gathered}$	
WOMEN			
Age			
15-19	12.9	61.6	618
20-24	11.6	64.4	526
25-29	8.2	62.6	391
30-34	10.4	64.8	368
35-39	6.7	57.0	270
40-44	4.8	52.8	313
45-49	6.3	41.4	196
Residence			
Urban	32.0	84.2	350
Rural	6.2	56.1	2,333
Region			
Northern	8.8	68.6	313
Centra!	10.1	53.4	1,118
Southern	9.3	63.3	1,253
Education			
No education	0.1	46.1	1,064
Primary	12.2	66.7	1,481
Secondary+	54.7	90.8	137
Total	9.6	59.8	2,683
MEN			
Age			
15-19	15.8	76.0	572
20-24	20.4	79.9	492
25-29	21.6	85.8	351
30-34	26.3	84.1	338
35-39	20.6	82.2	265
40-44	23.4	79.7	231
45-49	14.7	68.2	249
50-54	21.7	69.2	160
Residence			
Urban	46.8	90.5	437
Rural	14.9	76.6	2,221
Region			
Northern	11.1	79.4	331
Central	21.1	78.8	1,084
Southern	21.7	78.7	1,243
Education			
No education	1.9	68.3	468
Primary	17.2	78.6	1,824
Secondary+	58.1	93.8	365
Total	20.1	78.8	2,658

CHAPTER 3

FERTILITY REGULATION

This chapter presents the MKAPH results regarding contraceptive knowledge, behaviour, and attitudes among both women and men. Family planning methods are grouped into two principal types: modern methods and traditional methods. Modern methods include short-term methods (pill, condoms, and vaginal methods, which include diaphragm, foam, and jelly), long-term methods (IUCD, injectables, and implants), and permanent methods (female and male sterilisation). Traditional methods include periodic abstinence, withdrawal, and local methods such as herbs and strings.

3.1 Knowledge of Contraception

Knowledge of contraception was assessed by first asking respondents to name ways or methods by which a couple could delay or avoid pregnancy. Any of the eight modern methods listed above, as well as periodic abstinence and withdrawal, were described by the interviewer if they had not been mentioned spontaneously by the respondent. The interviewer then recorded whether or not the respondent knew of the method. Other methods mentioned by the respondent, such as herbs, were also recorded. In the following discussion, respondents are considered to know of a method if they spontaneously mentioned it or said they had heard of it after it was described to them. Results are presented in Table 3.1 for all women and men, currently married women and men, sexually active, ${ }^{1}$ unmarried women and men, and for women and men who have had no sexual experience.

Knowledge of several modern methods is high, while other methods are less known. Knowledge of modern methods generally varies more by marital status than it does by sex. Virtually all married women know of the pill (95 percent), injectables (93 percent), and condoms (93 percent). Married men are about equally likely to know of the pill (92 percent), injectables (89 percent), and condoms (99 percent). Among the unmarried population, the condom is the most widely known method for both women and men. The condom is known by more than 95 percent of the sexually active, unmarried population (women and men). Pills, injectables, and female sterilisation are known by 70 to 80 percent of sexually active, unmarried women and men.

The largest female-male differentials in knowledge are observed among those who have not yet had any sexual experience. Condoms are still the most widely known method-known to two-thirds of women and 90 percent of men-but knowledge of other methods is quite low, especially among women. Men with no sexual experience have higher levels of knowledge of nearly every method than women with no sexual experience.

Men are more likely than women to know of traditional methods (76 and 70 percent, respectively). Table 3.1 also shows the overall mean number of methods known, which varies more by marital status than by sex. Currently married women and men both know an average of seven methods. Unmarried women and men know of fewer methods than the married population. The mean number of methods known by sexually active unmarried women and men is 5.5 and 5.3 , respectively. Unmarried women and men who have not yet had sexual intercourse know, on average, of only 2.4 and 3.6 methods, respectively.

[^2]Table 3.1_Knowledge of specific contraceptive methods
Percentage of all respondents, of currently married respondents, of sexually active unmarried respondents and of respondents with no sexual experience who know specific contraceptive methods and mean number of methods known, Malawi 1996

Contraceptive method	Women				Men			
	All women	Currently married women	```Sexually active unmarried women```	Women with sexual experience	All men	Currently married men	```Sexually active unmarried men```	Men with sexual experience
Any method	95.9	98.9	95.7	72.5	98.7	99.9	96.8	92.7
Any modern method	95.6	98.7	95.7	72.5	98.5	99.7	96.8	92.7
Pill	88.5	94.7	78.9	45.0	85.3	92.0	77.5	60.5
[UCD	52.1	58.6	34.7	15.7	46.6	55.1	33.4	20.4
Injectables	86.1	92.6	79.0	41.7	83.2	88.8	77.5	60.2
Diaphragm/Foam/Jelly	30.9	34.1	24.1	5.7	29.6	36.6	21.4	9.0
Condom	89.9	92.8	95.5	67.0	97.9	99.2	96.8	90.3
Female sterilisation	76.0	81.7	71.4	31.2	81.1	87.7	77.3	54.7
Male sterilisation	35.7	39.2	30.4	12.5	48.2	54.3	47.4	22.7
Implants	30.9	35.3	18.3	5.3	14.0	18.0	9.6	3.1
Any traditional method	70.0	78.3	64.6	14.2	76.2	91.3	51.8	27.2
Periodic abstinence	46.9	51.6	42.5	10.0	58.4	70.6	38.1	21.0
Withdrawal	42.2	47.9	30.0	4.0	51.3	65.0	33.1	8.2
String	37.3	44.0	39.9	3.5	23.9	33.6	8.4	3.3
Herbs	8.6	10.1	3.3	1.8	6.7	7.7	6.0	2.7
Other methods	4.0	4.8	0.0	0.2	2.1	2.2	0.9	0.1
Number of respondents	2683	1947	94	287	2658	1718	300	292
Mean number of methods	6.3	6.9	5.5	2.4	6.3	7.1	5.3	3.6

As shown in Table 3.2, knowledge of at least one modern method of contraception is universal among the currently married population of Malawi. This reflects an increase in knowledge since the 1992 MDHS. Figures 3.1.1 and 3.1.2 compare levels of knowledge of specific methods in the MDHS and MKAPH, for women and men, respectively. Knowledge of all modern methods has increased in just four years for both women and men (with the exception of vaginal methods). One of the most significant changes is the increased level of knowledge of injectables. With the increased level of knowledge of most methods, female-male differentials have generally declined.

3.2 Ever Use of Contraception

All women and men who reported knowing a particular method were asked whether they had ever used the method. Forty-one percent of currently married women and 66 percent of currently married men have used a method of family planning (modern or traditional) at some time in their lives (Tables 3.3.1 and 3.3.2). Ever use of modern methods among currently married respondents was reported by 25 percent of women and 42 percent of men. These figures reflect increases since the 1992 MDHS when 19 and 30 percent, respectively, of currently married women and men reported ever use of modern methods. The increase in ever use among currently married women is primarily due to greater use of injectables (from 4 percent in 1992 to 10 percent in 1996). The increase among men is primarily due to greater use of injectables (from 5 percent to 12 percent) and condoms (from 22 percent to 29 percent).

Table 3.2_Knowledge of contraceptive methods by backpround characteristics
Percentage of currently married respondents who know at least one method and at least one modern method, by selected background characteristics, Malawi 1996

Background characteristic	Women			Men		
	$\begin{gathered} \text { Know } \\ \text { any } \\ \text { method } \end{gathered}$	Know modern method	Number of women	$\begin{aligned} & \text { Know } \\ & \text { any } \\ & \text { method } \end{aligned}$	Know modern method	Number of men
Age						
15-19	97.2	97.2	207	*	*	14
20-24	98.6	98.6	419	100.0	100.0	216
25-29	99.9	99.9	355	100.0	100.0	294
30-34	100.0	100.0	329	99.9	99.9	316
35-39	99.6	99.6	230	100.0	100.0	257
40-44	98.6	98.5	257	99.6	99.6	226
45-49	97.0	94.3	150	100.0	98.4	242
50-54	NA	NA	NA	100.0	100.0	152
Residence						
Urban	99.9	99.8	233	99.8	99.5	239
Rural	98.8	98.6	1,715	99.9	99.7	1,479
Region						
Northern	97.3	97.3	249	99.5	99.1	201
Central	98.9	98.7	789	100.0	100.0	720
Southern	99.3	99.1	910	99.9	99.6	797
Educational level						
No education	98.3	98.1	869	99.8	98.9	373
Primary	99.3	99.1	1,001	100.0	99.9	1,129
Secondary and higher	100.0	100.0	77	100.0	100.0	216
Total	98.9	98.7	1,947	99.9	99.7	1,718

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. NA = Not applicable

The overall level of ever use of modern methods among the sexually active, unmarried population is on par with that of the married population; 28 percent of sexually active, unmarried women and 43 percent of men have used a modern method at some time. Condoms are the method most likely to have been used by the unmarried population; in fact, a sexually active, unmarried person is more likely to have had experience using a condom than a currently married person (female or male). Twenty-four percent of sexually active, unmarried women and 43 percent of unmarried men have used a condom at some time.

Figure 3.1.1
Percentage of Currently Married Women Who Know Specific Modern Methods, 1992 and 1996

Figure 3.1.2
Percentage of Currently Married Men Who Know Specific Modern Methods, 1992 and 1996

Table 3.3.1 Ever use of contraception: women

Percentage of all women, of currently married women, and of sexually active unmarried women who have ever used any contraceptive method, by specific method and age, Malawi 1996

Age	Any method	Modern method								Traditional methods				Total	Number of women
		Any modern method	Pill	IUCD	In. jectables	Dia. phragm/ foam/ jelly	Condom	Female steri-lisation	Implants		Periodic abstinence	With-drawa]	$\begin{aligned} & \text { Other } \\ & \text { trad. } \\ & \text { meth- } \\ & \text { ods } \end{aligned}$		
ALL WOMEN															
15.19	12.6	8.3	1.3	0.0	1.5	0.1	7.0	0.0	0.0	6.8	4.8	2.9	2.0	100.0	618
20-24	38.6	25.9	12.5	0.1	4.7	0.4	13.6	0.5	0.4	22.6	11.4	9.0	8.0	100.0	526
25-29	41.9	24.8	10.3	0.8	9.3	1.1	8.1	2.8	0.1	23.8	9.9	12.4	9.0	100.0	391
30-34	48.3	28.7	13.3	1.7	14.9	0.5	8.8	3.4	0.0	32.0	10.1	14.5	16.3	100.0	368
35-39	48.8	28.4	14.5	1.9	13.6	0.1	9.2	3.2	0.0	33.2	15.4	12.9	17.9	100.0	270
40-44	41.1	23.7	9.7	1.8	10.3	0.8	4.4	4.1	0.0	25.8	8.7	8.2	16.7	100.0	313
45-49	35.8	18.8	10.1	2.7	6.1	0.0	3.5	6.8	0.0	26.5	10.3	11.0	15.8	100.0	196
Tolal	35.5	21.5	9.4	1.0	7.7	0.4	8.4	2.3	0.1	22.2	9.5	9.3	10.5	100.0	2,683
CURRENTLY MARRIED WOMEN															
15-19	21.3	12.8	4.0	0.0	2.5	0.3	10.0	0.0	0.0	15.2	10.9	7.9	3.7	100.0	207
20-24	42.2	27.5	14.0	0.0	5.5	0.5	13.5	0.7	0.5	25.5	12.6	9.6	9.4	100.0	419
25-29	41.0	24.2	10.7	0.8	9.3	1.1	8.0	1.9	0.1	23.9	10.7	12.8	8.2	100.0	355
30.34	47.9	29.1	14.2	1.8	16.2	0.6	8.2	3.0	0.0	31.7	10.3	14.0	16.8	100.0	329
35.39	50.7	30.3	13.9	2.1	15.3	0.1	9.5	3.6	0.0	35.0	15.9	12.5	19.5	100.0	230
40-44	44.0	25.2	9.3	2.2	11.8	0.8	4.5	4.1	0.0	28.0	9.7	8.6	17.5	100.0	257
45.49	35.2	19.9	10.0	2.1	6.5	0.0	2.9	7.2	0.0	24.7	9.3	10.2	16.1	100.0	150
Tolal	41.4	25.0	11.4	1.2	9.7	0.6	8.7	2.5	0.1	26.6	11.4	11.0	12.6	100.0	1,947

SEXUALLY ACTIVE UNMARRIED WOMEN ${ }^{1}$

$15-19$	(22.4)	(18.0)	(0.0)	(0.0)	(0.0)	(0.0)	(18.0)	(0.0)	(0.0)	(4.5)	(0.3)	(0.0)	(4.2)	100.0	48
$20-24$	(43.9)	(42.9)	(6.0)	(1.0)	(3.0)	(0.0)	(39.9)	(0.0)	(0.0)	(10.8)	(2.4)	(6.3)	(3.5)	100.0	25
$25+$	(59.0)	(31.0)	(12.5)	(0.0)	(16.7)	(1.7)	(18.8)	(0.0)	(0.0)	(37.7)	(21.5)	(4.6)	(24.4)	100.0	21
Total	36.4	27.5	4.4	0.3	4.6	0.4	24.0	0.0	0.0	13.7	5.7	2.7	8.6	100.0	94

[^3]
Table 3.3.2 Ever use of contraception_ men

Percentage of all men, of currently married men, and of sexually active unmarried men who have ever used any contraceptive method, by specific method and age, Malawi 1996

Age	Any method	Modern method									Traditional methods					Number of men
		Any modern method	Pill	IUCD	In-jectables	Diaphragm/ foam/ jelly	Condom	Female steri-lisation	Male steri-lisation	Implants	Any trad. method	Periodic abstinence	With-drawa!	Oher trad. methods	Total	
ALL MEN																
15-19	15.7	14.8	0.4	0.0	0.0	0.1	14.7	0.0	0.0	0.0	5.3	2.0	2.8	0.4	100.0	572
20-24	49.0	40.2	5.8	0.7	2.1	1.5	37.4	0.6	0.0	0.0	25.7	17.9	11.9	3.4	100.0	492
25-29	55.5	41.6	9.9	0.5	5.7	0.1	33.4	0.7	0.0	0.2	34.6	27.8	18.3	4.6	100.0	351
30-34	67.2	47.0	17.6	1.2	14.6	0.1	32.9	2.8	0.0	0.2	48.9	35.4	25.3	9.0	100.0	338
35.39	69.1	42.4	16.8	1.8	16.7	0.8	24.9	1.0	0.0	0.1	52.0	39.5	22.6	12.7	100.0	265
40-44	71.2	41.2	21.8	2.1	17.8	0.2	25.7	4.2	0.0	0.0	53.5	34.1	21.0	18.2	100.0	231
45.49	61.7	34.8	15.3	1.9	11.4	0.0	19.4	3.4	0.0	0.0	47.0	29.5	17.7	15.6	100.0	249
50.54	69.7	32.7	14.5	4.4	10.8	0.0	19.2	5.4	1.9	0.0	56.9	31.7	24.2	22.8	100.0	160
Total	51.4	35.1	10.6	1.2	7.9	0.4	26.4	1.7	0.1	0.1	34.4	23.5	15.7	8.2	100.0	2,658
CURRENTLY MARRIED MEN																
15.19	*	*	*	*	*	*	*	*	*	*	*	*	*	*	100.0	14
20.24	60.5	43.1	13.0	1.5	4.6	1.0	36.8	1.4	0.0	0.0	38.9	26.5	17.7	5.6	100.0	216
25.29	59.5	43.9	10.9	0.5	6.0	0.0	34.9	0.9	0.0	0.2	39.2	31.2	21.0	5.5	100.0	294
30-34	70.1	48.6	18.3	1.3	15.5	0.1	33.6	3.0	0.0	0.3	51.7	37.4	27.0	9.6	100.0	316
35-39	69.1	42.0	17.2	1.9	17.2	0.9	24.1	1.0	0.0	0.1	52.7	39.8	23.3	13.1	100.0	257
40-44	72.5	41.9	22.1	2.2	18.2	0.2	26.0	4.3	0.0	0.0	54.7	34.9	21.4	18.5	100.0	226
45-49	62.9	35.2	15.7	1.9	11.7	0.0	19.4	3.5	0.0	0.0	48.3	30.2	18.1	16.1	100.0	242
50.54	69.5	33.1	13.8	4.6	11.4	0.0	20.2	5.7	2.0	0.0	57.4	31.4	23.5	24.1	100.0	152
Total	66.0	41.9	15.8	1.8	12.1	0.3	28.7	2.6	0.2	0.1	48.1	33.2	21.7	12.2	100.0	1,718
SEXUALLY ACTIVE UNMARRIED MEN ${ }^{1}$																
15-19	34.5	34.1	1.4	0.0	0.2	0.3	33.9	0.0	0.0	0.0	10.4	4.2	6.2	0.0	100.0	151
20-24	54.9	54.6	0.1	0.4	0.4	0.2	54.6	0.0	0.0	0.0	17.3	13.0	9.6	0.2	100.0	109
$25+$	42.7	41.4	0.0	1.0	0.0	1.0	41.4	0.0	0.0	0.0	9.6	7.9	2.4	0.0	100.0	39
Total	43.0	42.5	0.8	0.3	0.2	0.4	42.5	0.0	0.0	0.0	0.1	12.7	7.9	6.9	100.0	300

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
'Sexually active unmarried men are those who have had sexual intercourse in the 30 days prior to interview.

3.3 Current Use of Contraception

Tables 3.4.1 and 3.4.2 show the percentage of women and men currently using specific methods of family planning by age. Approximately one out of five currently married women is currently using some method of family planning (22 percent), while two out of five currently married men are using a method (40 percent). The higher levels of use among men are chiefly due to the reporting of higher levels of use of periodic abstinence (the most commonly reported method among men), and condoms. Only two-thirds of use among women and half of use among men involves modern methods. Injectables are the most commonly used modern method among currently married women (6 percent); all other modern methods are used by less than 5 percent of women (see Figure 3.2). The most commonly used modern methods among currently married men are the condom (7 percent), injectables (6 percent), and pills (5 percent).

The current levels of contraceptive use reflect an increase in use since the 1992 MDHS. Use of any modern method doubled from 7 to 14 percent among currently married women, and increased from 13 to 21 percent among currently married men. Much of the increase is due to greater use of injectables.

Table 3.4.1 Currentuse of family planning: women
Percent distribution of all women and of currently married women and of sexually active unmarried women by contraceptive method currently used, according to age, Malawi 1996

Age	Any method	Modern method							Traditional method			Not currently using	Total	Number of women
		Any modern method	Pill	IUCD	In-jectables	Condom	Female steri-lisation	$\begin{gathered} \text { Im: } \\ \text { plants } \end{gathered}$	Any trad. method	Periodic abstinence	With-drawal			
ALL WOMEN														
15-19	6.3	3.7	0.9	0.0	0.5	2.3	0.0	0.0	2.6	1.4	0.5	93.7	100.0	618
20-24	20.8	13.7	6.6	0.1	3.0	3.4	0.5	0.0	7.1	1.9	2.2	79.2	100.0	526
25-29	19.7	12.6	2.4	0.2	5.6	1.4	2.8	0.1	7.2	1.9	2.5	80.3	100.0	391
30-34	25.2	19.4	2.6	0.3	11.1	2.0	3.4	0.0	5.8	0.9	1.8	74.8	100.0	368
35-39	26.2	16.2	2.6	1.0	8.6	0.8	3.2	0.0	10.0	3.4	0.8	73.8	100.0	270
40-44	21.0	14.5	2.0	0.3	6.7	1.4	4.1	0.0	6.6	1.0	0.7	79.0	100.0	313
45.49	17.4	11.2	0.0	1.0	3.0	0.3	6.8	0.0	6.2	1.3	0.9	82.6	100.0	196
Total	18.2	12.2	2.7	0.3	4.9	2.0	2.3	0.0	6.1	1.6	1.4	81.8	100.0	2,683
CURRENTLY MARRIED WOMEN														
15-19	10.7	6.0	2.6	0.0	1.5	1.9	0.0	0.0	4.7	2.1	1.4	89.3	100.0	207
20-24	22.7	14.3	7.7	0.0	3.5	2.5	0.7	0.0	8.4	2.3	2.7	77.3	100.0	419
25-29	18.1	11.4	2.4	0.2	5.4	1.3	1.9	0.1	6.7	2.1	2.7	81.9	100.0	355
30-34	26.0	20.2	2.9	0.3	11.9	1.9	3.0	0.0	5.8	1.0	2.0	74.0	100.0	329
35-39	28.4	17.7	2.0	1.2	10.0	0.9	3.6	0.0	10.8	3.9	0.9	71.6	100.0	230
40.44	24.2	16.4	2.4	0.3	7.9	1.6	4.1	0.0	7.9	1.0	0.8	75.8	100.0	257
45.49	20.9	12.8	0.0	1.3	4.0	0.2	7.2	0.0	8.1	1.7	1.1	79.1	100.0	150
Total	21.9	14.4	3.4	0.4	6.4	1.6	2.5	0.0	7.5	2.0	1.9	78.1	100.0	1,947

SEXUALLY ACTIVE UNMARRIED WOMEN ${ }^{1}$

$15-19$	(11.2)	(7.0)	(0.0)	(0.0)	(0.0)	(7.0)	(0.0)	(0.0)	(4.2)	(0.0)	(0.0)	(88.8)	100.0	48
$20-24$	(27.6)	(27.6)	(2.6)	(1.0)	(1.5)	(22.6)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(72.4)	100.0	25
$25+$	(34.1)	(23.1)	(1.1)	(0.0)	(15.6)	(6.4)	(0.0)	(0.0)	(11.0)	(1.7)	(0.0)	(65.9)	100.0	21
Total	20.7	16.1	0.9	0.3	3.9	11.0	0.0	0.0	4.6	0.4	0.0	79.3	100.0	94

[^4]Since 1992, use of injectables among women in their early 30 s increased from 1 to 12 percent. In fact, use of modern methods has increased among all age groups since the MDHS, among both women and men (Figures 3.3.1 and 3.3.2). Women under age 20 report increased use of the pill, from 1 to 3 percent. Women in their early 20 s also report higher levels of pill use (from 2 to 8 percent), and greater use of injectables. The highest levels of use among women are observed among women in their 30 s , who primarily use injectables. Women in their early 40 s also rely primarily on injectables, and women in their late 40 s increasingly use sterilisation.

The highest levels of use among currently married men are among those in their 30s and early 40s, and their increased levels of prevalence are primarily due to increased use of injectables. The increase in prevalence among men in their early 20 s is primarily due to increased use of the pill.

Table 3.4.2 Current use of family planning:_men
Percent distribution of all men and of currently married men and of sexually active unmarried men by contraceptive method currently used, according to age, Malawi 1996

Age	Any nethod	Modern method								Traditional method			Not currently using	Total menNumber of	
		Any modern method	Pill	IUCD	In-jectables	Condom	Fernale steri-lisation	Male steri- lisa- tion	Implants	Any trad. method	Periodic abstinence	With-drawal			
ALL MEN															
15-19	6.3	6.1	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.2	0.2	0.0	93.7	100.0	572
20-24	21.1	14.2	2.6	0.2	0.3	10.6	0.6	0.0	0.0	6.9	4.2	1.3	78.9	100.0	492
25-29	30.8	18.5	3.0	0.1	2.5	12.1	0.6	0.0	0.1	12.3	9.6	1.8	69.2	100.0	351
30.34	43.9	23.7	7.5	0.1	6.4	6.8	2.8	0.0	0.1	20.1	15.3	2.4	56.1	100.0	338
35-39	43.6	25.2	6.9	0.5	11.0	5.8	0.9	0.0	0.0	18.5	15.1	1.7	56.4	100.0	265
40-44	42.8	25.0	4.1	0.2	12.5	4.3	3.8	0.0	0.0	17.8	8.3	2.2	57.2	100.0	231
45.49	38.1	17.0	5.2	0.5	5.2	2.8	3.2	0.0	0.0	21.1	13.9	2.2	61.9	100.0	249
50.54	38.9	19.3	1.3	1.5	5.0	4.4	5.2	1.9	0.0	19.6	11.7	4.1	61.1	100.0	160
Total	28.9	16.8	3.4	0.3	4.2	7.2	1.6	0.1	0.0	12.1	8.3	1.6	71.1	100.0	2,658
CURRENTLY MARRIED MEN															
15-19	*	*	*	*	*	*	*	*	*	*	*	*	*	100.0	14
20-24	30.2	14.8	5.8	0.4	0.4	6.8	1.4	0.0	0.0	15.4	9.2	2.9	69.8	100.0	216
25-29	35.0	20.5	3.6	0.1	3.0	12.9	0.7	0.0	0.1	14.5	11.4	2.1	65.0	100.0	294
30-34	46.2	24.6	8.1	0.1	6.8	6.4	3.0	0.0	0.1	21.6	16.4	2.6	53.8	100.0	316
35.39	43.9	24.9	7.1	0.5	11.4	5.0	0.9	0.0	0.0	19.0	15.5	1.7	56.1	100.0	257
40-44	43.7	25.5	4.2	0.2	12.8	4.4	3.9	0.0	0.0	18.2	8.5	2.3	56.3	100.0	226
45-49	39.2	17.5	5.4	0.5	5.4	2.9	3.3	0.0	0.0	21.7	14.3	2.3	60.8	100.0	242
50.54	41.0	20.3	1.4	1.6	5.2	4.6	5.4	2.0	0.0	20.6	12.3	4.3	59.0	100.0	152
Total	39.9	21.4	5.3	0.4	6.4	6.5	2.5	0.2	0.0	18.5	12.7	2.5	60.1	100.0	1,718
SEXUALLY ACTIVE UNMARRIED MEN ${ }^{1}$															
15-19	17.5	17.3	0.0	0.0	0.2	17.1	0.0	0.0	0.0	0.3	0.3	0.0	82.5	100.0	151
20-24	22.2	21.8	0.0	0.0	0.4	21.4	0.0	0.0	0.0	0.4	0.4	0.0	77.8	100.0	109
25+	22.3	22.3	0.0	0.0	0.0	22.3	0.0	0.0	0.0	0.0	0.0	0.0	77.7	100.0	39
Total	19.9	19.6	0.0	0.0	0.2	19.4	0.0	0.0	0.0	0.3	0.3	0.0	80.1	100.0	300

[^5]Figure 3.3.1
Trend in Current Use of Modern Methods among Currently Married Women, by Age, 1992 and 1996

Figure 3.2
Use of Specific Contraceptive Methods among Currently Married Women

Figure 3.3.2
Trend in Current Use of Modern Methods among Currently Married Men, by Age, 1992 and 1996

Although their method use differs, sexually active unmarried women and men report roughly the same levels of current use as the married population. Sixteen percent of sexually active unmarried women and 20 percent of sexually active unmarried men are currently using a modern method. Two-thirds of use by women and virtually all use by men involves condoms.

Differentials in Current Use of Family Planning

While overall levels of contraceptive use are still fairly low in Malawi, Tables 3.5.1 and 3.5.2 show substantial use among particular subgroups of the population. Prevalence of modern methods among currently married urban women (29 percent) is more than twice that among rural women (13 percent). Much of this differential is due to greater use of injectables among urban women (14 percent of currently married women). Prevalence among women increases sharply with increasing education, from 9 percent of women with no education to 44 percent of women with secondary or higher schooling. Prevalence of modern methods is fairly uniform across the regions of Malawi; however, the Central and Southern regions exhibit a greater reliance on injectables, while the Northern region exhibits a more varied method mix including the pill, injectables, and condoms. Prevalence also increases with the number of living children. Differentials in use among men reflect the same general patterns observed among women.

Figures 3.4.1 and 3.4.2 show the percentage of currently married women and men who were current users of modern methods in 1992 and 1996 by background characteristics. Prevalence of modern methods has increased substantially in all subgroups, among both women and men. For example, use of modern methods among men with no education has increased from 5 to 18 percent. The differentials in use across subgroups that were found in the MKAPH are also evident in the MDHS.

Table 3.5.1 Current use of family planning by background characteristics: women

Percent distribution of currently married women by contraceptive method currently used, according to selected background characteristics, Malawi 1996

		Modem method							Traditional method				Not currently using	Total	Number of women
Background characteristic	Any method	Any modern method	Pill	IUCD	$\begin{aligned} & \text { In- } \\ & \text { ject- } \\ & \text { ables } \end{aligned}$	Condom	Female steri-lisation	Implants		Periodic abstinence	With-drawal	Other trad. method			
Residence															
Urban	36.0	28.7	4.8	1.5	14.0	2.7	5.5	0.2	7.3	2.7	2.2	2.4	64.0	100.0	233
Rural	20.0	12.5	3.2	0.2	5.4	1.5	2.1	0.0	7.5	1.9	1.8	3.8	80.0	100.0	1,715
Region															
Northern	27.3	15.0	4.7	0.1	3.8	3.8	2.5	0.1	12.4	1.4	9.0	1.9	72.7	100.0	249
Central	23.1	15.2	3.9	0.1	6.9	1.5	2.9	0.0	7.9	2.3	0.8	4.8	76.9	100.0	789
Southem	19.3	13.6	2.7	0.7	6.8	1.2	2.2	0.0	5.7	1.9	0.9	3.0	80.7	100.0	910
Educational level															
No education	16.1	9.3	1.8	0.0	4.8	0.7	1.9	0.0	6.8	2.1	0.9	3.8	83.9	100.0	869
Primary	24.3	16.6	4.1	0.4	7.4	2.2	2.6	0.0	7.6	1.8	2.6	3.3	75.7	100.0	1,001
Secondary and higher	56.4	44.1	12.8	4.5	13.3	4.9	8.1	0.5	12.3	3.5	3.2	5.7	43.6	100.0	77
No. of living children															
0	2.9	1.8	0.9	0.0	0.0	0.9	0.0	0.0	1.1	1.1	0.0	0.0	97.1	100.0	248
1	17.2	8.3	3.8	0.0	1.2	2.0	1.4	0.0	8.9	3.1	2.6	3.1	82.8	100.0	356
2	23.4	15.4	6.3	0.4	4.5	1.9	2.2	0.1	8.0	1.9	3.4	2.7	76.6	100.0	342
3	23.1	17.4	5.6	0.8	5.9	1.8	3.3	0.0	5.7	1.8	1.6	2.3	76.9	100.0	287
4+	29.6	20.2	1.9	0.5	12.4	1.6	3.8	0.0	9.4	1.9	1.5	6.0	70.4	100.0	715
Total	21.9	14.4	3.4	0.4	6.4	1.6	2.5	0.0	7.5	2.0	1.9	3.6	78.1	100.0	1,947

Table 3.5.2 Current use of family planning by background characteristics: men
Percent distribution of currently married men by contraceptive method currently used, according to selected background characteristics, Malawi 1996

		Modern method								Traditional method				Not currently using	Total	Number of men
Background characteristic	Any method	Any modern method	Pill	IUCD	In-jectables	Condom	Female steri-lisation	Male steri-lisation	Implants	Any trad. method	Periodic abstinence	With-drawal	Other trad. method			
Residence																
Urban	52.2	34.0	5.9	1.8	12.4	7.9	5.4	0.3	0.3	18.2	14.7	1.1	2.4	47.8	100.0	239
Rural	37.9	19.3	5.2	0.2	5.5	6.3	2.0	0.1	0.0	18.6	12.3	2.7	3.5	62.1	100.0	1,479
Region																
Northern	33.0	17.5	5.1	0.5	2.3	8.5	1.1	0.0	0.0	15.5	5.7	7.2	2.7	67.0	100.0	201
Central	45.1	21.9	6.4	0.2	7.6	5.0	2.7	0.0	0.0	23.2	17.3	2.5	3.3	54.9	100.0	720
Southern	36.9	21.8	4.4	0.6	6.4	7.4	2.6	0.4	0.1	15.1	10.3	1.2	3.6	63.1	100.0	797
Educational level																
No education	33.2	17.7	4.3	0.0	4.3	6.5	2.5	0.1	0.0	15.6	13.7	1.2	0.7	66.8	100.0	373
Primary	38.8	18.7	4.8	0.1	6.3	5.8	1.6	0.0	0.0	20.1	12.5	3.2	4.5	61.2	100.0	1,129
Secondary and higher	56.9	41.7	9.8	2.8	10.6	10.1	6.8	1.2	0.2	15.2	11.8	1.0	2.4	43.1	100.0	216
No. of living children																
0	3.2	2.4	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.7	0.6	0.0	0.1	96.8	100.0	184
1	32.5	18.3	5.1	0.0	1.8	9.3	2.1	0.0	0.0	14.2	9.2	3.9	1.2	67.5	100.0	314
2	47.7	23.8	7.0	0.6	3.5	11.0	1.4	0.1	0.1	23.9	17.2	4.1	2.7	52.3	100.0	280
3	38.6	22.9	7.1	1.1	5.0	7.0	2.6	0.0	0.1	15.7	13.7	0.8	1.2	61.4	100.0	239
4+	50.1	26.2	5.6	0.4	11.9	4.4	3.6	0.4	0.0	23.9	15.3	2.4	6.2	49.9	100.0	700
Total	39.9	21.4	5.3	0.4	6.4	6.5	2.5	0.2	0.0	18.5	12.7	2.5	3.4	60.1	100.0	1,718

Figure 3.4.1
Trend in Current Use of Modern Methods among Currently Married Women, by Background Characteristics, 1992 and 1996

Figure 3.4.2
Trend in Current Use of Modern Methods among Currently Married Men, by Background Characteristics, 1992 and 1996

3.4 Number of Children at First Use of Contraception

Family planning methods can be used either for limiting family size, or for spacing or delaying births. Couples who use methods to limit their family size are using contraception after they have had as many children as they would like to have. When fertility desires are high, such couples will not use contraception until late in their reproductive lives, and will adopt contraception to stop further childbearing. Couples who use methods for spacing births will start using contraception earlier, hoping to delay a possible pregnancy. Adopting contraception for spacing purposes may be done before having any children at all or before having many births. To explore motivations for using contraception, women interviewed in the MKAPH were asked how many children they had at the time they first used a method of family planning.

Table 3.6 shows the number of children at first use of contraception among ever-married women. Approximately half of older women (age 35 and older) who have ever used a method of family planning did so for the first time only after having four or more children. Younger women (age 15-29) are more likely to first use a method after having only one or two children. Twenty-seven percent of women age of 20-24 years have already used a method of family planning by the time they have had one child; less than 10 percent of older women had done so. This indicates a trend toward earlier use of contraception in women's reproductive lives.

Table 3.6 Number of children at first use of contraception
Percent distribution of ever-married women by number of living children at the time of first use of contraception, and median number of children at first use, according to current age, Malawi 1996

Current age	Never used contraception	Number of living children at time of first use of contraception						Total	Number of women	Median number of children
		0	1	2	3	$4+$	Missing			
15-19	79.3	7.7	11.8	1.2	0.0	0.0	0.0	100.0	229	1.2
20-24	59.8	2.6	24.9	10.3	2.1	0.0	0.1	100.0	475	1.7
25-29	58.1	1.9	13.2	12.6	9.8	3.8	0.6	100.0	383	2.4
30-34	51.5	0.8	12.0	9.5	8.1	18.2	0.0	100.0	365	3.2
35-39	51.2	0.1	8.0	7.4	8.1	24.4	0.8	100.0	270	4.1
40-44	58.9	0.1	4.9	2.6	8.4	24.9	0.1	100.0	313	4.6
45-49	64.4	0.1	6.5	4.6	4.9	19.5	0.0	100.0	196	4.4
Total	59.4	1.8	13.0	7.7	6.0	11.8	0.2	100.0	2,230	2.7

Note: Median among those who have ever used contraception

3.5 Source of Supply

All current users of modern methods were asked to report the source from which they most recently obtained their methods. Table 3.7 and Figure 3.5 present the percent distribution of current users of modern methods by source of method. Most women obtained their methods from a government facility- 25 percent from government hospitals, 24 percent from government health centres, and 9 percent from government dispensaries/maternity clinics/mobile clinics. Thirty-one percent of current users reported the private medical sector (e.g., private hospitals) as their source. The remaining 10 percent are condom users who listed nonmedical sources for their condoms, predominantly shops or pharmacies. In fact, condom users are now much more likely to use shops or pharmacies to obtain condoms than they were in the past; 23 percent of women and 20 percent of men obtained condoms from shops/pharmacies in 1992, while in 1996 the proportions were 44 and 53 percent, respectively.

Table 3.7 Source of supply for modern contraceptive methods

Percent distribution of current users of modern contraceptive methods by most recent source of supply or information, according to specific methods, Malawi 1996

Source of supply	Contraceptive method				All modern methods ${ }^{1}$
	Pill	IUCD	Condom	Inject ables	
WOMEN					
Public	57.8	71.0	36.0	57.2	58.6
Government hospital	16.9	22.6	11.9	53.9	25.4
Government health clinic	33.7	33.2	15.2	3.3	24.1
Dispensary/maternal clinic	5.7	5.6	7.3	0.0	4.7
Mobile clinic	0.3	9.5	1.6	0.0	4.2
CBD worker	1.2	0.0	0.0	0.0	0.3
Medical private	41.7	27.5	10.5	39.5	31.4
Private hospital	22.2	13.8	1.6	35.9	19.0
Private health centre	0.3	7.3	0.3	0.6	3.2
Dispensary/maternal clinic	11.1	0.4	7.7	0.0	3.9
Private mobile clinic	5.5	3.3	0.0	0.0	2.6
Other private	0.0	0.4	0.0	0.0	0.1
Banja La Mtsogolo	2.5	2.4	1.0	3.0	2.7
Other private	0.5	1.5	53.5	3.3	9.9
Shop	0.0	0.0	41.8	0.0	6.7
Pharmacy	0.5	0.0	2.3	0.0	0.5
Friends/relatives	0.0	0.0	4.8	0.0	0.8
Other	0.0	0.0	3.2	0.0	0.5
Don't know/missing	0.0	1.5	1.5	3.3	1.5
Total	100.0	100.0	100.0	100.0	100.0
Number of women	73	132	52	62	327
MEN					
Public	61.5	73.1	39.2	74.0	55.7
Government hospital	18.8	31.6	18.0	67.9	27.0
Government health clinic	34.8	34.3	17.6	5.1	23.7
Dispensary/maternal clinic	3.1	5.3	1.8	0.0	2.7
Mobile clinic	0.0	1.9	0.5	0.0	0.7
CBD worker	2.4	0.0	1.1	0.0	1.0
Other public	2.4	0.0	0.2	1.0	0.7
Medical private	38.1	26.6	5.4	26.0	20.3
Private hospital	22.9	11.9	2.7	18.3	11.4
Private healih centre	0.0	6.4	0.0	0.0	1.6
Dispensary/maternal clinic	12.5	2.3	0.6	5.1	3.9
Private mobile clinic	0.0	0.4	0.0	0.0	0.1
Private doctor	0.3	0.0	0.0	0.0	0.1
Other private	0.0	0.0	0.3	0.0	0.1
Banja La Mtsogolo	2.4	5.7	1.8	2.7	3.2
Other private	0.5	0.2	55.4	0.0	23.9
Shop	0.0	0.0	52.9	0.0	22.6
Pharmacy	0.0	0.0	0.3	0.0	0.1
Bottle shop	0.0	0.0	0.1	0.0	0.0
Rest house	0.0	0.0	0.1	0.0	0.0
Friends/relatives	0.0	0.0	1.0	0.0	0.4
Other	0.0	0.0	0.0	0.0	0.1
Don't know/Missing	0.5	0.2	1.1	0.0	0.6
Total	100.0	100.0	100.0	100.0	100.0
Number of men	92	111	191	42	447

${ }^{1}$ Total for women includes eight IUCD users; total for men includes seven IUCD users, 3 users of male sterilisation and one user of implants.

Figure 3.5
Distribution of Women by Source of Supply for Modern Contraceptive Methods

Women and men who were currently using a modern contraceptive method were asked how long it takes to travel (one-way) from their home to the place where they last obtained their method. The results are presented in Table 3.8. Not surprisingly, urban users are closer to their source than are rural users. Twenty-seven percent of women and 41 percent of men in urban areas are within 30 minutes of their source; only 14 and 10 percent of rural women and men are within 30 minutes of their source. The majority of current users of modern methods (60 percent of women and 64 percent of men) have to travel one hour or longer to reach the source they last used.

Table 3.8 Time to source of modern contraceptive method
Percent distribution of women and men who are currently using a modern method by time to reach a source of supply, according to urban-rural residence, Malawi 1996

Time to source in minutes	Women			Men		
	Urban	Rural	Total	Urban	Rural	Total
0-14	14.3	10.3	11.3	19.1	4.5	7.7
15-29	12.6	4.1	6.2	21.7	5.9	9.3
30-59	22.0	9.7	12.8	25.8	14.7	17.1
60-119	12.7	16.1	15.2	12.4	22.9	20.6
120+	30.2	50.1	45.1	18.5	50.8	43.8
	5.0	4.9	4.9	0.2	0.0	0.0
Don't know time	3.1	4.8	4.4	2.4	1.1	1.4
Not stated						
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of respondents	83	244	327	98	349	447
Median time	45.6	>120	70.9	30.5	>120	60.9

Note: Median among rural respondents who slated a time is over 120 minutes

3.6 Reasons for Nonuse

Women and men who are not currently using a method of family planning were asked why they were not doing so. Table 3.9 presents the main reasons for not using a method among currently married women and men. ${ }^{2}$ The most common reason given by both women and men for not using a method of family planning is that they want more children (23 percent of women and 38 percent of men). Not surprisingly, this is a more common response among those under age 30 , whereas those over age 30 are more likely to report that it is difficult for them to become pregnant either because they or their partner are subfecund, menopausal, or breastfeeding. Concerns about health effects or side effects were cited by only 3 percent of women and men.

Table 3.9 Reasons for not using contraception						
Percent distribution of currently married women and men who are not using any contraceptive method, by main reason for not using, according to broad age groups, Malawi 1996						
Reason forn		Women			Men	
using contraception	<30	30-49	Total	<30	30-59	Total
Not having sex	3.2	1.8	2.5	2.8	2.0	2.3
Infrequent sex	1.2	2.3	1.7	2.3	3.4	3.0
Menopausal/hysterectomy	0.0	12.4	5.9	0.0	10.8	7.1
Subfecund/infecund	9.7	24.9	16.9	2.4	13.5	9.7
Postpartum/breastfeeding	12.0	9.1	10.6	10.7	11.6	11.3
Wants more children	31.0	13.2	22.6	56.7	28.5	38.2
Pregnant	18.8	11.3	15.2	13.2	10.4	11.3
Respondent opposed	0.8	1.3	1.0	0.4	1.0	0.8
Husband opposed	3.1	2.1	2.6	0.0	0.4	0.3
Others opposed	0.0	0.0	0.0	0.1	0.0	0.0
Religious prohibition	0.8	0.3	0.6	0.7	2.3	1.7
Knows no method	2.6	2.5	2.6	1.6	1.6	1.6
Knows no source	1.4	0.9	1.2	0.6	1.4	1.1
Health concerns	0.3	0.9	0.6	0.0	1.1	0.7
Fear of side effects	1.9	3.0	2.4	0.7	2.7	2.0
Lack of access	1.7	0.9	1.3	2.6	1.9	2.2
Inconvenient to use	0.5	2.6	1.5	0.0	0.4	0.2
Interferes with body	0.4	1.7	1.0	0.0	0.9	0.6
Other	7.4	7.4	7.4	5.1	5.4	5.3
Don't know	3.3	1.5	2.4	0.0	0.6	0.4
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of women/men	800	721	1521	354	678	1033

3.7 Exposure to Family Planning Messages on Radio

All respondents were asked whether they had heard a message on the radio about family planning during the month preceding the interview. Table 3.10 shows the percentage of women and men who reported hearing such a message, and Figures 3.6.1 and 3.6.2 compare exposure levels in the MKAPH with those in the MDHS. The percentage of women who had recently heard a family planning message on the radio has increased greatly, from only 27 percent in 1992 to 44 percent in 1996. The likelihood of having heard such a message increased among women in all subgroups; however, the differentials across groups continue to exist. For example, urban dwellers are much more likely than rural dwellers to have heard a message, and regional differences are more

[^6]pronounced than at the time of the MDHS. The percentage of men who have heard a message has also increased overall since the time of the MDHS, from 49 to 57 percent. Men of all subgroups are more likely than the women in those same subgroups to have heard a radio message, but the gender gap has narrowed since 1992.

All women and men were asked whether they consider it acceptable or unacceptable for child spacing messages to be broadcast on the radio. Table 3.11 indicates that the vast majority of Malawians find such broadcasting acceptable, and the overall level of acceptability (83 percent of women and 93 percent of men) is virtually unchanged since the MDHS. The MKAPH results show regional differences among women that were not evident in the MDHS data. While only 10 percent of MKAPH women in the Southern region reported that they found broadcasting of child spacing messages unacceptable, 20 percent of women in the Central region expressed such an opinion.

Figure 3.6.1
Percentage of Women who Heard a Family Planning Message on the Radio, 1992 and 1996

KMDHS 1992 -MKAPH 1996

Figure 3.6.2
Percentage of Men who Heard a Family Planning Message on the Radio, 1992 and 1996

Table 3.11 Acceptability of media messages on family planning

Percent distribution of women and of men by acceptability of messages about family planning on the radio, by selected background characteristics, Malawi 1996

| | Acceptability of family planning | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| messages on radio | | | | |

CHAPTER 4

CHILD HEALTH

This chapter presents data concerning vaccination coverage and reported illnesses in children under five years of age. The data show how vaccination coverage, illnesses, and related treatment vary with background characteristics of children and their caretakers. Subgroups of children who appear less likely to be fully immunised, more susceptible to illness, and less likely to receive appropriate treatment are identified. This information may be used to assess and improve immunisation and primary health care programmes in Malawi.

In the vast majority of cases (94 percent), the principal caretaker for children under age five is the natural mother. In the remaining 6 percent of cases, when the mother was not a household resident, the caretaker was the person most responsible for the routine care of the child. The presence in the household of a child under age five and the identity of the mother or other principal caretaker were ascertained by means of the household schedule.

4.1 Vaccinations

To facilitate evaluation of the Expanded Programme on Immunization (EPI) in Malawi, the MKAPH collected information on vaccination of all children born in the five years preceding the survey. The EPI schedule in Malawi calls for children to receive one dose of BCG vaccine, three doses of DPT vaccine, at least three doses of oral polio vaccine (OPV), and one dose of measles vaccine before the first birthday. BCG is for protection against tuberculosis. DPT protects against diphtheria, pertussis, and tetanus.

Information on vaccination coverage was collected in two ways: from vaccination cards shown to interviewers by the caretakers of children under five and from the verbal reports of caretakers. When caretakers of eligible children were able to produce the cards for inspection, interviewers recorded vaccination dates directly from the cards. Verbal reports were relied on when vaccination cards were presented, but particular vaccinations had not been recorded on the card. In such cases, the caretaker was asked to recall whether a particular vaccine had been given. If the caretaker was not able to provide a card for the child, she was asked to recall whether the child had received each of the required BCG, OPV, DPT and measles vaccinations.

Information on vaccination coverage is presented in Table 4.1. Information in this table is based on the child's health card or the caretaker's report as described above. Data are presented for children 12-23 months, the age range by which children should be fully vaccinated. Of these children, 89 percent had health cards that were seen by the interviewers. The caretakers of the remaining 11 percent of children did not produce health cards for inspection.

Based solely on the evidence of health cards, it is estimated that 88 percent of all children 12-23 months had received a BCG vaccination against tuberculosis. An additional 10 percent of these children had been immunised with BCG according to their caretakers' reports. In all, 98 percent of children aged 12-23 months were reported to have received BCG according to cards or caretaker reports. This proportion is about the same as the percentage reported in the 1992 MDHS (97 percent). According to the MKAPH, 97 percent of children aged 12-23 months had received BCG before age 12 months compared with 95 percent in the 1992 MDHS (see Figure 4.1).

In Table 4.1, coverage for DPT1 and OPV1 is about the same as for BCG. Prevalence of DPT1 and OPV1 received at any time before the survey is 98 and 99 percent, respectively. Before the first birthday, 97 percent of children received DPT1 and 98 percent received OPV1.

Table 4.1 Vaccinations by source of information

Percentage of children 12-23 months who had received specific vaccines at any time before the survey, by whether the information was from the vaccination card or from the mother, and the percentage vaccinated by 12 months of age, Malawi 1996

Background characteristic	BCG	DPT1	DPT2	DPT3	Polio1	Polio2	Polio3	Measles	All

Vaccinated at any time before survey												
Vaccination card	88.4	88.0	86.3	83.0	88.9	86.8	83.9	78.9	76.1	0.0	88.9	378
Mother's report	9.5	9.5	9.5	8.4	9.5	9.5	5.3	9.4	5.2	1.5	11.1	47
Either source	97.9	97.5	95.8	91.4	98.5	96.3	89.1	88.3	81.3	1.5	100.0	425
Vaccinated by 12 months of age	97.2	96.7	91.7	81.2	97.6	93.2	82.8	67.9	54.5	1.6	100.00	425

Note: For children whose information was based on the mother's report, the proportion of vaccinations given during the first year of life was assumed to be the same as for children with a written record of vaccination.
${ }^{1}$ Children who are fully vaccinated (i.e., those who have received BCG, measles and three doses of DPT and polio).

Figure 4.1
Percentage of Children Age 12-23 Months Who Received Specific Vaccinations by 12 Months of Age

Note: Date based on vaccination cards and mothers reporta
MKAPH 1996

Some attrition in coverage of DPT and OPV occurs between the first and third vaccinations. As seen in Table 4.1, the coverage of DPT given any time before the survey goes from 98 percent at the first vaccination to 96 percent at the second and 91 percent at the third (a drop in coverage of 7 percent). Prevalence of OPV1-3 at any time before the survey falls from 99 percent for the first vaccination to 96 percent for the second and 89 percent for the third, a drop of 10 percent. In the 1992 MDHS, the attrition for both DPT and OPV was about 10 percent.

There is also some attrition in the proportion of children receiving DPT coverage by the first birthday. The proportion vaccinated in the first year of life drops from 97 percent for DPT1 to 92 percent for DPT2 and 81 percent for DPT3. This represents a dropout rate of 16 percent compared with 12 percent in 1992. OPV1 coverage in the first year is 98 percent compared with 93 percent for OPV2 and 83 percent for OPV3. This represents a dropout rate of 15 percent for OPV compared with 12 percent reported by the 1992 MDHS.

According to the MKAPH, prevalence of measles vaccination received at any time before the survey is 88 percent. Sixty-eight percent of children received a measles vaccination by 12 months of age. By comparison, the 1992 MDHS reported that 86 percent of children aged 12-23 months had been immunised against measles, while 70 percent received the measles vaccination before their first birthday.

In Table 4.1, complete vaccination at any time before the survey among children 12-23 months is 81 percent, while 55 percent of children are reported to have been fully vaccinated before their first birthday. The 1992 MDHS reported that 82 percent of children 12 to 23 months were completely vaccinated at the time of the survey and 67 percent had received all the required vaccinations before age one. The objective of the EPI in Malawi is for children to receive all recommended vaccinations by the first birthday.

Table 4.2 reports vaccination coverage among children aged 12-23 months by background characteristics. The proportion of boys who had received all vaccinations (84 percent) is slightly higher than the corresponding proportion of girls (78 percent). The proportion of children fully vaccinated decreases with increasing birth order from 89 percent at birth order one to 74 percent at six and above. Complete coverage in urban areas (88 percent) is higher than in rural areas (80 percent).

There is a marked difference in level of complete vaccination by region which was not found in the 1992 MDHS. In Table 4.2, the Southern Region has the highest coverage (90 percent) followed by the Northern Region (82 percent) and the Central Region (73 percent). Children whose caretakers have some schooling are more likely to be completely vaccinated than those whose caretakers have no formal education.

4.2 Vitamin A Coverage

Vitamin A deficiency is a major cause of blindness in children in developing countries. Inadequate vitamin A is also associated with impaired immune responses to infection, including lower respiratory tract infection. In Malawi, the MOHP, with UNICEF support, is implementing a programme of vitamin A supplementation for children. Under this programme, tablets are administered directly to children under five years of age. Another objective of the supplementation programme is to give vitamin A to mothers within eight weeks after giving birth. The main purpose of giving mothers a dose of vitamin A is to benefit nursing infants who receive the vitamin through breast milk.

At the request of UNICEF, the MKAPH survey asked two questions to ascertain the extent of direct and indirect (maternal) vitamin A supplementation of children's diets. Caretakers of children under five were asked if the child had ever been given a vitamin A tablet. Mothers who had given birth at some time prior to the survey were asked if they had received a tablet within eight weeks after the birth of their last child. The results of these two questions appear in Tables 4.3 and 4.4 and Figure 4.2.

Table 4.2 Vaccinations by background characteristics

Percentage of children 12-23 months who had received specific vaccines by the time of the survey (according to the vaccination card or the mother's report), and the percentage with a vaccination card, by background characteristics, Malawi 1996

Background characteristic	Immunisations received										Percent with a vaccination card	Number of children
	$\overline{B C G}$	DPTI	DPT2	DPT3	Poliol	Polio2	Polio3	Measles	All	None		
Ser												
Male	98.0	98.9	96.5	92.9	99.0	97.5	90.1	90.0	84.2	1.0	89.0	226
Female	97.9	95.9	94.9	89.6	97.9	94.9	88.1	86.4	78.0	2.1	88.8	199
Birth order												
1	100.0	100.0	100.0	98.8	100.0	97.1	91.3	97.2	88.9	0.0	90.7	89
2-3	96.7	95.5	94.2	93.6	96.9	95.6	89.9	88.3	83.2	3.1	89.5	150
4-5	97.8	97.8	95.2	86.2	97.8	97.8	84.1	88.2	78.9	2.2	83.2	89
$6+$	98.0	98.0	94.9	86.0	100.0	95.1	90.6	80.3	73.6	0.0	91.6	97
Residence												
Urban	97.9	98.1	97.0	95.3	98.6	97.4	91.1	94.3	88.0	1.4	84.8	51
Rural	97.9	97.4	95.6	90.9	98.4	96.1	88.9	87.5	80.4	1.6	89.5	374
Region												
Northern	100.0	100.0	98.4	90.4	100.0	98.4	86.7	88.3	81.7	0.0	81.2	51
Central	95.8	94.6	91.3	85.8	96.8	93.5	84.5	82.9	72.9	3.2	86.7	185
Southern	99.4	99.6	99.4	97.2	99.6	98.4	94.4	93.7	89.5	0.4	93.1	189
Caretaker's education												
No education	95.7	94.7	92.6	89.0	96.7	92.6	86.8	82.3	76.5	3.3	91.2	189
Primary	99.8	99.7	98.2	92.7	99.8	99.2	91.4	92.8	85.1	0.2	89.1	210
Secondary and higher	98.3	100.0	98.9	98.9	100.0	100.0	85.9	96.0	83.6	0.0	73.8	21
All children	97.9	97.5	95.8	91.4	98.5	96.3	89.1	88.3	81.3	1.5	88.9	425

The prevalence of direct vitamin A supplementation of children's diets increases in predictable ways. As seen in Table 4.3, coverage increases as children get older and their chances of being reached by the supplementation programme increase because they are exposed to the programme repeatedly when they go to sick child clinics. Among children aged 0 through 5 months and 6 to 11 months, the prevalence of at least one dose of vitamin A is 6 percent. Aner the first birthday, coverage rises from 8 percent for children 12-23 months to 28 percent at $48-59$ months.

Vitamin A coverage varies slightly by place of residence and more strongly by level of education of the caretaker. As seen in Table 4.3, the percentage of children in urban areas who received at least one dose of vitamin A before the survey is 19 percent compared with 15 percent in rural areas. Prevalence is markedly higher among children whose caretakers have secondary or higher education (23 percent) than among those whose caretakers have primary schooling (16 percent) or no formal education (15 percent). Overall, the proportion of children receiving at least one dose of vitamin A among children $0-59$ months is 16 percent.

As seen in Table 4.4, vitamin A supplementation given to women within 8 weeks of giving birth varies by education. Thirty percent of women with secondary or higher education received vitamin A within eight weeks compared with 23 percent of women with only primary education and 22 percent of those with no formal education. In all, 23 percent of mothers reported receiving vitamin A within 8 weeks after the last birth, while another 13 percent received it afler 8 weeks.

4.3 Respiratory Infections

An important cause of sickness and death among children under five is respiratory disease. On a worldwide basis, WHO estimates that acute respiratory infection (ARI) accounts for more than 4 million deaths annually in children under five (WHO, 1995). Many of these deaths occur in Africa. The precise extent of the ARI problem in Malawi is unknown but ARI is recognised as a major cause of childhood morbidity and mortality. At outpatient clinics in Malawi, ARI in children is the second most common cause of attendance next to malaria.

Because of the importance of ARI as a public health problem, the Ministry of Health and Population (MOHP) has made respiratory infection in children a high priority. Clinicians in primary health care centres have been trained in a new syndromic protocol for diagnosing and treating children with ARI. The emphasis of this protocol is on distinguishing between the syndrome which constitutes ARI and other symptoms of respiratory infection.

The key symptom in the WHO protocol for clinical diagnosis of ARl is fast or difficult breathing due to chest problems. The protocol requires clinicians who detect fast or difficult breathing due to chest problems in a child to diagnose pneumonia, especially if the fast or difficult breathing is accompanied by chest in-drawing or harsh respiratory sounds (stridor).

The MKAPH survcy gathered information on the prevalence of ARI-related symptoms by questioning carctakers about the presence of fast or difficult breathing duc to chest problems during the two weeks preceding the interview. Information on other respiratory symptoms in children under five was also gathered. The objective was to estimate the prevalence of respiratory illness as perceived by caretakers. It should be borne in mind that morbidity data collected in surveys depend on the subjective judgements of informants, in this case caretakers of children under five, and are not validated by medical personnel.

Table 4.5 shows that 12 percent of children age $0-59$ months were reported by their caretakers as having fast or difficult breathing due to chest problems during the two weeks preceding the survey. Variations by age are not large, but there is an increase in prevalence of chest-related fast or difficult breathing at 6-11 months, an age when the immunity conferred by breastfeeding declines as a child makes the transition to other foods (see Figure 4.3). Prevalence is also noticeably higher in rural areas where 13 percent of children are reported to have shown chest-rclated breathing difficulties compared with 7 percent in urban areas.

Figure 4.2
Percentage of Children under Five Who Had Received at Least One Dose of Vitamin A by Background Characteristics

Table 4.4 Vitamin A dosage of women

Percentage of women who had given birth who received a vitamin A capsule within eight weeks of the birh of the last child and after eight weeks, by background characteristics, Malawi 1996

Background characteristic	Received a vitamin A capsule				Number of women
	Within 8 weeks after last birth	More than 8 weeks after last birh	Any time after last birth	Don't know	
Age					
15-19	22.0	8.3	30.3	0.0	161
20-24	27.4	15.6	43.1	1.9	432
25-29	26.6	12.6	39.2	0.9	364
30-34	22.8	15.4	38.2	2.3	357
35-39	22.0	11.1	33.1	1.3	261
40-44	18.4	11.0	29.4	2.0	301
45-49	14.5	7.5	22.0	5.3	187
Residence					
Urban	22.2	19.0	41.2	1.7	253
Rural	23.0	11.6	34.6	1.9	1,813
Region					
Northern	29.6	3.2	32.7	1.1	262
Central	17.9	15.3	33.2	2.9	838
Southern	25.3	12.6	37.9	1.2	966
Caretaker's education					
No education	22.3	11.7	34.0	1.9	907
Primary	22.7	13.1	35.8	1.9	1,069
Secondary and higher	30.2	13.0	43.2	1.4	89
Total	22.9	12.5	35.4	1.9	2,067

Caretakers were asked whether they tried to obtain care outside the home for children with fast or difficult breathing due to chest problems. Seventy-six percent of children with fast or difficult breathing due to chest problems had caretakers who looked for care outside the home. In terms of age of child, there is no clear pattern. The proportion of children of birth order 6 and over whose caretakers sought outside care (65 percent) was much lower than the proportion of children of lower birth orders whose caretakers sought outside care (close to 80 percent). Outside care was more prevalent in the Northern Region (87 percent) compared with the Southern (77 percent) and Central Regions (73 percent). No clear difference in the tendency to seek outside care was found by sex of child, urban-rural residence, region, or level of education of the caretaker.

Fast or difficult breathing due to chest problems is symptomatic of serious childhood illness which requires medical attention, a fact which seems to have been recognised by almost half of the caretakers. Table

Table 4.5 Prevalence of fast or difficuli breathing due to chest problems and treatment outside the home								
Percentage of children under five who had fast or difficult breathing due to chest problems during the two weeks preceding the survey and percentage whose carctakers sought care outside the home, by background characteristics, Malawi 1996								
All children								
	Percent with fast or diflicult		Percent of children with fast or difficult breathing due to chest problems receiving care from:					
Background characteristic	due to chest problems	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { children } \end{aligned}$	Any outside source	Hospitals or health centres	Shops selling medieines	Traditional healers	Other sources	Number of children
Child's age (months)								
<6	11.3	215	(66.9)	(30.3)	(36.7)	(3.3)	(0.0)	24
$6-11$	16.0	245	(90.8)	(68.5)	(14.9)	(15.8)	(2.4)	39
12-23	13.4	425	(67.4)	(46.7)	(18.9)	(8.6)	(0.0)	57
24-35	12.5	454	(83.0)	(57.5)	(23.9)	(3.4)	(4.9)	57
36-47	9.8	394	(54.3)	(32.8)	(15.9)	(0.6)	(5.0)	39
48.59	11.8	338	(88.7)	(29.5)	(54.9)	(4.4)	(4.1)	40
Sex								
Male	12.2	996	75.7	41.5	32.7	6.4	0.8	122
Female	12.5	1,075	75.8	50.2	20.3	6.0	4.7	134
Birth order								
1	16.5	414	78.8	52.0	21.3	8.5	5.2	68
2-3	12.2	718	77.8	41.2	33.3	5.9	0.9	88
4-5	9.7	485	(79.7)	(47.4)	(32.0)	(1.7)	(6.2)	47
$6+$	11.6	454	(64.9)	(45.3)	(15.6)	(7.7)	(0.0)	53
Residence								
Urban	6.8	239	74.1	53.7	15.0	6.0	0.8	16
Rural	13.1	1,832	75.9	45.5	27.0	6.2	3.0	239
Region								
Northern	9.7	283	(87.2)	(39.4)	(31.5)	(12.3)	(12.3)	27
Central	15.0	928	72.7	42.1	26.1	1.7	2.8	139
Southern	10.3	860	76.9	54.3	24.8	11.3	0.0	89
Caretaker's education								
No education	11.7	907	76.0	47.2	22.5	3.7	4.4	106
Primary	13.5	1,068	74.7	43.7	29.5	8.3	1.8	144
Secondary and higher	6.5	86	*	*	*	+	*	6
Total	12.3	2,071	75.7	46.1	26.2	6.2	2.8	256

[^7]Figure 4.3
Percentage of Children with Fast or Difficult Breathing Due to Chest Problems, by Age

centres. Prevalence of care-secking at these institutions more than doubles from 30 percent at less than 6 months of age to a a peak of 69 percent at $6-11$ months. The proportion of girls whose caretakers sought care at hospitals or health centres (50 percent) is higher than the corresponding proportion of boys (42 percent).

In terms of birth order, the highest proportion of children receiving care from clinics or hospitals (52 percent) is children of birth order 1; the lowest (41 percent) is children of birth order 2-3. Regionally, by far the highest percentage of children with ARI symptoms receiving care from health facilities is the Southern Region (54 percent) followed by the Central Region (42 percent) and the Northern Region (39 percent). Predictably, the prevalence of care received from medical facilities is higher in urban areas (54 percent) than in rural areas (46 percent).

In Table 4.5, 26 percent of children are reported to have received care from shops selling medicines. Children residing in urban areas appear much less likely to get care from shops than children in rural areas where medical facilities are less accessible. Very small proportions of children received care from traditional healers and other sources.

Table 4.6 presents the prevalence of fast or difficult breathing due to blocked nose but not chest problems. In all, 7 percent of children age $0-59$ months were reported by their caretakers to have had blocked nose problems without chest problems. Table 4.7 shows that 58 percent of these children received care from outside the home, 38 percent from hospitals or health centres, and I7 percent from shops selling medicincs. Small percentages received care from traditional healers, pharmacies, and other sources.

As seen in Table 4.8, 38 percent of children were reported to have had a cough without the ARI symptoms of fast or difficult breathing. Sixty-four percent of all children $0-59$ months who had coughs during the 2 weeks before the survey are reported to have received care from outside the home. In Table 4.8, the most prevalent source of care is hospitals or health centres (37 percent), followed by shops sclling medicines (26
percent). Very small percentages of children with a cough received care from other sources.

4.4 Diarrhoea

The World Health Organisation (WHO) has estimated that diarrhoea is responsible for more than 3 million deaths per annum worldwide among children under five (WHO, 1995). About half of these deaths are due to dehydration. Diarrhoea deaths from dehydration are preventable through oral rchydration therapy (ORT), which includes treating the child with a solution prepared from packets of oral rehydration salts (ORS). ORS packets contain salts (electrolytes) and carbohydrates (e.g., glucose, sucrose, and rice powder).

Virtually all matemal and child health (MCH) programmes in the developing world attempt to achieve widespread use of ORS or homemade solutions prepared according to specific recipes. In Malawi, the MOHP promotes the sale of ORS in pharmacies and shops and also distributes it in hospital outpatient departments and health centres. Mothers are also educated in the preparation of homemade rehydration solutions composed of maize porridge or rice water. ORT has been actively promoted by the Government of Malawi and NGOs since the mid-1980s.

The MKAPH survey asked caretakers whether diarrhoea had occurred in their children under five during the preceding two weeks and whether there was blood in the stools. Caretakers were also asked how the diarrhoea was treated. Tables 4.9, 4.10, and 4.11 prosent the reported prevalence of diarrhoca and related treatment pattems.

Table 4.6 Prevalence of fast or difficult breathing due to blocked nose

Percentage of children under five who had fast or difficult breathing due to blocked nose but not chest problems during the two weeks preceding the survey, by background characteristics, Malawi 1996

Background characteristic	Percent with fast or difficult breathing due to blocked nose but not chest problems	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { children } \end{aligned}$
Child's age (months)		
<6	2.5	215
6-11	9.1	245
12-23	6.1	425
24-35	9.1	454
36-47	6.0	394
48-59	5.4	338
Sex		
Male	7.0	996
Female	6.2	1,075
Birth order		
1	8.3	414
2-3	8.1	718
4-5	6.6	485
$6+$	2.6	454
Residence		
Urban	4.7	239
Rural	6.9	1,832
Region		
Northem	7.8	283
Central	8.3	928
Southem	4.3	860
Caretaker's education		
No education	6.3	907
Primary	6.7	1,068
Secondary and higher	6.5	86
Total	6.6	2,071

Table 4.7 Treatment outside the home of fast or difficult breathing due to blocked nose					
Pcrcentage of children under five with fast or difficult breathing due to blocked nose but not chest problems in the two weeks preceding the survey who received care from sources outside the home, Malawi 1996					
Of children with fast or difficult breathing due to blocked nose, percent who received care from:					
$\overline{\text { nny }}$ oulside source	Hospitals or health centres	$\begin{gathered} \text { Shops } \\ \text { selling } \\ \text { medicines } \end{gathered}$	Traditional healers	Other sources	Number of children
57.8	37.8	17.4	5.6	1.9	137

Table 4.8 Prevalence of courch and treatment outside the home
Percentage of children under five who had cough but not fast or diflicult breathing during the two weeks preceding the survey and percentage taken for care outside the home, by background characteristics, Malawi 1996

Background characteristic	All children		Percent of children with cough but not fast or diflicult breathing receiving care from:					
	Percent with cough	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { children } \end{aligned}$	Any outside source	Hospitals or health centres	Shops selling medicines	Traditional healers	Other sources	Number of children
Child's age (months)								
<6	37.4	215	60.9	41.0	21.2	0.0	1.0	80
6-11	42.5	245	75.7	39.4	32.5	2.6	3.7	104
12-23	38.1	425	64.1	36.2	26.3	2.5	0.5	162
24-35	37.4	454	66.3	44.0	21.6	2.6	0.5	170
36-47	34.8	394	58.6	32.6	26.3	0.0	1.9	137
48-59	36.3	338	57.4	27.4	30.8	0.8	1.4	123
Sex								
Male	35.4	996	63.6	34.6	29.3	0.8	1.2	353
Female	39.4	1,075	63.9	38.6	23.8	2.2	1.6	424
Birth order								
1	34.9	414	58.7	39.2	15.6	1.4	2.7	144
2-3	36.0	718	66.7	37.7	29.2	2.6	1.8	259
4-5	41.4	485	63.2	36.5	26.3	0.4	0.6	201
$6+$	38.0	454	64.3	33.8	30.8	1.4	0.5	172
Residence								
Urban	38.3	239	70.1	41.3	28.1	0.3	1.3	92
Rural	37.4	1.832	62.9	36.2	26.1	1.7	1.4	685
Region								
Northern	45.5	283	78.0	35.2	36.9	3.4	4.6	129
Central	32.6	928	52.8	28.9	23.3	0.6	0.7	303
Southern	40.1	860	68.1	44.3	25.0	1.7	0.8	345
Caretaker's education								
No education	37.9	907	59.5	35.0	24.2	2.2	1.4	344
Primary	37.7	1,068	66.5	37.5	28.0	1.2	1.5	402
Secondary and higher	30.3	86	80.8	48.1	32.1	0.0	0.5	26
Total	37.5	2,071	63.8	36.8	26.3	1.6	1.4	776

Table 4.9 gives the prevalence of diarrhoca in children under five. Overall, 16 percent of children 0-59 months of age were reported to have had diarrhoca during the two weeks preceding the survey. Two percent of children were reported to have experienced bloody diarrhoea. Diarrhoca prevalcnce increases with age to a peak at 6-11 months (37 percent) and then falls at older ages. A similar pattern is observable for bloody diarrhoea. Variations by other background characteristics are small.

Table 4.10 shows treatment pattems for children with diarrhoea. In all, 49 percent of children with diarrhoea during the two weeks preceding the survey received care from outside the home. Place of residence and education of caretaker are the background factors most strongly related to outside treatment. Fifty percent of rural children with diartoea are reported as having received care from outside the home compared with only 38 percent of urban children. Regionally, prevalence is highest in the Northem Region where 66 percent of children received outside care compared with 50 percent in the Central Region and 43 percent in the Southern Region. Predictably, prevalence is higher among children whose caretakers had at least primary education than among children with caretakers who had no education.

Caretakers of 32 percent of children classified as being ill with diarrhoea reported that they sought care from a hospital or hcalth centre. Caretakers of 11 percent of children tried to obtain care at shops sclling medicines, while 4 percent consulted traditional healcrs.

In Table 4.10, age of child and education of caretaker are related to the likelihood of receiving care from a hospital or clinic. In terms of age of child, prevalence of modern medical facilities as a source of care peaks at $6-11$ months when children start losing the protection of breastfeeding. Having a caretaker with secondary or higher education is more likely to result in outside care than if the child's caretaker has primary education or no education.

Table 4.11 shows the reported use of ORS and other forms of oral rehydration therapy. Overall, 50 percent of children with diarrhoea were given ORS. ORS usc peaks at 62 percent in the $24-35$ month age group. Fifty-three percent of boys with diarrhoca received ORS compared with 46 percent of girls. Prevalence was higher among birth orders 4 and above compared with lower birth orders. Use of ORS in rural areas (51 percent) is markedly higher than in urban areas (41 percent).

Five percent of children received recommended home fluids (RHF), while 51 percent received increased fluids. As expected, the prevalence of some type of ORT is strongly associated with increasing education of caretaker and is also more prevalent among children living in urban areas compared with their rural counterparts. Thirty percent of children with diarthoea received no ORT (neither ORS nor RHF). As recommended in primary health care settings in Malawi, 61 percent of children with diarrhoea received the same amount or more food.

Table 4.10 Sources of treatment for diarrhoea

Percentage of children under five who had diarrhoea during the two weeks preceding the survey and percentage who received care from sources outside the home, by background characteristics, Malawi 1996

Background characteristic	Percent of children under five with diarrhoea receiving care from:					Number of children with diarthoea
	Any outside source	Hospitals or health centres	Shops selling medicines	Traditional healers	Other sources	
Child's age (months)						
<6	*	*	*	*	*	16
6-11	57.5	37.1	8.0	6.9	6.3	90
12-23	48.1	31.5	12.0	3.7	2.6	138
24-35	42.8	30.0	10.8	0.0	3.0	53
36-47	(38.6)	(24.6)	(13.1)	(0.8)	(0.0)	28
48-59	*	*	*	*	*	7
Sex						
Male	49.0	31.3	9.2	6.4	3.5	180
Fernale	49.0	32.4	13.5	1.1	4.0	152
Birth order						
1	48.8	29.8	11.4	8.1	3.6	80
2-3	47.8	30.0	10.9	4.1	2.7	120
4.5	45.8	30.0	11.0	2.4	2.4	68
$6+$	54.9	39.4	11.7	0.0	7.4	64
Residence						
Urban	38.3	28.8	9.2	2.8	0.4	34
Rural	50.2	32.2	11.4	4.1	4.1	298
Region						
Northem	65.5	32.2	13.2	5.9	16.1	41
Central	49.6	31.3	13.3	2.7	3.8	156
Southern	43.3	32.2	8.2	4.8	0.0	136
Caretaker's education						
No education	43.6	29.8	8.5	2.0	4.7	142
Primary	52.1	32.5	12.6	5.9	3.3	175
Secondary and higher	(50.1)	(39.4)	(9.6)	(0.0)	(1.1)	12
Total	49.0	31.8	11.2	3.9	3.8	333

Note: Figures in parentheses are based on 25-49 children. An asterisk indicates that a figure is based on fewer than 25 cases and has been suppressed.

Table 4.11 Treatment of diarrhoca

Among children under five with diarthoea, the proportions who were given increased fluids, ORS, recommended home fluids (RHF), neither ORS nor RHF, and the same amount or more food, by background characteristics, Malawi 1996

Background characteristic	Percent of children under five with diarthoea who received:					Number of children
	Increased fluids	ORS	RHF	Neither ORS nor RHF	Same amount or more food	
Child's age (months)						
<6	*	*	*	*	*	16
6-11	44.4	41.0	2.5	32.1	49.0	90
12-23	51.4	54.7	7.0	26.3	59.0	138
24-35	67.3	62.2	1.4	22.5	66.2	53
36-47	(45.2)	(48.9)	(10.6)	(34.1)	(73.8)	28
48-59	*	*	*	*	*	7
Sex						
Male	50.8	53.2	7.8	29.9	55.2	180
Female	51.1	45.6	2.3	29.9	67.4	152
Birth order						
1	52.8	49.5	0.6	22.7	67.6	80
2-3	54.7	41.0	9.2	37.3	61.8	120
4-5	46.4	56.7	4.1	29.5	53.3	68
$6+$	46.6	59.0	5.1	25.6	58.4	64
Residence						
Urban	56.6	40.8	5.3	28.9	62.9	34
Rural	50.3	50.8	5.3	30.0	60.5	298
Region						
Northern	63.5	45.7	10.9	24.7	71.7	41
Central	44.6	47.0	7.2	33.0	56.5	156
Southern	54.5	54.1	1.4	28.0	62.4	136
Caretaker's education						
No education	38.5	49.2	4.3	35.6	58.8	142
Primary	57.9	50.1	5.0	27.4	60.4	175
Secondary and higher	(80.6)	(50.1)	(22.5)	(10.7)	(92.2)	12
Total	51.0	49.7	5.3	29.9	60.8	333

Note: Figures in parentheses are based on 25-49 children. An asterisk indicates that a figure is based on fewer than 25 cases and has been suppressed.

4.5 Fever

Fever is common among children in Malawi and has a number of causes including lower respiratory infoctions, malaria, and measles. In Malawi where malaria is endemic, many fevers in children are thought to be due to malaria. Because of the wide prevalence of fevers, caretakers were asked if their children under five had a fever in the previous two weeks and, if so, where treatment was obtained.

Table 4.12 shows that 45 percent of children under five were reported to have had fever in the two weeks preceding the survey. Prevalence of fever peaks at 54 percent in the 6-23 month age group (see Figure 4.4). Reported prevalence among females (48 percent) is higher than among males (42 percent). Rural prevalence (46 percent) is higher than urban (36 percent). The prevalence of fever among children whose caretakers have

Table 4.12 Prevalence of fever and treatment outside the home

Percentage of children under five who had fever during the two weeks preceding the survey and percentage taken for care outside the home, by background characteristics, Malawi 1996

Background characteristic	All children		Percent of children with fever receiving care from:					
	Percen with fever	Number of children	Any outside source	Hospitals or health centres	Shops selling medicines	Traditional healers	Other sources	Number of children
Child's age (months)								
<6	29.1	215	72.9	43.3	27.9	4.4	0.0	63
6-11	53.7	245	72.6	37.6	31.3	0.3	4.5	132
12-23	53.6	425	72.4	44.4	25.4	4.4	1.9	228
24-35	49.5	454	69.8	27.4	42.7	0.4	1.4	225
$36-47$	37.5	394	59.4	30.1	28.2	2.2	1.7	147
48-59	39.5	338	69.3	27.4	36.4	4.2	2.1	134
Sex								
Male	41.8	996	70.1	33.8	32.6	3.1	1.7	416
Female	47.6	1,075	68.7	35.1	32.7	2.0	2.3	512
Birth order								
1	48.4	414	64.9	33.4	30.8	1.9	1.6	200
2-3	44.1	718	71.1	34.7	34.0	3.8	1.5	317
4-5	43.9	485	64.8	30.0	33.2	1.8	1.8	213
$6+$	43.7	454	75.7	40.4	31.8	1.5	3.7	198
Residence								
Urban	35.6	239	75.3	44.4	30.8	1.6	1.2	85
Rural	46.0	1,832	68.7	33.5	32.8	2.6	2.1	843
Region								
Northern	43.7	283	82.7	29.2	47.2	3.5	6.8	124
Central	44.3	928	64.7	32.6	31.1	1.6	0.0	411
Southem	45.7	860	70.0	38.3	29.6	3.1	2.7	393
Caretaker's education								
No education	46.3	907	66.5	28.5	33.8	4.3	2.1	420
Primary	44.6	1,068	71.2	38.2	32.4	1.0	2.1	477
Secondary and higher	30.0	86	82.3	64.2	18.0	0.0	0.0	26
Tolal	44.8	2,071	69.3	34.5	32.6	2.5	2.0	928

secondary or higher education (30 percent) is much lower than among children whose caretakers have primary education (45 percent) or no cducation (46 percent).

As seen in Table 4.12, caretakers of 69 percent of children with fever sought care outside the home. Eighty-two percent of children whose caretakers had secondary or higher education received outside care compared with 71 percent of children whose caretakers had primary education and 67 percent whose caretakers had no education. The prevalcnce of outside care was more common in the Northern Region compared with the Southern and Central Regions. Prevalence was also higher in urban areas (75 percent) compared with rural areas (69 percent).

Thirty-five percent of children received care from hospitals or health centres and 33 percent from shops selling medicines. Use of hospitals or health centres as sources of care is higher in urban areas as compared with rural areas, the Southern Region compared with the Central and Northerm Regions, and among children whose caretakers have secondary or higher education compared to those whose caretakers have primary education or no education.

Figure 4.4 Percentage of Children under Five with Fever in the Two Weeks
Preceding the Survey, and of Those Taken to a Hospital or Health
Centre, the Percent Diagnosed with Malaria, by Age

As a follow-up question, caretakers of children with fever who received care from a hospital or health centre were asked if the fever had been diagnosed as malarial. Whether or not these children were diagnosed as having malaria, their caretakers were also asked if malaria medication had been prescribed and whether the child had been given the prescribed medication. Establishing the total reported prevalence of malaria medication prescriptions regardless of whether there was a diagnosis of malaria is of interest because, in Malawi, the protocol for syndromic diagnosis and treatment of children under five requires clinicians to prescribe malaria medication for all fevers whether or not a clinical diagnosis of malaria can actually be made.

Table 4.13 shows that 66 percent of children who received care for fever from a hospital, health centre, or clinic were diagnosed as having malaria. Eighty-seven percent of the children who were treated for fever at medical facilities were prescribed malaria medication and 94 percent of those who received prescriptions were given the medication. In terms of background characteristics, the proportion of malaria diagnoses in children from rural areas (67 percent) was higher than the percentage (60 percent) among children from urban areas. The proportion of fever cases diagnosed as malaria also declines with increasing education of the caretaker as does the proportion of children diagnosed as having malaria who were given prescriptions for malaria medication.

Table 4.13 Treatment of fever at health facilities

Among children with fever who were taken to a hospital, health centre, or clinic for treatment, the percentage who were diagnosed with malaria, the percentage given a prescription for malaria medication, and of those given a prescription, the proportion treated with the prescribed medication, by background characteristics, Malawi 1996

Background characteristic	Children with fever laken to a hospital or health centre for treatment			Children give a prescription for malaria medication	
	Percent diagnosed as having malaria	Percent given a prescription for malaria medication	Number of children	Percent treated with prescribed malaria medication	Number of children
Child's age (months)					
<6	(48.4)	(81.1)	27	*	22
6-11	(76.1)	(93.0)	50	(90.0)	46
12-23	68.5	85.3	101	94.5	86
24.35	66.0	92.2	62	94.9	57
36-47	47.7	79.7	44	(98.3)	35
48-59	(78.4)	(83.7)	37	(99.6)	31
Sex					
Malc	66.9	86.7	141	95.0	122
Female	64.8	86.4	180	93.9	155
Birth order					
1	65.1	73.7	67	98.8	49
2-3	65.0	89.7	110	93.8	98
4-5	59.1	93.4	64	86.5	60
$6+$	72.7	87.4	80	(98.8)	70
Residence					
Urban	59.7	89.0	38	92.4	34
Rural	66.6	86.2	283	94.7	244
Region 80.8					
Northem	69.7	85.8	36	88.2	31
Central	69.0	87.6	134	96.1	117
Southern	61.9	85.7	150	94.4	129
Caretaker's education					
No education	68.2	90.0	120	96.2	108
Primary	64.1	84.9	182	93.2	155
Secondary and higher	(61.5)	(77.4)	17	(93.4)	13
Total	65.8	86.5	320	94.4	277

Note: Figures in parentheses are based on 25-49 children. An asterisk indicates that a figure is based on fewer than 25 cases and has been suppressed.

CHAPTER 5

MALARIA KNOWLEDGE AND PREVENTIVE PRACTICES

5.1 Knowledge of Malaria

Malaria is endemic in Malawi. The MOHP has therefore implemented a Malaria Control Programme designed to promote understanding of malaria transmission, how to prevent it, and how to treat malaria when it occurs. Health education focusing on understanding malaria transmission and how to prevent infection has been conducted through the mass media. Bed nets impregnated with mosquito insecticide are made available through retail outlets. Clinicians have been trained to recognise malaria symptoms and to treat them appropriately. The MOHP also has a programme to make sulphadoxine-pyrimethamine (SP) available as the first-line anti-malarial drug in medical facilities, pharmacies, and shops selling medicines. The MKAPH survey asked a number of questions designed to assess knowledge, attitudes, and practices regarding malaria prevention and treatment.

Men appear to have better knowledge of malaria transmission than women. As seen in Tables 5.1.1 and 5.1.2, 43 percent of women and 67 percent of men stated correctly that malaria can be transmitted by the bite of a mosquito. Among both sexes, proportions with this knowledge declined sharply in the oldest age groups. Knowledge of the mosquito vector was higher in urban areas compared with rural areas and rose sharply with increasing education among both men and women (Figures 5.1.1 and 5.1.2). The most frequently mentioned incorrect causes of malaria were impure food and water and exposure to cold.

Female respondents were asked what problems malaria causes during pregnancy. As Table 5.2 indicates, 27 percent of women $15-49$ correctly cited abortion or stillbirth as adverse consequences, 11 percent mentioned malarial illness in the mother, 2 percent cited anemia in the mother, and 2 percent said that babies born of mothers with malaria can suffer from low birth weight. Fifty-six percent of women questioned were aware that malaria medicine can prevent these problems. Three percent of women stated incorrectly that a fetus can get malaria from the mother. Table 5.2 shows that correct knowledge of malaria-related problems during pregnancy is much more widespread among urban women and those who are better educated.

5.2 Anti-malaria Treatment of Pregnant Women at ANC Clinics

The MKAPH survey inquired whether female respondents were pregnant at the time of interview. If a woman was pregnant, she was asked if she had visited an antenatal care (ANC) clinic during the current pregnancy and, if so, whether she had been offered malaria medieation during a clinic visit. If malaria medication had been offered, the respondent was asked if she had taken the medicine. Tables 5.3 and 5.4 report the results of these questions.

Table 5.3 shows that 40 percent of women who were pregnant at the time of the survey had visited an ANC clinic at least once during their pregnancy. The proportion visiting clinics declined with age. Fifty-five percent of uban women reported visiting a clinic compared with 38 percent of their rural counterparts. There was little difference between regions in the prevalence of visits. Thirty-eight percent of women with no education had gone for ANC care compared with 42 percent of women with primary education.

Table 5.1.1 Knowledge of malaria causation: women

Percentage of female respondents citing various causes of malaria, by background characteristics, Malawi 1996

Background characteristic	Percentage of women mentioning various causes of malaria					Number of women
	Mosquito bites	Impure food or water	Exposure to cold	Other	Don't know	
Age						
15-19	50.6	6.0	13.0	17.6	22.6	618
20-24	41.9	4.6	16.0	18.6	28.1	526
25-29	47.3	8.1	12.0	19.7	22.7	391
30-34	44.2	3.1	13.8	20.0	27.7	368
35-39	43.5	4.6	12.3	21.6	25.6	270
40-44	30.6	7.1	13.1	22.3	34.0	313
45-49	29.0	5.0	13.4	21.7	36.1	196
Marital status						
Never married	57.5	5.4	12.0	15.1	20.4	453
Currently in union	40.2	5.8	13.8	20.1	28.7	1,947
Formerly in union	38.1	3.6	14.1	24.1	25.7	283
Residence						
Urban	72.7	5.1	10.7	11.4	11.5	350
Rural	38.5	5.6	14.0	20.9	29.3	2,333
Region						
Northern	43.5	18.2	9.9	21.7	26.6	313
Central	39.5	5.9	11.1	24.7	26.8	1,118
Southern	45.8	2.0	16.6	14.7	27.3	1,253
Educational level						
No education	26.2	4.3	13.9	23.8	37.6	1,064
Primary	50.7	6.6	13.8	17.9	21.6	1,481
Secondary and higher	89.2	3.8	7.9	7.1	4.0	137
Total	42.9	5.5	13.5	19.7	27.0	2,683

Table 5.1.2 Knowledge of malaria causation: men

Percentage of male respondents citing various causes of malaria, by background characteristics, Malawi 1996

Background characteristic	Percentage of men mentioning various causes of malaria					Number of men
	Mosquito bites	Impure food or water	$\begin{gathered} \text { Exposure } \\ \text { to } \\ \text { cold } \end{gathered}$	Other	Don't know	
Age						
15-19	70.2	5.9	12.0	12.3	10.3	572
20-24	71.0	7.2	8.9	18.3	11.3	492
25-29	74.1	8.9	8.2	16.4	10.1	351
30-34	73.0	6.9	9.1	18.7	10.0	338
35-39	67.9	4.5	9.2	19.2	11.5	265
40-44	62.6	6.2	8.8	16.6	17.4	231
45-49	50.3	3.0	13.5	21.6	20.6	249
50-54	47.2	3.7	16.4	25.2	15.8	160
Marital status						
Never married	69.3	6.0	11.7	15.8	10.1	873
Currently in union	66.2	6.0	9.9	18.0	13.6	1,718
Formerly in union	61.9	12.0	6.0	26.2	14.4	67
Residence						
Urban	80.7	6.8	7.6	18.2	6.6	437
Rural	64.4	6.0	11.0	17.3	13.6	2,221
Region						
Northern	73.8	24.3	13.6	15.7	7.0	331
Central	64.5	6.9	6.3	23.3	13.8	1,084
Southern	67.6	0.7	13.2	12.9	12.7	1,243
Educational level						
No education	41.0	2.2	11.3	23.4	30.9	468
Primary	68.2	7.3	11.4	17.4	10.0	1,824
Secondary and higher	95.2	5.6	4.4	10.1	1.1	365
Total	67.1	6.2	10.4	17.5	12.5	2,658

Table 5.2 Women's knowledge of the effects of malaria during pregnancy
Percentage of women who reported various effects of malaria during pregnancy and the percentage who believe malaria medicine can prevent the adverse effects of malaria, by background characteristics, Malawi 1996

Background characteristic	Percentage of women reporting various adverse effects of malaria						Malaria medicine can prevent adverse effects	Number of women
	Abortion or stillbirth	Malaria in the mother	Malaria in the fetus	Low birth weight	Anemia	Other effects		
Age								
15-19	8.1	5.0	1.0	1.5	1.1	10.3	33.9	618
20-24	30.9	12.9	3.1	2.0	0.9	17.7	60.1	526
25-29	33.6	15.4	4.9	2.7	2.4	24.4	67.3	391
30-34	35.2	14.2	2.7	3.3	2.6	27.9	69.9	368
35-39	39.4	10.0	2.9	2.9	0.5	33.5	69.4	270
40-44	30.1	14.8	2.5	1.7	1.5	21.4	54.7	313
45-49	21.4	9.1	1.6	3.4	1.3	24.7	46.3	196
Residence								
Urban	49.2	14.3	5.2	6.6	2.9	17.3	74.3	350
Rural	23.3	10.8	2.2	1.7	1.2	21.4	53.0	2,333
Region								
Northern	29.1	27.4	3.8	0.9	0.6	22.5	68.1	313
Central	31.7	10.8	3.2	3.3	2.4	21.2	58.1	1,118
Southern	21.7	7.6	1.8	1.9	0.8	20.2	50.5	1,253
Educational level								
No education	20.0	10.0	2.1	1.6	0.9	19.3	49.1	1,064
Primary	28.9	12.2	2.6	2.6	1.5	21.5	57.8	1,481
Secondary and higher	55.1	10.4	6.9	5.1	5.3	27.1	85.5	137
Total	26.7	11.3	2.6	2.3	1.5	20.9	55.8	2,683

Figure 5.1.1
Percentage of Women who Know that Malaria Can Be
Transmitted by Mosquito Bite, by Background Characteristics

Figure 5.1.2
Percentage of Men who Know that Malaria Can Be Transmitted by Mosquito Bite, by Background Characteristics

Table 5.3 Antenatal care clinic visits
Percentage of women who were pregnant at the time of the interview, and the percentage of these who visited an antenatal care (ANC) clinic during the current pregnancy, by background characteristics, Malawi 1996

Background characteristic	Women who reported they were pregnant at time of the interview		Pregnant women who reported visiting an ANC clinic	
	Percent pregnant	$\begin{gathered} \text { All } \\ \text { women } \end{gathered}$	Percent who visited elinic	Number of pregnant women
Age				
15-19	10.2	618	(48.7)	63
20-34	17.2	1,285	39.0	221
35+	7.2	780	*	56
Residence				
Urban	10.3	350	54.5	36
Rural	13.1	2,333	38.4	305
Region				
Northern	14.7	313	(40.7)	46
Central	13.6	1,118	38.7	152
Southern	11.4	1,253	41.5	143
Educational level				
No education	13.3	1,064	(37.5)	141
Primary	12.7	1,481	41.5	188
Secondary and higher	8.9	137	*	12
Total	12.7	2,683	40.1	341

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on lewer than 25 unweighted cases and has been suppressed.

As seen in Table 5.4, 55 percent of women who visited clinics were offered malaria medication. Virtually all women (99 percent) who were offered medication said that they had taken the medicine.

5.3 Household Preventive Practices

The MKAPH survey inquired about household use of mosquito coils ${ }^{1}$, spray insecticides, and mosquito nets to combat malaria. As indicated in Table 5.5, 22 percent of households in the sample had at some time bought a mosquito coil and 5 percent had purchased one during the month preceding the interview. The prevalence of having purchased a coil at some time or in the past month was more than 5 times as high in urban areas compared with rural areas.

Table 5.4 Treatment of pregnant women with malaria medication

Percentage of currently pregnant women who were given malaria medication during antenatal clinic visits and the percentage of these women who took the medicine they were offered, Malawi 1996

Women who were given malaria medication during ANC visit		Women given malaria medicine during ANC visit who took the medicine	
Percent given malaria medicine	Number of women who visited clinic	Percent who took malaria medicine	Number of women given medicine
55.2	137	99.2	75

Table 5.5 Modern malaria preventive practices
Percentage of households which had adopted modern methods of malaria prevention, by background characteristics, Malawi 1996

Background characteristic	Reported ever buying mosquito coil	Reported buying mosquito coil in past month	Reported ever buying spray insecticide	Reported buying spray insecticide in past month	At least one mosquito net in household	All members covered by mosquito net during preceding night	Reported net purchase during past year	Average cost for last net bought (Kwachas)	Number of households
Residence									
Urban	61.7	18.7	35.9	11.1	19.8	7.3	4.5	125.3	340
Rural	16.7	3.1	4.6	0.6	5.9	2.6	1.5	136.7	2,458
Region									
Northem	21.0	5.1	9.4	2.2	16.1	5.2	7.2	102.4	312
Central	22.5	4.6	7.9	1.6	6.3	3.1	1.6	127.0	1,135
Southem	22.2	5.2	8.5	2.1	6.7	2.7	0.8	217.4	1,350
Total	22.2	4.9	8.4	1.9	7.6	3.1	1.8	133.0	2,798

Only 8 percent of households reported ever having bought spray insecticide; 2 percent had purchased spray in the past month.

Households were also questioned about their use of mosquito bed nets. Table 5.5 shows that 2 percent of households reported purchasing a bed net in the ycar preceding the survey. Predictably, purchases were more common in urban areas than in rural areas. The prevalence of purchases in the Northern Region (7 percent) was more than three times that in the Central and Southern Regions.

Complete protection of all household members with bed nets is rare. Only 3 percent of households claimed that all members were covered by a bed net during the night before the interview. Coverage of all members was more common in the Northern Region and in urban areas. Eight percent of households reported that there was at least one bod net in the household. As with other indicators of bed net usage, households with at least one net were more prevalent in the Northerm Region and urban areas.

[^8]Regional and urban-rural differences in the extent of bed net usage may be due in part to cost. Compared with the Northern Region, the reported average cost of nets was more than 25 percent higher in the Central Region and more than twice as high in the Southern Region. In rural areas, the reported average cost was 9 percent higher than in urban areas.

Table 5.6 presents reported use of traditional malaria preventive practices in households. Thirty-one percent of households reported burning leaves or herbs, while 14 percent burned or spread animal dung, and 20 percent burned a fire in the house. Reported use of traditional preventive practices was much more common in rural areas and in the Central and Southern Regions compared with the Northern Region.

The prevalence of appropriate knowledge and practices

Table 5.6 Traditional malaria preventive practices
Percentage of households which reported using traditional malaria preventive practices, by background characteristics, Malawi 1996

Background characteristic	Traditional malaria preventive practice			Number of households
	Burning leaves or herbs	Burning or spreading animal dung	Burning a fire in the house	
Residence				
Urban	12.2	2.3	5.6	340
Rural	33.9	15.4	21.9	2,458
Region 3.6				
Northern	14.4	3.6	7.0	312
Central	24.6	11.5	22.0	1,135
Southern	40.8	18.1	21.2	1,350
Total	31.3	13.8	19.9	2,798

CHAPTER 6

HIV/AIDS AND OTHER STDS

Acquired immune deficiency syndrome (AIDS) and other sexually transmitted diseases (STDs) are recognised as important public hcalth problems in Malawi. In 1995, among women attending antenatal clinics, the reported seroprevalence of the human immunodeficiency virus (HIV), which causes AIDS, was 25 percent in urban areas, 18 percent in peri-urban areas, and 10 percent in rural clinics. Syphilis seroprevalence among antenatal clinic attenders ranged from no cases at Thonje rural site in Dowa to 12 percent among women attending the clinic at Mulanje Mission Hospital (AIDSEC, I994).

Prevention campaigns for AIDS and STDs have been launched throughout Malawi by MOHP through the National AIDS Control Programme (NACP). AIDS programmes are also being carried out by the Ministry of Education and Culture, the Ministry of Women and Children Affairs, and nongovernmental organisations (NGOs). Condoms are being made available through frce distribution and social marketing.

AIDS control programmes arc bcing expanded with particular emphasis on rural areas, schools, work sites, the armed forces, and police. Informal sectors such as bar girls and truck drivers are also being targeted. At the request of the NACP, the MKAPH survey asked questions designed to assess knowledge of AIDS/STDrelated health issues among women $15-49$ and men aged $15-54$. The survey also inquired about behaviour related to the transmission of AIDS and STDs.

6.1 Awareness of STDs

All female and male respondents were asked "Which [sexually transmitted] diseases do you know?" Respondents were not prompted with the names of specific STDs. Results are presented in Tables 6.1.1 and 6.1.2.

AIDS is by far the best-known STD. Knowledge of STDs is more prevalent among men than women, but the difference in prevalence between the sexes is less for AIDS than other STDs. The deadly nature of AIDS and the many health education programmes that focus on it probably account for the fact that it is the most widely recognised STD.

As seen in Tables 6.1.1 and 6.1.2, 85 percent of women and 92 percent of men reported that they knew of AIDS. By comparison, 57 percent of women and 73 percent of men reported knowledge of syphilis. For gonorrhoea, the percentages were 58 percent for women and 70 percent for men. Forty-four percent of women and 63 percent of men mentioned "buboes," a term widely used in Malawi to refer to the swollen inguinal lymph nodes which can accompany syphilis and chancroid. About 1 percent of both women and men cited genital warts. Thirteen percent of women and 4 percent of men were unable to name any STDs.

With regard to background characteristics, awareness of STDs is lowest in the youngest age group for both sexes. Awareness tends to increase among women and men to ages 25-29 and then remains relatively stable until the mid-40s for women and the late 40 s for men, after which there are declines of varying magnitudes for gonorrhoea, syphilis, and buboes, but not for AIDS.

Table 6.1.1 Knowledge of sexually transmitted diseases: women

Percentage of women who know of specific sexually transmitted diseases, by selected background characteristics, Malawi 1996

Background characteristic	Syphilis	Gonorrhoea	Genital warts	$\begin{aligned} & \mathrm{HIV} / \\ & \text { AIDS }^{1} \end{aligned}$	Buboes	Other	Don't know any	Number of women
Age								
15-19	39.3	39.8	0.7	78.8	30.8	9.5	20.4	618
20-24	58.0	60.8	1.0	85.1	44.1	12.2	13.8	526
25-29	64.9	64.6	0.7	90.3	56.4	15.4	6.9	391
30-34	62.5	68.3	1.0	88.5	48.1	16.8	9.0	368
35-39	65.9	65.9	1.5	89.6	50.4	13.5	8.7	270
40-44	64.2	64.6	0.8	84.7	43.7	16.8	11.2	313
45-49	60.0	52.2	0.6	86.5	41.3	12.3	10.9	196
Residence								
Urban	77.7	76.1	1.9	93.4	56.3	7.5	1.9	350
Rural	53.9	55.1	0.8	84.2	41.9	14.2	14.2	2,333
Region								
Northern	45.6	53.0	3.0	92.4	45.2	15.6	4.1	313
Central	44.3	44.5	0.4	80.9	42.8	6.0	17.4	1,118
Southern	71.1	71.0	0.9	87.6	44.3	19.3	10.4	1,253
Educational level								
No education	52.2	52.8	0.6	77.5	40.2	12.6	20.1	1,064
Primary	58.2	59.0	0.8	90.0	46.8	14.2	8.4	1,481
Secondary and higher	80.9	84.4	3.5	96.1	38.5	9.5	0.0	137
Total	57.0	57.9	0.9	85.4	43.8	13.3	12.6	2,683

Note: Figures are based on spontaneous knowledge of sexually transmitted diseascs (i.e., without probing)
Sce Table 6.4.1 for level of knowledge of IIV/AIDS after probing.

Table 6.1.2 Knowledge of sexually transmitted diseases: men
Percentage of men who know of specific sexually transmitted diseases, by selected background characteristics, Malawi 1996

Background characteristic	Syphilis	Gonorrhoea	Genital warts	$\begin{aligned} & \text { HIV/ } \\ & \text { AIDS }^{1} \end{aligned}$	Buboes	Other	Don't know any	Number of men
Age								
15-19	53.8	48.1	0.1	88.6	49.5	6.4	7.2	572
20-24	72.7	73.3	1.1	92.8	64.7	10.5	3.8	492
25-29	78.1	80.1	0.9	93.5	72.3	12.8	1.6	351
30-34	82.0	79.4	0.8	96.0	71.3	12.5	1.5	338
35-39	82.8	82.5	2.7	92.2	70.7	11.3	1.7	265
40-44	81.6	78.7	2.0	93.5	64.2	12.7	2.8	231
45-49	77.1	71.5	1.2	87.4	63.3	13.4	4.7	249
50-54	73.3	61.2	4.7	90.1	60.0	24.5	2.7	160
Residence								
Urban	85.3	82.6	1.1	94.7	68.5	9.4	1.0	437
Rural	70.3	67.6	1.3	91.1	62.4	12.0	4.2	2,221
Region								
Northern	54.7	65.1	1.2	94.3	30.4	25.6	1.6	331
Central	63.2	59.4	1.8	92.1	62.9	9.1	4.8	1,084
Southem	85.9	80.6	0.8	90.7	72.7	9.9	3.3	1,243
Educational level								
No education	62.6	59.8	2.8	84.9	63.7	12.5	8.7	468
Primary	72.0	69.1	0.7	92.7	63.5	11.5	3.1	1,824
Secondary and higher	89.8	87.7	2.3	95.5	63.0	10.8	0.1	365
Total	72.8	70.0	1.3	91.7	63.4	11.5	3.7	2,658

[^9]Women and men in urban areas are more conversant with STDs than their rural counterparts. Variations in knowledge by region are uneven. For both women and men, knowledge is highest in the Southern Region for gonorrhoea and syphilis. AIDS knowledge among women is higher in the Northern Region, while among men, there is little difference by region. For AIDS, syphilis, and gonorrhoea, prevalence of knowledge rises with level of education.

6.2 Self-Reporting of Recent Sexually Transmitted Diseases

All female and male respondents were asked if they had had an STD during the past 12 months. As seen in Table 6.2, 1 percent of women and 5 percent of men reported having had an STD. This is likely to be an underestimate for three reasons: having an STD is a sensitive issue which is not easily admitted; many women with STD infection are asymptomatic; and some symptoms may not have been recognised as STDs by respondents.

There is a slight increase in the prevalence of reported STD infection at the ages of greatest sexual activity. Among women, the proportion who reported an STD infection rises from about 1 percent at ages 15-24 to 2 percent at 25-29, after which there is a decline to less than 1 percent. For males, the proportion reporting any STD rises from 5 percent at ages 15-19 and reaches 7 percent during the ages 20-34, after which there is an uneven decline to 5 percent at ages 50-54. No respondents reported having AIDS or HIV infection.

Table 6.2. Self-reporting of sexually transmitted diseases in the past year

Percentage of wornen and men who reported having specific sexually transmitted diseases (STDs) or symptoms during the 12 months preceding the survey, by background characteristics, Malawi 1996

Background characteristic	Women					Men					
	Any STD	Syphilis	Gonorrhoea	Other	Number of women	$\begin{aligned} & \text { Any } \\ & \text { STD } \end{aligned}$	Syphilis	Gonorrhoea	Pain on urination or discharge	Other	Number of men
Age											
15-19	0.7	0.0	0.3	0.3	618	4.8	0.2	0.8	4.8	1.2	572
20-24	0.7	0.2	0.1	0.5	526	6.9	1.4	1.6	6.6	0.1	492
25-29	2.0	1.1	0.9	0.1	391	6.8	1.0	1.0	5.3	1.2	351
30-34	1.5	0.2	1.2	0.2	368	6.5	2.0	0.8	5.6	0.8	338
35-39	1.5	1.1	0.3	0.1	270	2.4	0.2	0.0	2.2	0.0	265
40-44	0.4	0.3	0.1	0.1	313	5.1	1.1	0.9	4.9	0.0	231
45-49	0.1	0.0	0.0	0.1	196	3.3	0.3	0.0	3.1	0.0	249
50-54	NA	NA	NA	NA	NA	4.7	0.4	0.3	4.5	1.4	160
Residence											
Urban	2.0	0.8	0.8	0.7	350	3.7	1.6	0.7	2.7	0.4	437
Rural	0.9	0.3	0.4	0.2	2.333	5.6	0.7	0.8	5.3	0.7	2,221
Region											
Northem	1.7	0.6	1.0	0.2	313	2.1	0.5	0.3	1.8	0.1	331
Central	0.2	0.0	0.1	0.1	1,118	5.5	0.5	0.3	5.3	0.8	1,084
Southem	1.6	0.7	0.6	0.4	1,253	6.0	1.3	1.4	5.4	0.6	1,243
Educational level											
No education	1.4	0.6	0.3	0.4	1,064	5.3	0.5	0.0	5.2	0.1	468
Primary	0.7	0.2	0.5	0.1	1,481	5.7	0.9	1.1	5.2	0.8	1,824
Secondary and higher	1.6	0.8	0.5	0.7	137	3.4	1.1	0.2	3.0	0.6	365
Total	1.0	0.4	0.4	0.2	2,683	5.3	0.9	0.8	4.9	0.6	2,658

NA $=$ Not applicable

Men were asked if they had noticed discharge from the penis or pain on urination during the past 12 months. The proportion of men reporting these symptoms was 5 percent. Women were not asked this question.

Women and men who reported having an STD during the preceding 12 months were asked what they did to treat the STD. Table 6.3 indicates that 92 percent of women and 75 percent of men reported seeking treatment, while 22 percent of women and 31 percent of men said they had taken medicine to cure their infection.

Infection of partners is an important issue in STD control. Respondents who reported an STD infection were therefore asked whether they had informed their partners. Ninety-six percent of women reported that they had done so. By comparison, only 65 percent of men stated that they had informed their partners.

Women and men reporting an infection were also asked if they had adopted any specific means to avoid infecting their partners. Twenty-nine percent of women and 70 percent of men claimed to have taken some precaution. Four percent of women stated that they had avoided sexual intercourse, and 6 percent mentioned using a condom. Thirty-nine percent of males reported avoiding sexual intercourse, while 13 percent reported using a condom. Fifty-two percent of women and 6 percent of men took no action because their partners were infected.

Table 6.3 Action taken by respondents who reported having a sexually transmitted disease in the last year
Among women and men who reported having had a sexually transmitted disease during the 12 months before the survey, the percentage who sought treatment, the percentage who informed their partner(s) and the percentage who took measures to avoid infecting their partner(s), Malawi 1996

Respondents	Percent who sought treatment	Percent who informed partners	Percentages who adopted various means to avoid infecting their partners					Percentages who did nothing to avoid infecting their partners			Percent missing	Number reporting an STD
			Took medicine to cure STD	Avoided sex	$\begin{aligned} & \text { Used } \\ & \text { condom } \end{aligned}$	Used other means of prevention	Total percent using some means of prevention	Did nothing because partner already infected	Did nothing for other reasons	Total percent who took no preventive action		
Women	(91.7)	(95.5)	(22.4)	(3.6)	(6.2)	(0.0)	(28.6)	(51.7)	(19.7)	(71.4)	(0.0)	27
Men	75.0	64.7	30.7	39.3	13.3	1.6	70.4	6.1	18.5	24.6	4.9	141

Note: Figures in parentheses are based on 25-49 unweighted cases.

6.3 HIV/AIDS Knowledge and Awareness

Acquiring knowledge of AIDS is an important step towards adopting behaviour which will prevent transmission of HIV. Tables 6.4.1 and 6.4.2 report the prevalence among women and men of knowledge about AIDS and their sources of information about the disease.

It is important to note that the prevalence of AIDS knowledge reported in Tables 6.1.1 and 6.1.2 is based on a different question from the one asked for Tables 6.4.1 and 6.4.2. For Table 6.1, respondents were asked "Which [STDs] do you know?" By contrast, for Tables 6.4.1 and 6.4.2, respondents were asked the following question in which AIDS is specifically mentioned: "Have you ever heard of an illness called AIDS?"

Table 6.4.ل Knowledge of AIDS and sources of AIDS information: women													
Percentage of women who have ever heard of AIDS, percentage who received information about AIDS from specific sources, and mean number of sources of information about AIDS, by selected background characteristics, Malawi 1996													
	Ever heard of	Source of ADDS information										Mean number of sources	Number of women
Background characteristic		Radio	Newspaper/ magazine	Pamphlet poster	Clinic/ health worker	Mosque/ church	School	Community meeting	Friend/ relative	Work place	Other source		
Age													
15-19	95.1	75.7	4.2	2.2	19.4	3.5	19.4	2.2	42.9	0.5	3.1	1.7	618
20-24	96.2	81.0	4.6	1.1	41.8	5.5	4.9	5.9	40.2	0.5	6.1	1.9	526
25-29	98.4	81.0	3.8	1.8	45.4	4.7	1.6	9.6	37.6	0.0	7.1	1.9	391
30-34	97.6	81.3	1.8	1.2	53.0	2.7	0.4	4.3	44.9	0.4	6.3	2.0	368
35-39	98.5	67.4	2.2	3.4	41.5	4.8	0.1	11.0	50.2	0.2	9.0	1.9	270
40-44	96.7	63.0	1.0	0.8	41.8	6.9	0.3	9.5	45.1	0.3	7.2	1.8	313
45-49	94.9	69.8	0.5	3.8	34.3	11.3	1.2	8.3	43.6	0.3	6.8	1.8	196
Residence													
Urban	99.9	91.0	9.6	4.6	46.6	9.0	10.0	6.7	41.2	1.1	8.1	2.3	350
Rural	96.2	73.1	2.0	1.4	37.0	4.5	5.1	6.5	43.2	0.2	5.8	1.8	2,333
Region													
Northern	99.7	74.7	3.4	2.3	41.3	10.9	5.7	5.1	37.3	0.4	17.4	2.0	313
Central	98.3	70.8	3.0	1.6	38.3	4.1	5.1	7.5	48.6	0.1	4.1	1.8	1,118
Southern	94.4	80.2	3.0	1.9	37.4	4.5	6.4	5.9	39.2	0.6	4.9	1.8	1,253
Educational level													
No education	93.7	68.4	0.0	0.3	31.7	2.3	0.2	5.6	49.3	0.5	4.5	1.6	1,064
Primary	98.5	78.7	3.3	2.4	41.2	6.2	7.9	6.6	40.0	0.1	6.9	1.9	1,481
Secondary and higher	99.8	93.9	22.2	7.4	55.1	13.3	23.7	11.5	28.4	1.6	8.9	2.7	137
Total	96.7	75.5	3.1	1.9	38.3	5.1	5.8	6.5	42.9	0.3	6.1	1.9	2,683
Note: Mean number of sources is based on respondents who have heard of AIDS.													

When asked if they had heard of an illness ealled AIDS, 97 percent of women and 99 percent of men responded affirmatively. These proportions are similar to those reported by the 1992 MDHS in which 95 percent of women and 98 percent of men said they had heard of AIDS.

Next, respondents wcre asked to name the sources from which they had learned the most about AIDS. The most commonly mentioned source was the radio, from which 76 percent of women and 93 pereent of men had received AIDS information. These figures represent an increase over 1992 when 63 percent of women and 87 percent of men reported getting information from radio. Since 1992, the Malawi Broadcasting Corporation has greatly enhanced the frequency and content of its AIDS-related reports and public service messages.

Table 6.4.2 Knowledge of ADDS and sources of ADS information: men												
Percentage of men who have ever heard of AIDS, percentage who received information about AIDS from specific sources, and mean number of sources of information about AIDS, by selected background characteristics, Malawi 1996												
	Source of AIDS information										Mean number of sources	Number of men
Ever heard of Background characteristio AIDS	Radio	Newspaper/ magazine	Pamphlel/ poster	Clinic/ health worker	Mosque/ church	School	Community meeting	Friend relative	Work place	Other source		
Age												
15-19 98.9	87.6	5.1	6.5	23.5	5.1	37.5	6.2	42.1	0.4	0.3	2.1	572
20-24 99.4	94.5	15.0	7.1	33.9	9.3	12.5	7.7	41.8	0.8	1.9	2.2	492
25-29 100.0	95.0	15.5	6.6	33.5	8.3	3.8	10.5	32.6	2.5	1.2	2.1	351
30-34 100.0	95.7	15.4	7.4	35.4	9.3	3.7	13.6	36.1	2.6	1.4	2.2	338
35-39 100.0	95.2	10.8	8.2	32.3	9.5	1.0	11.7	31.7	5.6	1.2	2.1	265
40-44 100.0	94.3	14.3	7.9	35.1	4.2	1.1	12.7	38.4	2.2	1.1	2.1	231
$45-49$ 98.2	92.8	6.6	2.2	30.9	7.2	0.0	14.9	42.7	3.3	1.3	2.0	249
50-54 98.7	88.0	10.5	6.9	28.6	3.6	0.6	9.5	46.4	3.1	1.4	2.0	160
Residence												
Urban 100.0	95.6	24.3	8.2	29.9	9.3	15.9	8.9	39.6	2.2	2.9	2.4	437
Rural 99.3	92.2	8.9	6.3	31.4	6.9	10.7	10.3	38.8	2.1	0.8	2.1	2,221
Region												
Northern 99.2	90.6	10.6	7.2	32.9	17.1	18.6	12.8	30.4	2.7	10.7	2.2	331
Central 99.6	92.5	11.1	6.9	28.5	7.8	11.5	7.1	44.8	0.9	1.4	2.1	1,084
Southern 99.3	93.5	12.0	6.2	33.1	4.2	9.7	12.0	36.1	3.0	1.1	2.1	1,243
Educational level												
No education 97.5	91.1	0.7	3.5	19.1	4.9	0.0	6.8	49.4	0.8	0.6	1.8	468
Primary 99.8	92.8	8.1	6.4	33.4	7.7	12.4	10.7	38.0	2.1	1.2	2.1	1,824
Secondary and higher 100.0	94.7	41.6	11.9	35.1	8.2	21.5	11.2	30.6	4.2	1.6	2.6	365
Total 99.4	92.8	11.5	6.6	31.2	7.3	11.5	10.1	39.0	2.1	1.2	2.1	2,658
Note: Mean number of sources is based on respondents who have heard of AIDS.												

Compared with men, women tend to get AIDS information more by word of mouth and less from mass media or organised settings such as sehools and religious institutions. Friends and relatives were cited as a source of information by 43 percent of women and 39 percent of men, while clinic workers were mentioned by 38 percent of women and 31 percent of men. Other sources of information mentioned were newspapers or magazines (3 percent of women, 12 percent of men), pamphlets or posters (2 percent of women, 7 percent of men), community meetings (7 percent of women, 10 percent of men), mosque or church (5 percent of women, 7 percent of men), and schools (6 percent of women, 12 percent of men).

Knowledge of ways of getting AIDS is presented in Tables 6.5.1 and 6.5.2. Among women, by far the highest proportion (72 percent) reported sex with multiple partners as a means of transmission. Multiple sex partners was also the risk factor most frequently mentioned by men. However, the proportion of men who mentioned multiple partners (49 percent) was much lower than the proportion of women (76 percent). On the other hand, a higher proportion of men (46 percent) compared with women (24 percent) mentioned sexual intercourse of any kind as a source of transmission. Women appear to be more conseious than men of the particular danger posed by multiple-partner relationships, while men, more than women, may see all sex as a source of danger. Relatively high proportions of both women (29 percent) and men (45 percent) stated that sharing razors was a means of AIDS transmission. Only 4 percent of women and 13 percent of men cited having sex without using a condom as a risk factor.

Table 6.5.1 Knowledge of AIDS transmission: women
Percentage of women who reported specific ways in which ADS is transmitted, by background characteristics, Malawi 1996

Background characteristic	Ways of getting AIDS									Number of women
	Sexual intercourse	Sex with multiple partners	Sex with prostititutes	$\begin{aligned} & \text { Not } \\ & \text { using } \\ & \text { condoms } \end{aligned}$	Blood transfusions	Injections	Sharing razors	Sharing toothbrush	Oher means	
Age										
15-19	26.1	64.2	1.5	4.4	3.8	12.8	25.5	5.8	8.0	618
20-24	22.9	73.9	1.5	6.1	5.3	13.7	28.4	7.7	9.5	526
25-29	27.0	73.8	2.2	2.9	8.2	20.1	31.7	10.1	9.4	391
30-34	20.1	77.0	1.6	4.3	7.1	22.1	36.5	7.9	10.4	368
35-39	21.1	76.8	2.3	3.1	3.5	22.9	34.0	5.6	7.2	270
40-44	23.0	73.5	1.3	2.7	2.8	11.5	22.1	3.5	9.4	313
45-49	26.0	66.6	0.3	1.9	2.5	11.5	23.0	3.8	6.8	196
Marital status										
Never married	28.1	62.9	1.6	6.1	6.0	16.5	28.9	8.4	8.8	453
Currently married	22.8	74.2	1.6	3.5	4.8	16.6	29.5	6.5	9.3	1,947
Formerly married	24.6	69.7	1.2	3.7	4.4	11.8	23.8	5.0	5.8	283
Residence										
Urban	24.7	75.7	2.4	9.3	15.4	29.4	40.4	12.8	12.8	350
Rural	23.8	71.2	1.5	3.2	3.4	14.1	27.0	5.7	8.2	2,333
Region										
Northem	29.2	72.0	3.1	4.1	3.4	16.1	39.9	6.0	14.3	313
Central	14.7	82.3	1.1	4.0	6.8	17.2	22.1	4.0	8.9	1,118
Southem	30.8	62.4	1.6	4.0	3.7	15.0	32.0	9.2	7.4	1,253
Educational level										
No education	20.9	70.5	1.5	2.8	1.2	8.5	18.5	3.0	5.5	1,064
Primary	25.8	72.5	1.7	4.5	5.9	19.4	33.6	7.8	10.5	1,481
Secondary and higher	26.6	74.1	1.5	8.1	24.3	39.7	56.6	22.9	15.8	137
Total	23.9	71.8	1.6	4.0	5.0	16.1	28.8	6.7	8.8	2,683

Table 6.5.2 Knowledge of AIDS transmission: men

Percentage of men who reported specific ways in which AIDS is transmitted, by background characteristics, Malawi 1996

Background characteristic	Ways of getting AIDS									Number of men
	Sexual intercourse	Sex with multiple partners	Sex with prostititutes		Blood transfusions	Injections	Sharing razors	Sharing tooth brush	Other means	
Age										
15-19	52.1	43.3	5.2	16.3	5.8	16.7	41.7	9.2	11.4	572
20-24	42.2	48.5	10.0	19.5	10.5	22.1	47.9	7.0	11.7	492
25-29	47.8	48.3	8.0	12.7	6.5	26.7	48.7	7.3	10.6	351
30-34	43.0	51.1	11.9	6.8	11.2	30.7	49.1	8.6	11.4	338
35-39	41.9	58.2	8.4	13.4	9.8	23.9	40.9	10.7	7.0	265
40-44	45.1	51.7	8.8	10.3	6.7	25.8	47.1	11.4	8.8	231
45-49	48.4	44.1	11.9	6.6	6.7	19.5	41.8	7.6	14.8	249
50-54	40.4	50.4	8.7	11.6	2.7	18.8	34.9	4.0	16.9	160
Marital status										
Never married	50.6	42.6	6.2	17.6	8.4	18.6	44.0	9.3	11.7	873
Currently married	43.1	51.7	10.1	10.9	7.5	25.0	45.5	8.1	11.3	1,718
Formerly married	53.9	48.7	7.7	16.7	9.2	15.8	33.6	2.9	8.1	67
Residence										
Urban	57.7	39.9	5.0	16.0	16.4	34.0	59.3	18.5	15.1	437
Rural	43.5	50.3	9.5	12.7	6.1	20.5	41.8	6.3	10.6	2,221
Region										
Northern	69.6	30.3	3.0	7.8	12.5	28.2	42.1	5.9	17.2	331
Central	21.7	71.7	11.0	16.7	6.1	19.2	42.5	7.8	10.8	1,084
Southern	60.6	33.4	8.4	11.7	8.1	24.2	47.4	9.5	10.2	1,243
Educational level										
No education	28.7	58.9	13.6	10.6	1.8	11.4	30.4	4.3	7.5	468
Primary	48.2	47.8	8.0	13.0	5.4	22.0	44.9	7.8	11.3	1,824
Secondary and higher	56.1	39.6	6.5	17.9	27.5	40.5	62.0	16.4	16.3	365
Total	45.9	48.6	8.8	13.2	7.8	22.7	44.7	8.3	11.3	2,658

Knowledge of valid ways to prevent AIDS is much more widespread among men than women. Tables 6.6.1 and 6.6 .2 show the percentage of women and men who reported specific ways to avoid getting HIV/AIDS. Twenty-eight percent of women and 53 percent of men were able to cite at least two valid ways to avoid becoming ill with AIDS. About 5 percent of women and 1 percent of men reported that there was no way to avoid getting AIDS.

In terms of valid ways to prevent AIDS, having only one sex partner was cited by 67 percent of women and 47 percent of men (see Figure 6.1). Condoms were mentioned by 23 percent of women and 47 percent of men. It is interesting to note that the level of recognition that condoms are a means of preventing AIDS appears to be much higher among both women and men than the knowledge that sex without a condom carries with it the risk of getting AIDS (Table 6.6.1 and 6.6.2). Only 1 percent of women and 2 percent of men cited invalid AIDS prevention methods such as consulting a traditional healer and avoiding kissing and mosquito bites.

Knowledge of valid ways to avoid AIDS follows expected patterns in terms of level of education and residence. For both women and men, knowledge of valid ways to prevent AIDS is less prevalent among respondents who have little or no education, and those living in rural areas.

Table 66.1. Knowledge of ways to avoid AIDS: women														
Percentage of women who have heard of AIDS and who know of specife ways to avoid AIDS and percentage with knowledge of at least two valid ways, by selected background characteristics, Malawi 1996														
Ways to avoid AIDS														
Background characteristic	No way to avoid AIDS	Abstain from sex	Use condoms	Have only one sexual partner	Avoid sex with prostitutes	Avoid transfusions	Avoid injections	Avoid sharing razors	Avoid kissing	Avoid mosquito bites	Avoid traditional healers	Other ways	Knowledge of at least two valid ways	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { women } \end{aligned}$
Age														
15-19	5.9	21.1	20.9	57.4	0.6	2.9	6.8	18.6	0.6	0.0	0.5	9.3	21.5	588
20-24	4.2	15.1	31.4	68.7	0.8	4.0	9.8	19.8	1.0	0.0	0.1	10.7	32.7	506
25-29	3.5	14.1	22.6	70.6	2.2	5.9	16.0	24.8	0.1	0.0	0.3	13.6	30.2	384
30-34	3.3	12.3	24.4	74.7	1.3	4.9	15.9	22.9	0.9	0.6	0.5	9.7	36.7	359
35-39	7.1	13.5	17.6	73.1	1.6	3.5	18.8	20.5	0.1	0.1	1.6	8.5	28.6	266
40-44	6.0	17.2	15.8	69.2	0.6	1.9	9.0	14.4	0.7	0.7	0.1	5.6	23.8	303
45-49	5.1	21.6	17.1	62.8	1.7	0.9	11.0	18.9	1.3	0.0	0.0	9.9	22.5	186
Current marital status														
Never married	4.3	23.6	22.5	57.0	0.7	5.6	10.4	22.2	0.7	0.0	0.7	12.0	27.4	423
Currenty married	5.2	14.0	22.5	70.5	1.3	3.5	12.4	20.1	0.5	0.2	0.3	9.7	28.8	1,894
Formerly married	4.2	22.3	22.4	61.5	0.6	1.7	10.2	16.7	1.5	0.0	0.8	7.3	24.9	276
Urban	2.0	18.9	38.4	70.2	2.5	10.4	20.4	25.7	1.6	0.1	1.5	14.8	49.9	350
Rural	5.4	16.1	20.0	66.9	0.9	2.6	10.5	19.2	0.5	0.2	0.3	9.0	24.8	2,244
Region														
Northern	2.3	9.2	26.8	79.2	3.9	1.5	6.2	25.1	0.0	0.0	0.0	15.4	28.8	312
Central	8.0	9.0	18.7	72.4	0.4	5.8	13.8	16.5	1.2	0.2	0.7	8.0	27.7	1,099
Southern	2.7	25.3	24.9	59.5	1.1	2.2	11.4	22.1	0.4	0.2	0.3	10.1	28.4	1,183
Educational level														
No education	8.1	12.1	14.4	65.4	0.8	1.4	7.3	12.3	0.6	0.4	0.1	5.3	16.7	998
Primary	3.3	18.9	26.8	68.0	1.3	4.2	13.4	23.5	0.7	0.0	0.5	11.6	33.3	1,459
Secondary and higher	0.3	22.5	35.8	73.9	2.0	13.8	28.2	39.6	1.0	0.0	2.5	23.9	56.9	137
Total	4.9	16.5	22.5	67.3	1.1	3.6	11.8	20.1	0.7	0.2	0.4	9.8	28.2	2,594

Figure 6.1
Among Women and Men who Have Heard of AIDS, the Percentage Reporting Various Ways to Avoid AIDS

Awareness of AIDS-related health issues is presented in Tables 6.7.1 and 6.7.2. Seventy-four percent of women and 86 percent of men stated that a healthy person can have AIDS, while 79 percent of women and 83 percent of men reported that the disease can be transmitted from mother to child.

A large proportion of women and men are aware of the fatal consequences of AIDS. Ninety-one percent of women and 87 percent of men reported that AIDS is almost always fatal, while even higher percentages (95 percent of women and 97 percent of men) responded in the negative when asked if AIDS can be cured. Seventyone percent of female respondents and 68 percent of males said they knew someone with AIDS or someone who had died of the discase.

These responses show that a large proportion of women and men in Malawi are aware that AIDS is a lethal disease that can be transmitted in deceptive ways. Moreover, AIDS morbidity and mortality have impinged on the personal experience of many adults. Knowledge that apparently health persons can have AIDS, that AIDS can be transmitted from mother to child, and that AIDS is fatal is more prevalent in urban areas. Prevalence of this knowledge also increases with the educational attainment of women and men (see Figures 6.2.I and 6.2.2).

Table 6.7.1 Awareness of AIDS-related healih issues: women

Percentage of women who are aware of certain AIDS-related health issues, by background characteristics, Malawi 1996

Background characteristic	Cana healthy person have the AIDS virus?	Can AIDS be transmitted from mother to child?	Is AIDS almost always fatal?	Can AIDS be cured?	Do you know someone with AIDS or who has died of AIDS?	Number
	Yes	Yes	Yes	No	Yes	women
Age						
15-19	72.5	72.9	90.1	95.1	64.2	588
20-24	73.7	83.7	88.2	96.1	73.1	506
25-29	80.0	88.2	93.8	94.0	76.4	384
30-34	80.8	81.7	89.7	94.7	69.9	359
35-39	75.7	81.1	92.6	91.3	68.4	266
40-44	64.7	71.0	91.4	93.7	76.8	303
45-49	68.7	73.5	92.9	96.7	65.1	186
Marital status						
Never married	74.7	74.3	88.1	95.7	65.9	423
Currently in union	74.3	81.2	91.4	94.5	72.7	1,894
Formerly in union	72.1	72.4	91.0	93.6	62.3	276
Residence						
Urban	88.1	92.0	94.9	96.5	71.8	350
Rural	72.0	77.1	90.2	94.3	70.3	2,244
Region						
Northern	63.1	81.3	86.4	95.4	80.1	312
Central	75.0	75.3	92.3	93.7	71.7	1,099
Southern	76.3	82.1	90.6	95.3	66.8	1,183
Educational level						
No education	62.1	68.7	89.1	94.1	65.7	998
Primary	80.2	84.6	91.5	95.0	73.3	1,459
Secondary and higher	97.0	97.1	96.4	95.4	75.3	137
Total	74.1	79.1	90.8	94.6	70.5	2,594

Table 6.7.2 Awareness of ADS.-related health issues: men

Percentage of men who are aware of certain AIDS-related health issues, by background characteristics, Malawi 1996

Background characteristic	Can a healthy person have the AIDS virus?	Can AIDS be transmitted from mother to child?	Is AIDS almost always fatal?	Can AIDS be cured?	Do you know someone with AIDS or who has died of AIDS?	Number
	Yes	Yes	Yes	No	Yes	men
Age						
15-19	79.7	75.6	84.1	97.4	57.1	566
20-24	85.6	86.2	86.9	97.4	65.8	489
25-29	89.3	88.8	88.7	97.5	70.4	351
30-34	90.5	90.9	90.9	96.5	73.9	338
35-39	86.3	87.7	86.4	96.0	72.9	265
40-44	88.4	80.2	83.0	95.9	75.5	231
45-49	86.6	78.4	86.5	97.8	76.4	245
50-54	83.5	67.4	87.6	96.7	71.1	158
Marital status						
Never married	82.9	79.0	84.8	96.5	57.4	864
Currently in union						
Formerly in union	87.3	84.7	87.5	97.4	74.0	1,711
	83.3	77.0	90.4	92.8	68.2	67
Residence						
Urban						
Rural	95.5	91.4	89.9	97.9	66.9	437
	83.8	80.9	86.0	96.8	68.8	2,205
Region						
Northern						
Central	74.2	83.5	76.8	98.0	68.0	329
Southem	85.7	78.9	91.0	96.0	74.5	1,080
	88.8	85.7	85.5	97.6	63.3	1,234
No education	75.7	63.3	84.7	95.2	60.6	457
Primary	85.8	84.9	86.5	97.3	70.1	1,820
Secondary and higher	97.7	95.3	90.0	97.9	69.9	365
Total	85.7	82.6	86.7	97.0	68.4	2,642

Figure 6.2.1
Among Women Who Have Heard of AIDS, the Percentage Who Know of Certain AIDS-related Health Issues, by Education

Figure 6.2.2
Among Men Who Have Heard of AIDS, the Percentage Who Know of Certain AIDS-related Health Issues, by Education

MKAPH 1996

6.4 Perceptions of the Risk of Getting AIDS

Female and male respondents who had heard of AIDS were asked if they thought their risk of getting AIDS was "small," "moderate," or "great," or they had "no risk" at all. Respondents were then asked why they felt their risk was small, moderate, great, or nil. Tables 6.8 .1 and 6.8 .2 show that 53 percent of women and 83 percent of men classified themselves as having little or no risk of being infected. Only 17 percent of men responded that they had moderate or great risk compared with 47 percent of women (see Figure 6.3).

Table 6.8.1 Perception of the risk of getting ADDS: women
Percent distribution of women who know about AIDS by their perception of the risk of getting AIDS, according to selected background characteristics, Malawi 1996

Background characteristic	Peroeived risk of getting AIDS				Total	Number of women
	No risk at all	Small	Moderate	Great		
Age						
15-19	43.3	28.0	14.0	14.7	100.0	588
20-24	24.2	26.3	23.8	25.7	100.0	506
25-29	23.0	20.3	29.1	27.6	100.0	385
30-34	21.7	22.2	27.2	29.0	100.0	359
35-39	19.9	23.4	30.8	25.9	100.0	266
40-44	24.1	28.7	23.7	23.5	100.0	303
45-49	32.0	24.0	21.5	22.5	100.0	186
Marital status						
Never married	49.6	30.0	10.0	10.4	100.0	423
Currently married	22.9	23.4	26.7	27.0	100.0	1,894
Formerly married	31.0	28.6	21.2	19.2	100.0	276
Non-regular sexual partmers last year At least one						
	17.8	25.5	27.2	29.5	100.0	38
Residence						
Urban	29.7	25.4	16.5	28.4	100.0	350
Rural	27.9	25.0	24.5	22.7	100.0	2,244
Regron						
Northern	42.1	16.1	29.2	12.5	100.0	312
Central	32.8	29.5	5.8	31.8	100.0	1,099
Southern	20.0	23.2	38.2	18.6	100.0	1,183
Educational level						
No education	28.2	22.6	24.5	24.8	100.0	998
Primary	27.9	26.3	22.8	23.0	100.0	1,459
Secondary and higher	29.5	29.8	21.5	19.2	100.0	137
Total	28.1	25.0	23.4	23.5	100.0	2,594

Table 6.8.2 Perception of the risk of getting AIDS: men
Percent distribution of men who know about AIDS by their perception of the risk of getting ADDS, according to selected background characteristics, Malawi 1996

Background characteristic	Perceived risk of getting AIDS				Total	Number of men
	No risk at all	Small	Moderate	Great		
Age						
15-19	40.8	47.2	5.1	6.8	100.0	566
20-24	30.1	54.2	8.7	7.0	100.0	489
25-29	29.6	50.2	9.1	11.2	100.0	351
30-34	35.7	44.8	10.9	8.5	100.0	338
35-39	34.9	47.3	9.6	8.2	100.0	265
40-44	34.0	41.5	17.0	7.4	100.0	231
45-49	38.1	48.6	10.5	2.8	100.0	245
50-54	38.1	48.8	5.5	7.5	100.0	158
Marital status						
Never married	37.7	48.4	7.0	6.9	100.0	864
Currently married	33.9	48.7	9.7	7.6	100.0	1,712
Formerly married	30.5	37.4	18.0	14.2	100.0	67
Non-regular sexual partners last year At least one						
	24.6	44.9	20.4	10.1	100.0	348
Residence						
Urban	29.8	52.7	9.8	7.6	100.0	437
Rural	36.1	47.5	8.9	7.5	100.0	2,205
Region						
Northern	57.3	15.4	24.1	3.2	100.0	329
Central	38.9	48.5	3.6	8.9	100.0	1,080
Southern	25.8	56.9	9.8	7.5	100.0	1,234
Educational level						
No education	32.2	48.6	7.6	11.6	100.0	457
Primary	35.9	48.7	8.5	6.8	100.0	1,820
Secondary and higher	34.8	45.9	13.5	5.7	100.0	366
Total	35.1	48.3	9.1	7.5	100.0	2,642

Figure 6.3 Distribution of Women and Men by Their Perceived Risk of Contracting AIDS

Among respondents who were currently married or in union, women tended to see themselves as being more likely to get AIDS than men. As Table 6.8.1 and 6.8 .2 show, about 54 percent of women who were married or in union reported moderate or high risk compared with only 17 percent of men who were married or in union.

Women and men were interviewed separately in the MKAPH survey. This makes it possible to look at couples as units of study. Table 6.9 shows that, in 42 percent of unions, both partners claimed small or no risk of getting AIDS. In 10 percent of couples, both the woman and man reported moderate or great risk.

In 48 percent of couples, risk perceptions were dis-

Table 6.9 Perception of the risk of getting AIDS among couples
Percent distribution of couples who know about AIDS by husband's and wife's perception of risk of getting AIDS, Malawi 1996

Perception of risk	Perceived risk of getting AIDS: husband				Total	Number of couples		
	No risk at all	Small	Moderate	Great				
Chances of getting AIDS: wife								
No risk	10.7	10.4	2.5	0.9	24.5	358		
Small	7.7	13.2	1.7	1.7	24.3	356		
Moderate	9.6	9.9	3.8	1.5	24.7	361		
Great	8.0	13.3	2.1	3.1	26.5	388		
Total	36.0	46.7	10.0	7.2	100.0	1,463	cordant: in 41 percent of couples, the woman reported that her risk of AIDS was moderate or great while the husband stated his risk to be small or nil; in 7 percent of couples, the wife reported that her risk of AIDS was small or nil while the husband claimed that his risk was moderate or great.	

Table 6.10 summarises the reasons given by women and men respondents for their stated "small" or "no" risk of getting AIDS. Among those who claimed they had "small" or "no" risk of getting AIDS, 64 percent of women and 67 percent of men attributed their low risk to having only one partner or a limited number of partners. Differences in the proportion of women and men who classified themselves as having low risk because of sexual abstinence were also small (28 percent of women compared with 24 percent of men).

[^10]| Marital status | Abstain from sex | Use condoms | One sex partner | Limited number of partners | Spouse has no other partner | No blood transfusions | No injecfusions | Avoid sharing rezors | Orher | Number of women/ men |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WOMEN | | | | | | | | | | |
| Never in union | 74.5 | 5.5 | 13.1 | 0.9 | 0.7 | 1.9 | 2.6 | 0.0 | 10.9 | 337 |
| Currently in union | 2.0 | 1.5 | 91.3 | 1.6 | 8.4 | 1.4 | 0.9 | 0.0 | 4.4 | 876 |
| Formerly in union | 74.7 | 2.0 | 14.3 | 1.3 | 0.0 | 0.7 | 2.1 | 0.0 | 13.8 | 165 |
| Total | 28.4 | 2.6 | 63.0 | 1.4 | 5.5 | 1.4 | 1.5 | 0.0 | 7.1 | 1,378 |
| MEN | | | | | | | | | | |
| Never in union | 56.9 | 20.6 | 18.8 | 9.8 | 0.2 | 1.7 | 5.2 | 9.0 | 6.1 | 744 |
| Currently in union | 6.0 | 11.6 | 77.0 | 10.8 | 4.0 | 1.6 | 6.1 | 9.0 | 5.7 | 1,414 |
| Formerly in union | 58.3 | 18.9 | 16.6 | 11.6 | 0.0 | 3.6 | 12.6 | 7.5 | 6.8 | 45 |
| Total | 24.3 | 14.8 | 56.1 | 10.5 | 2.7 | 1.7 | 5.9 | 9.0 | 5.9 | 2,203 |

Note: Respondents may have given more than one reason; all reasons given are tallied in this table

Table 6.11 summarises the reasons given by women and men for their stated "moderate or great" risk. Women in this risk category attribute their chances of getting AIDS to one main factor-infidelity on the part of their spouse or partner. Twenty-six pereent of women stated that their moderate or great risk was due to a spouse or partner having another partner, while 56 percent cited suspicions about the fidelity of the husband or partner.

The responses of men who stated their risk to be moderate or great tend to confirm the eonclusion of women that their greatest risk of AIDS comes from the infidelity of their partner. As seen in Table 6.11, the largest percentage of men (51 percent) attribute their risk to having more than one partner. Only 7 percent of men attributed their risk to a spouse or partner having another partner, while 18 percent cited suspicions about the fidelity of the wife or partner.

Nineteen percent of men attributed their moderate or great risk to nonuse of condoms, 15 percent to injections, and 6 percent to sharing razor blades. Among women, 5 percent cited nonuse of condoms, 4 percent mentioned having had injections, while none attributed moderate or great risk to sharing razor blades.

Table 6.11 Reasons for perception of moderate or great risk of getting AIDS
Percentage of women and men who think they have moderate or great risk of getting AIDS, by reasons for that perception and marital slatus, Malawi 1996

Marital status	Do not use condom	More than one sex partner	Spouse has other partner	Had blood transfusion	Had injections	Not sure of spouse	Share razor blades	Other	Number of women/ men
WOMEN									
Never in union	22.1	21.1	9.6	2.8	13.0	22.8	0.0	34.7	86
Currently in union	3.2	4.4	28.4	0.3	2.9	61.8	0.0	4.8	1,018
Formerly in union	9.7	17.3	18.9	0.0	4.0	30.3	0.0	26.3	112
Total	5.1	6.8	26.2	0.4	3.7	56.1	0.0	8.9	1,216
MEN									
Never in union	26.1	55.3	5.1	1.5	11.1	8.0	11.0	15.1	120
Currently in union	14.6	48.2	7.8	2.6	17.5	23.0	4.4	10.4	297
Formerly in union	35.3	57.8	0.7	0.0	5.0	10.9	0.7	20.0	21
Total	18.7	50.6	6.7	2.1	15.1	18.3	6.0	12.2	438

Note: Respondents may have given more than one reason; all reasons given are tallied in this table.

6.5 Changes in Behaviour

Respondents who had heard of AIDS were asked whether they had changed their behaviour since they learned of the discase. Those who said they had done so were asked what behaviour changes they had made.

As seen in Tables 6.12.1 and 6.12.2, the vast majority of respondents reported that they had changed their behaviour in response to AIDS. Only 8 percent of women and 2 percent of men said they had made no change in behaviour.

In terms of effective changes in behaviour, large proportions of women and men reported that they had restricted their sexual activity. How they did so varied in predictable ways. Eighty-six percent of women in union and 78 percent men in union limited sex to one partner as compared with 32 percent of women and 29 percent of men who were formerly in union and 18 percent of women and 21 percent of men who had never been married. The largest proportions of women (51 percent) and men (27 percent) who stopped all sexual relations were formerly married. Women and men who postponed starting sex were primarily those who had never been married (52 percent of women and 31 percent of men).

Other valid responses to AIDS included using condoms (mentioned by 3 percent of women and 16 percent of men) and avoiding prostitutes (11 percent of men).

Table 6.12.1 AIDS prevention behaviour: women

Percentage of women who made changes in their behaviour atter learning of AIDS, by background characteristics, Malawi 1996

Background characteristic	No change in behaviour	Type of behaviour change								Number of women
		Did not start sex	Stopped sexual relations	$\begin{gathered} \text { Began } \\ \text { using } \\ \text { condoms } \end{gathered}$	Restricted sex to partner	Reduced number partners	Asked spouse to be faithful	Avoided sharing razors	Other	
Age										
$15 \cdot 19$	8.2	36.1	10.3	4.0	40.0	2.7	1.3	2.2	4.0	588
$20-24$	7.0	2.3	7.0	3.8	80.0	1.2	4.7	2.5	4.2	506
25-29	6.6	0.3	4.8	2.8	82.7	0.7	7.4	3.5	4.7	384
30-34	6.5	1.4	7.4	3.3	81.9	0.8	9.0	3.8	4.5	359
35-39	8.5	0.3	7.1	2.0	75.7	3.6	6.6	1.2	3.1	266
40-44	12.3	2.2	9.8	1.4	71.9	1.1	5.3	2.4	2.5	303
45-49	7.2	1.5	18.3	4.9	65.8	1.4	4.1	1.1	5.1	186
Marital status										
Never married	8.1	52.2	13.2	5.9	18.1	2.6	0.9	3.0	5.2	423
Currently married	8.3	0.2	1.5	2.6	86.1	1.1	6.6	2.5	3.8	1,894
Formerly married	5.3	6.1	50.8	3.5	31.7	3.8	1.7	1.6	3.5	276
Residence										
Urban	4.6	14.7	7.2	5.2	67.4	1.9	9.6	3.9	5.8	350
Rural	8.5	8.4	8.9	2.9	69.5	1.6	4.4	2.3	3.7	2,244
Region										
Northern	2.7	7.5	7.7	1.3	79.6	1.4	10.4	3.6	3.1	312
Central	6.0	10.9	9.9	2.1	68.9	1.6	4.4	1.9	5.2	1,099
Southern	11.1	8.3	7.7	4.8	66.7	1.8	4.4	2.8	3.2	1,183
Educational level										
No education	9.7	2.7	8.5	2.2	74.7	1.1	4.2	1.3	2.1	998
Primary	6.6	13.4	8.6	3.8	66.3	2.0	5.6	3.1	4.8	1,459
Secondary and higher	8.9	13.1	10.2	5.1	59.4	1.8	6.8	5.7	9.9	137
Total	7.9	9.3	8.6	3.2	69.2	1.7	5.1	2.5	4.0	2,594

Note: Respondents may have given more than one reason; all reasons given are tallied here.

Table 6.12.2 AIDS prevention behaviour: men											
Percentage of men who made changes in their behaviour after leaming of AIDS, by background characteristics, Malawi 1996											
					Type of b	behaviour	change				
Background characteristic	No change in behaviour	Did not start sex	Stopped sexual relations	Began using condoms	Restricted sex to one partner	Reduced number partners	Avoided sex with prostitutes	Asked spouse to be faithfu]	Avoided sharing razors	Other	Number of men
Age											
15-19	3.7	39.6	17.9	17.5	18.6	10.8	5.0	1.4	8.9	5.9	566
20-24	0.6	6.7	14.5	27.8	52.3	19.6	11.1	5.0	9.8	8.2	489
25-29	2.2	2.1	10.6	15.7	71.7	16.6	14.8	5.1	8.5	10.4	351
30-34	1.4	0.7	6.2	15.7	75.2	14.0	13.9	4.3	11.3	14.6	338
35-39	2.7	1.0	2.8	10.1	76.7	19.2	11.1	7.0	6.3	13.1	265
40-44	2.4	1.4	7.8	6.6	70.7	16.3	12.3	5.8	10.4	11.7	231
45-49	1.6	0.2	3.8	10.3	79.7	11.5	15.7	4.8	5.8	4.3	245
50-54	1.9	0.0	8.9	12.1	70.4	20.0	8.8	9.4	11.5	9.5	158
Marital status											
Never married	2.7	30.9	20.7	24.0	21.0	13.5	6.4	1.6	9.0	6.5	864
Currently married	1.9	0.3	4.8	12.0	78.2	15.8	13.1	6.1	9.3	10.6	1,711
Formerly married	0.6	1.3	27.1	24.8	29.2	35.2	17.6	6.9	4.0	15.4	67
Residence											
Urban	4.0	10.0	15.7	19.1	55.4	11.7	12.0	4.8	10.6	11.5	437
Rural	1.7	10.4	9.5	15.7	58.8	16.3	10.8	4.6	8.7	8.9	2,205
Region											
Northern	1.4	17.2	8.9	15.8	49.8			6.0	4.6	13.4	329
Central	2.1	13.0	11.3	15.9	62.8	8.7	11.5	4.2	10.6	8.3	1,080
Southern	2.3	6.2	10.4	16.7	56.6	21.2	12.2	4.7	8.9	9.2	1,234
Educational level											
No education	2.8	3.8	8.9	12.7	66.0	16.2	12.2	4.0	7.0	6.3	457
Primary	1.8	12.6	10.6	15.7	55.9	15.9	10.7	4.7	9.3	9.0	1,820
Secondary and higher	2.9	7.2	12.2	23.6	60.2	12.7	11.0	5.3	10.3	14.9	365
Total	2.1	10.3	10.6	16.3	58.3	15.5	11.0	4.7	9.1	9.4	2,642
Note: Respondents may have given more than one reason; all reasons given are tallied here.											

6.6 Number of Sexual Partners

Because most HIV infections in Malawi are due to heterosexual contact, information on sexual behaviour is useful for planning behaviour-modification programmes. The MKAPH survey included questions about sexual activity during two reference periods, 4 weeks and 12 months preceding the survey. Respondents were asked about sex with spouses and other partners. They were also asked about condom use with spouses and other partners.

Tables 6.13 .1 and 6.13 .2 show the percent distribution of currently married and unmarried women and men by number of persons with whom they had sex in the previous 4 weeks. Overall, men reported having more sexual partners than women. The mean number of partners for married women was 0.8 and for married men 0.9 . For unmarried women the mean number of partners was 0.3 compared with 0.6 for single men. Nineteen percent of married women and men reported one extra-spousal relationship. Three percent of married men reported at least two non-spousal partners, while no women reported such partners.

Table 6.13.1 Number of recent sexual partners: women

Percent distribution of currently married women and unmarried women by the number of sexual partners in the four weeks preceding the survey, according to background characteristics, Malawi 1996

Note: Figures in parentheses are based on 25-49 unweighted cases.

Table 6.13.2 Number of recent sexual partners:-men

Percent distribution of currently married men and unmarried men by the number of sexual partners in the four weeks preceding the survey, according to background characteristics, Malawi 1996

Background characteristic	Currenly married men																		
	Partners including spouse						Partners excluding spouse						Unmarried men						
	0	1	2+	Total	Number of men	Mean number of partners	0	1	$2+$	Total		Mean number of parlners	0	1	$2+$	Minsing	Total	Number of men	Mean number of partners
Age																			
15-19	2.9	97.1	0.0	100.0	14	1.0	69.3	30.7	0.0	100.0	14	0.3	44.0	47.5	8.5	0.0	100.0	312	0.7
20-24	21.9	73.3	4.8	100.0	216	0.8	75.3	24.3	0.4	100.0	216	0.3	48.0	43.9	8.0	0.1	100.0	239	0.6
$25-29$ 30.34	17.4	77.9	4.7	100.0	294	0.9	81.4	17.0	1.6	100.0	294	0.2	49.6	34.0	16.4	0.0	100.0	52	0.8
45.39	20.5	74.4	5.1	100.0	316	0.9	79.1	17.7	3.3	100.0	316	0.2	(41.2)	(56.0)	(2.8)	(0.0)	100.0	20	(0.6)
40.39 $40-44$	22.9	65.7	11.4	100.0	257	0.9	80.3	15.9	3.8	100.0	257	0.2	*	*	*	*	*	5	*
45-49	21.4	69.2	9.4	100.0	226	0.9	78.3	18.1	3.6	100.0	226	0.3	*	*	*	*	*	4	*
50-54	21.0	73.0	6.0	100.0	242	0.9	78.6	19.5	1.9	100.0	242	0.3	*	*	*	-	*	7	*
50-54	20.6	67.4	12.0	100.0	152	0.9	76.2	18.8	5.0	100.0	152	0.3	*	*	*	*	*	8	*
Restdence																			
Uiban	22.7	74.1	3.2	100.0	239	0.8	86.3	12.4	1.4	100.0	239	0.2	57.9	39.5	2.5	0.2	100.0	154	0.5
Rural	20.2	71.9	7.8	100.0	1,479	0.9	77.4	19.7	2.9	100.0	1,479	0.3	43.4	46.1	10.5	0.0	100.0	494	0.7
Region																			
Northern	23.9	62.9	13.2	100.0	201	0.9	61.9	32.8	5.3	100.0	201	0.4	39.1	50.9	9.6	0.4	100.0	75	0.7
Central	20.6	73.1	6.2	100.0	720	0.9	75.3	21.5	3.3	100.0	720	0.3	54.8	37.8	7.4	0.0	100.0	212	0.5
Southern	19.7	73.8	6.5	100.0	797	0.9	86.0	12.5	1.5	100.0	797	0.2	43.7	47.2	9.1	0.0	100.0	362	0.7
Educational level																			
No education	21.7	71.7	6.5	100.0	373	0.9	78.0	19.4	2.6	100.0	373	0.2	38.8	55.6	5.6	0.0	100.0	70	0.7
Primary	20.3	72.3	7.4	100.0	1,129	0.9	77.7	19.3	3.1	100.0	1,129	0.3	46.5	43.2	10.3	0.0	100.0	453	0.7
Secondary and higher	19.9	72.8	7.3	100.0	216	0.9	85.0	14.3	0.7	100.0	216	0.2	52.3	43.3	4.3	0.1	100.0	125	0.5
Total	20.6	72.2	7.2	100.0	1,718	0.9	78.7	18.7	2.7	100.0	1,718	0.2	46.8	44.5	8.6	0.0	100.0	648	0.6

Note: An asteriak indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed

Twenty-five percent of married women and 21 percent of married men reported having no sexual intercourse in the preceding 4 weeks (see Figure 6.4). The prevalence of no sexual activity among rural married women (26 percent) was higher than among their urban counterparts (17 percent), possibly reflecting the greater tendency of rural men to work away from home compared with urban men.

Among unmarried women, 28 percent reported one sexual partner while 1 percent claimed two or more. For unmarried, men the comparable percentages were 45 percent and 9 percent. For unmarried men, the prevalence of two or more partners was markedly higher in rural areas where the prevalence was 11 percent compared with 3 percent for urban males.

Figure 6.4

Distribution of currently married women and men by number of partners in the four weeks preceding the survey

Women

Men

Note: The one partner may be the spouse or a non-spouse.
Nearly all those with two or more partners reported two partners.

Seventy-one percent of unmarried women and 47 percent of unmarried men reported no sexual intercourse during the preceding 4 weeks. The percentage of unmarried men who stated they had no sexual intercourse was much higher in urban areas (58 percent) than in rural areas (43 percent). The difference in terms of residence for women is smaller and in the opposite direction, with 67 percent of urban females reporting no sex compared with 72 percent of rural women.

To follow up questions on recent sexual activity, the MKAPH asked respondents whether they had "given or received money, gifts or favours in return for sex in the last 12 months." This question was asked because the giving or receiving of some sort of compensation to obtain sex often involves commercial sex workers among whom the prevalenee of STD and HIV infection can be high.

Table 6.14 shows that 5 percent of women and 9 percent of men reported giving or receiving compensation in exchange for sex. Among women, the percentage of married women who reported sexual relations which involved giving or receiving compensation was only 1 percent compared with 19 percent of unmarried women. For married men, the percentage was 6 percent compared with 15 percent for unmarried men.

Non-regular sex partners are often a source of HIV infection whether or not they are commercial sex workers. The MKAPH survey therefore asked respondents who were sexually experienced how many non-regular partners they had had during the 12 months preceding the survey. If respondents reported having a non-regular sex partner during the preceding 12 months, they were asked if they had used a condom during the last sexual intercourse with a non-regular partner.

Table 6.14 Payment for sexual relations												
Among women and men who ever had sexual intercourse, the percentage who gave or received money, gifts, or favours in return for sex in the last 12 months by marital status, according to background characteristics, Malawi 1996												
Background characteristic	Women						Men					
	Currently married		Unmarried		Total		Currently married		Unmarried		Total	
	Percent	Number	Percent	Number	Percent	Number	Percent	Number	$\overline{\text { Percent }}$	Number	Percent	Number
Age												
15-19	5.9	207	33.7	140	17.1	347	*	14	13.0	312	12.4	326
20-24	2.0	419	27.2	93	6.6	512	12.3	216	18.3	239	15.5	455
25-29	0.9	355	7.3	35	1.5	390	8.0	294	13.0	52	8.8	346
30-34	0.4	329	(0.7)	37	0.4	366	5.8	316	(11.8)	20	6.1	336
35-39	0.0	230	(2.4)	41	0.4	270	6.3	257	*	5	7.0	263
40-44	0.1	257	7.7	56	1.5	313	3.4	226	*	4	3.3	230
45-49	0.0	150	(5.7)	46	1.3	196	2.9	242	*	7	2.8	249
50-54	NA	NA	NA	NA	NA	NA	2.9	152	*	8	3.3	160
Urban	2.2	233	22.7	72	7.0	304	5.4	239	13.3	154	8.5	393
Rural	1.2	1,715	17.7	377	4.2	2,091	6.1	1,479	15.4	494	8.5	1,973
Region												
Northern	1.2	249	18.9	41	3.7	289	2.1	201	18.8	75	6.6	276
Central	0.8	789	15.7	170	3.4	959	3.6	720	10.7	212	5.2	931
Southern	1.8	910	20.5	238	5.7	1,147	9.2	797	16.5	362	11.5	1,158
Educational level												
No education	1.2	869	6.4	146	2.0	1,015	1.2	373	7.0	70	2.2	443
Primary	1.2	1,001	25.4	258	6.1	1,260	7.7	1,129	16.2	453	10.1	1,582
Secondary and higher	4.2	77	18.3	44	9.4	121	5.7	216	14.5	125	8.9	341
Total	1.3	1,947	18.5	448	4.5	2,396	6.0	1,718	14.9	648	8.5	2,366

Note: Figures in parentheses are based on $25-49$ unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
NA = Not applicable

Tables 6.15.1 and 6.15 .2 give the reported prevalence of sex with non-regular partners during the 12 months preceding the survey. A non-regular partner was defined as someone other than a spouse whom the respondent did not see on a regular basis. Only 2 percent of women as compared with 16 percent of men reported having at least one non-regular partner during the reference pcriod.

As might be expected, there was a difference in prevalence of non-regular partners in terms of marital status. Less than 1 percent of currently married women reported at least one non-regular partner compared with 6 percent of currently married male respondents. Among unmarried respondents, 11 percent of women and 46 percent of men reported a non-regular partner.

6.7 Knowledge and Sources of Condoms

Because of the important role condom use plays in combating the transmission of HIV, respondents who reported knowing about condoms were asked where they could be obtained. Tables 6.16.1 and 6.16.2 show that knowledge of condoms is widespread in Malawi. Almost all men (98 percent) and most women (91 percent) reported knowing about condoms.

The most widely reported source of condoms was shops. Twenty-four percent of women and 44 percent of men stated that condoms could be obtained from shops. In Malawi most of these busincsses are small convenience shops. The next most widcly mentioned condom sources were "public." In Malawi, these sources include government facilities and various family planning outlets run by nongovernmental organisations (NGOs) such as missions. Thirty-seven percent of women and 34 percent of men named public facilitics as sources of condoms. Twenty-nine percent of women and 11 percent of men who knew of condoms could not name a source for obtaining them. For both women and men, knowledge of a source is more prevalent in urban arcas and increases with level of educational attainment.

Table 6.15.1 Non-regular sexual partners: women

Percent distribution of women by number of non-regular sexual partners in the last 12 months, according to background characteristics, Malawi 1996

Background characteristic	Currently married women					Unmarried women							All respondeats						
	0	1	Tota	At least one nonregular partner	Number of women	0	1	2+	Missing	Total	At least one nonregular partner	Number of women	0	1	$2+$	Missing	Total	At least one nonregular partner	Number of women
Age																			
15-19	98.6	1.4	100.0	1.4	200	84.9	10.3	1.7	3.2	100.0	12.0	127	93.3	4.8	0.7	1.2	100.0	5.5	327
20-24	99.3	0.7	100.0	0.7	414	90.1	3.2	6.7	0.0	100.0	9.9	78	97.9	1.1	1.1	0.0	100.0	2.1	492
25-29	100.0	0.0	100.0	0.0	351	(96.9)	(2.1)	(1.0)	(0.0)	100.0	(3.1)	24	99.8	0.1	0.1	0.0	100.0	0.2	375
30-34	99.7	0.3	100.0	0.3	316	,	+	+	+	100.0	*	17	98.9	0.4	0.0	0.7	100.0	0.4	333
45-39	100.0	0.0	100.0	0.0	222	*	*	*	-	100.0	*	22	98.3	0.9	0.0	0.8	100.0	0.9	244
40-44	100.0	0.0	100.0	0.0	241	*	*	*	*	100.0	*	15	98.7	1.3	0.0	0.0	100.0	1.3	256
45-49	100.0	0.0	100.0	0.0	139	*	*	*	*	100.0	*	12	98.5	1.3	0.2	0.0	100.0	1.5	150
Readence																			
Urban	99.7	0.3	100.0	0.3	230	87.2	10.4	1.9	0.5	100.0	12.3	52	97.4	2.2	0.4	0.1	100.0	2.5	282
Rural	99.7	0.3	100.0	0.3	1,653	86.2	7.6	2.8	3.3	100.0	10.5	243	97.9	1.3	0.4	0.4	100.0	1.6	1,896
Reghen																			
Northern	99.3	0.7	100.0	0.7	228	82.1	14.5	3.4	0.0	100.0	17.9	29	97.3	2.3	0.4	0.0	100.0	2.7	257
Central	100.0	0.0	100.0	0.0	773	82.0	8.1	2.8	7.0	100.0	10.9	89	98.1	0.8	0.3	0.7	100.0	1.1	862
Sorthern	99.5	0.5	100.0	0.5	882	89.3	7.1	2.5	1.1	100.0	9.5	177	97.8	1.6	0.4	0.2	100.0	2.0	1,059
Educational level																			
No education	100.0	0.0	100.0	0.0	829	87.9	7.0	2.6	2.5	100.0	9.6	91	98.8	0.7	0.3	0.2	100.0	0.9	920
Primary	99.5	0.5	100.0	0.5	977	84.6	8.7	3.2	3.5	100.0	11.9	171	97.3	1.7	0.5	0.5	100.0	2.2	1,149
Secondary and higher	97.4	2.6	100.0	2.6	77	91.6	8.4	0.0	0.0	100.0	8.4	33	95.7	4.3	0.0	0.0	100.0	4.3	110
Total	99.7	0.3	100.0	0.3	1,883	86.4	8.1	2.7	2.8	100.0	10.8	295	97.9	1.4	0.4	0.4	100.0	1.8	2,178

Note: Figures in perentheses are based on $25-49$ unwcighted casce. An asterisk idicates that a figure is based on fewer than 25 unweighted casea and has been suppressed.

Table 6.15.2 Non-regular sexual partners: men

Percent distribution of men by number of non-regular sexual partners in the last 12 months, according to background characteristics, Malawi 1996

	Currently married men						Unmarried men							All respondents						
Background characteristic	0	1	$2+$	Total	At leas one nonregular partner	Number of men	0	1	$2+$	Missing	Total	At least one nonregular partner	Number of men	0	1	$2+$	Missing	Total	Al least one nonregular partnex	Number of men
Age																				
15-19	*	*	*	100.0	*	14	48.5	30.6	20.8	0.2	100.0	51.3	269	51.1	29.1	19.7	0.1	100.0	48.8	283
20-24	90.7	5.7	3.6	100.0	9.3	213	56.9	24.1	16.8	2.2	100.0	40.9	206	74.1	14.7	10.1	1.1	100.0	24.8	419
25-29	92.7	4.8	2.5	100.0	7.3	292	(60.1)	(26.8)	(13.0)	(0.0)	100.0	(39.9)	43	88.5	7.6	3.9	0.0	100.0	11.5	334
30-34	93.6	3.4	2.9	100.0	6.4	315	-	*	*	*	100.0	*	14	92.5	4.0	3.4	0.0	100.0	7.5	328
45-39	93.6	4.4	2.1	100.0	6.4	254	*	*	-	*	100.0	*	5	93.0	4.3	2.7	0.0	100.0	7.0	259
40-44	94.7	4.3	1.0	100.0	5.3	218	*	*	*	*	100.0	*	3	94.0	4.6	1.4	0.0	100.0	6.0	221
45-49	97.1	2.4	0.4	100.0	2.9	241	*	*	*	*	100.0	*	6	96.7	2.5	0.8	0.0	100.0	3.3	248
50-54	96.9	1.5	1.6	100.0	3.1	144	*	*	*	*	100.0	*	1	96.2	2.1	1.6	0.0	100.0	3.8	145
Residence																				
Urban	94.3	4.4	1.3	100.0	5.7	235	71.8	20.8	7.0	0.5	100.0	27.7	123	86.5	10.0	3.3	0.2	100.0	13.3	358
Rural	94.0	3.8	2.2	100.0	6.0	1,456	48.0	28.9	22.0	1.0	100.0	50.9	423	83.7	9.4	6.7	0.2	100.0	16.1	1,879
Region																				
Northern	92.0	5.8	2.3	100.0	8.0	194	25.8	47.7	26.0	0.5	100.0	73.7	65	75.4	16.2	8.2	0.1	100.0	24.5	259
Central	97.4	1.9	0.8	100.0	2.6	707	61.8	24.7	12.0	1.5	100.0	36.7	160	90.8	6.1	2.8	0.3	100.0	8.9	866
Southern	91.6	5.2	3.2	100.0	8.4	791	54.8	24.1	20.4	0.7	100.0	44.5	322	81.0	10.7	8.2	0.2	100.0	18.8	1,113
Educational level																				
No education	95.1	3.6	1.2	100.0	4.9	365	58.2	25.9	16.0	0.0	100.0	41.8	59	90.0	6.8	3.3	0.0	100.0	10.0	425
Primary	93.7	3.8	2.5	100.0	6.3	1,111	49.1	28.9	20.7	1.2	100.0	49.6	383	82.3	10.2	7.1	0.3	100.0	17.4	1,494
Secondary and higher	94.0	4.6	1.5	100.0	6.0	214	66.5	20.9	12.4	0.1	100.0	33.4	104	85.0	9.9	5.1	0.0	100.0	15.0	318
Total	94.1	3.9	2.1	100.0	5.9	1,691	53.4	27.1	18.6	0.9	100.0	45.7	546	84.1	9.5	6.1	0.2	100.0	15.6	2,238

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Table 6.16.1 Knowledge of condoms: women

Percentage of women who know about condoms and among these percentage who know a specific source for condoms, by background characteristics, Malawi 1996

Background characteristic	All women			Among women who know about condoms, percenlage who know source for condoms						
	Know about condoms	Number of women	Public source	Private medical sector	Private pharmacy	Shop	Other source	Don't know source	Tolal	Number of women
Age										
15-19	83.6	618	25.4	6.3	0.0	34.3	1.4	32.5	100.0	517
20-24	93.7	526	34.9	12.3	0.0	27.8	1.1	23.8	100.0	493
25-29	98.9	391	46.9	7.3	0.0	20.3	0.1	25.4	100.0	386
30-34	95.4	368	44.0	9.6	0.1	21.6	0.0	24.8	100.0	351
35-39	94.5	270	42.1	11.8	0.0	16.5	1.0	28.7	100.0	255
40-44	90.5	313	41.3	11.3	0.0	13.9	0.0	33.5	100.0	284
45-49	82.4	196	32.2	5.8	0.0	22.5	1.2	38.3	100.0	162
Marital status										
Never married	79.4	453	25.5	4.0	0.1	40.0	1.0	29.3	100.0	360
Currently married	93.9	1,947	40.3	9.6	0.0	21.8	0.8	27.5	100.0	1,828
Formerly married	92.0	283	33.8	13.8	0.0	16.7	0.1	35.7	100.0	260
Residence										
Urban	99.0	350	38.4	5.3	0.1	41.4	1.1	13.7	100.0	347
Rural	90.1	2,333	37.3	9.9	0.0	21.1	0.7	31.1	100.0	2,101
Region										
Northern	95.9	313	42.6	9.1	0.0	33.3	0.6	14.5	100.0	300
Central	85.7	1,118	39.8	7.3	0.1	16.1	1.3	35.5	100.0	958
Southern	95.0	1,253	34.2	10.9	0.0	27.9	0.3	26.7	100.0	1,190
Educational level										
No education	87.0	1,064	33.1	8.7	0.0	17.9	0.9	39.4	100.0	926
Primary	93.5	1,481	40.3	9.2	0.0	26.2	0.6	23.7	100.0	1,385
Secondary and higher	100.0	137	37.7	13.5	0.4	41.7	0.5	6.3	100.0	137
Total	91.2	2,683	37.4	9.3	0.0	24.0	0.7	28.6	100.0	2,448

Table 6.16.2 Knowledge of condoms: men										
Percentage of men who know about condoms and among these the percentage who know a specific source for condoms, by background characteristics, Malawi 1996										
	All men		Among men who know about condoma, percentage who know source for condoms							Number of men
Background characteristic	Know about condoms	Number of women	Public source	Private medical sector	Private pharmacy	Shop	Other cource	Dont know nource	Total	
Age										
15-19	94.8	572	25.5	8.4	0.0	53.6	2.9	9.6	100.0	542
20-24	98.5	492	35.6	6.7	0.0	49.2	1.5	7.0	100.0	484
25-29	99.3	351	40.9	6.5	0.2	41.6	3.2	7.7	100.0	348
30-34	99.9	338	37.6	9.4	0.0	41.4	2.7	8.8	100.0	338
35-39	100.0	265	35.3	8.9	0.1	43.5	1.6	10.6	100.0	265
40-44	98.3	231	31.5	9.7	0.0	40.9	2.4	15.5	100.0	227
45-49	96.7	249	35.5	8.4	0.1	35.2	4.5	16.3	100.0	241
50-54	98.5	160	30.1	4.6	0.0	29.7	3.6	32.1	100.0	158
Marital status										
Never married	95.3	873	27.9	7.6	0.1	52.3	3.3	8.7	100.0	832
Currently married	99.2	1,718	36.3	8.2	0.0	40.3	2.3	12.8	100.0	1,704
Formerly married	100.0	67	41.3	3.1	0.0	45.9	3.1	6.6	100.0	67
Residence										
Urban	99.2	437	25.1	7.9	0.3	61.5	2.8	2.5	100.0	434
Rural	97.7	2,221	35.5	7.9	0.0	40.9	2.6	13.1	100.0	2,169
Region										
Northern	97.5	331	33.7	3.3	0.1	46.3	7.7	8.9	100.0	323
Central	96.9	1,084	40.5	7.8	0.0	31.6	1.6	18.5	100.0	1,050
Southern	99.0	1,243	28.0	9.2	0.0	54.6	2.2	6.0	100.0	1,230
Educational level										
No education	96.3	468	27.9	5.8	0.0	39.2	2.8	24.3	100.0	451
Primary	98.0	1,824	35.8	8.7	0.0	42.9	2.6	10.1	100.0	1,787
Secondary and higher	99.9	365	30.9	6.7	0.2	57.6	3.0	1.7	100.0	365
Total	97.9	2,658	33.7	7.9	0.0	44.3	2.7	11.4	100.0	2,603

6.8 Use of Condoms

Tables 6.17 .1 and 6.17 .2 show the percentage of women and men who ever used condoms for contraceptive purposes, for STD prevention, and for either reason. A total of 14 percent of women and 41 percent of men reported having used a condom for either contraceptive purposes or for STD prevention. Nine percent of women had used condoms for contraceptive purposes and 8 percent to avoid STDs, compared with 30 percent of men who had used condoms for contraception and 32 percent to protect against STDs. Among women and men who use condoms, the rationale of STD prevention is almost as common as contraception for women and slightly more common than contraception for men.

Use of condoms by women and men is associated with perceived risk of getting AIDS. This is particularly true for men. Use of condoms for protection against STDs is 35 percent greater among men whose reported risk is moderate or great than it is among those who see their risk as none or small. Use of condoms by men for family planning is 24 percent greater in the moderate or great risk group than it is in the small or no-risk group.

Table 6.17.1 Reasons for using condoms and with whom: women

Among women who ever had sex, the percentage who ever used condoms for family planning, the percentage who ever used condoms to avoid sexually transmitted diseases, and the percentages who used a condom during last sexual intercourse with spousal and non-spousal partners according to perception of ADS risk and background characteristics, Malawi 1996

Background cheracteristic	Reasons for uring condom				Uned condom dwing last eexual intercourse			
		To avoid STD/AIDS	Either reason	Number of women	Percent with upouse	Number of women	$\begin{gathered} \text { Percent } \\ \text { with } \\ \text { non-spouse } \end{gathered}$	Number of women
Perceived personal risk of HIV/AIDS								
None or small	9.5	7.6	13.2	1,187	3.0	917	22.4	121
Moderate or great	9.3	8.9	13.9	1,208	3.9	1,027	16.4	105
Age								
15-19	12.5	13.3	17.1	347	5.6	207	23.5	116
20-24	14.0	12.8	20.3	512	5.5	417	18.5	61
25-29	8.1	8.5	14.4	390	3.5	355	(12.8)	14
30-39	9.0	4.5	11.2	637	2.5	557	(8.2)	19
40-49	4.1	4.8	6.5	509	1.5	407	*	16
Marital status								
Never married	20.9	25.6	28.3	166	NA	0	25.0	152
Currently married	8.7	7.0	12.8	1,947	3.5	1,943	*	3
Formerly married	7.0	6.7	10.0	283	NA	0	8.8	72
Residence								
Urban	22.4	18.0	28.5	304	6.4	232	33.4	45
Rural	7.5	6.9	11.3	2,091	3.1	1,711	16.2	181
Region								
Northern	19.8	7.9	23.5	289	5.4	247	27.8	21
Central	8.5	6.6	10.7	959	2.9	789	25.9	67
Southern	7.5	9.7	13.4	1,147	3.4	908	15.4	139
Educational leved								
No education	4.7	4.6	7.7	1,015	2.4	869	(6.0)	48
Primary	11.0	9.6	15.6	1,260	3.9	999	21.2	139
Secondary and higher	31.1	25.3	40.1	121	8.9	75	(30.8)	39
Total	9.4	8.3	13.5	2,396	3.5	1,943	19.6	226

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 cases and has been suppressed.
NA = Not applicable

For women, the difference in condom usage is less pronounced with regard to perceived risk. Condom usage for STD protection rises from 8 percent among women who see their risk as none or small to 9 percent among women who reported their risk as moderate or great. There is little difference between the two risk groups in terms of family planning usage of condoms.

Among both men and women, condom use for both family planning and protection against STDs is more prevalent in urban areas than in rural. Prevalence is also markedly higher among women with secondary or higher education compared with less educated women and men.

Tables 6.17.1 and 6.17.2 also show the prevalence of condom use during last sexual intercourse in terms of whether the last partner was a spouse or non-spouse. Predictably, condom use is much higher when the last partner is not a spouse. Among women whose last sex was with a spouse, 4 percent stated that a condom had been used compared with 20 percent whose last sex was with a non-spouse. For men, the comparable percentages were 9 percent and 38 percent.

Table 6.17.2 Reasons for using condoms and with whom: men

Among men who ever had sex, the percentage who ever used condoms for family planning, the percentage who ever used condoms to avoid sexually transmitted diseases, and the percentages who used a condom during last sexual intercourse with spousal and non-spousal partners according to perception of ADS risk and background characteristics, Malawi 1996

Background characteristic	Reasons for using condom				Used condom during last nexual intercourse			
		To avoid STD/AIDS	Either reason	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { men } \end{gathered}$	Percent with spouse	Number of men	$\begin{gathered} \text { Percent } \\ \text { with } \\ \text { non-spouse } \end{gathered}$	Number of men
Perceived personal risk of HIV/AIDS								
None or small	28.4	30.2	39.3	1,932	8.8	1,386	39.9	528
Moderate or great	35.3	40.7	48.2	433	8.1	276	30.2	157
Age								
15-19	25.7	39.4	40.8	326	*	14	32.0	312
20-24	40.4	52.0	56.5	455	12.0	210	39.5	244
25-29	33.8	32.9	48.3	346	13.1	285	34.6	55
30-39	29.6	28.5	40.6	599	8.4	545	61.3	51
40-49	22.5	16.7	27.6	479	4.8	458	*	20
50-54	19.2	18.4	22.2	160	7.7	150	*	3
Marital status								
Never married	33.3	50.3	50.9	581	NA	0	35.7	581
Currently married	28.7	25.7	37.6	1,718	8.7	1,662	62.6	54
Formerly married	22.4	37.0	38.7	67	NA	0	24.3	50
Residence								
Urban	36.3	42.1	49.4	393	13.7	227	47.9	161
Rural	28.3	30.1	39.3	1,973	7.9	1,435	34.7	524
Region								
Northern	33.6	24.6	41.3	276	6.2	191	35.5	83
Central	27.5	27.4	37.4	931	6.5	692	35.9	229
Southern	30.4	37.6	43.7	1,158	11.3	779	39.0	373
Educational level								
No education	23.8	21.7	31.7	443	7.6	364	24.7	74
Primary	27.7	31.4	38.9	1,582	8.0	1,089	34.6	485
Secondary and higher	46.2	48.9	62.6	341	14.3	209	54.7	126
Total	29.6	32.1	40.9	2,366	8.7	1,662	37.5	685

Note: An asterisk indicates that a figure is based on fewer than 25 cases and has been suppressed.
NA = Not applicable

Among both women and men, the prevalence of condom use with non-spousal partners was higher among those whose perceived risk of AIDS was none or small compared with those who saw their risk as moderate or great. Twenty-two percent of women whose perceived personal risk was none to small used a condom at last sex with a non-spouse compared with 16 percent whose risk was moderate or high. Among men with small or no risk, the percentage reporting condom use with the last non-spousal partner was 40 percent compared with 30 percent for men with moderate or high risk. Lower perceived personal risk may be derived in part from more prevalent use of condoms and the protection it provides.

Table 6.18 gives the prevalence of condom use during the last sexual intercourse with a non-regular partner during the 12 months preceding the survey. It is important to note this definition of last sexual intercourse differs from last sexual intercourse as presented in Tables 6.17.1 and 6.17.2. These tables show condom use the last time a respondent had sex before the survey. This last sexual intercourse is classified by whether it was with
a spouse or non-spouse. The non-spouse category includes both regular and non-regular partners who are not spouses.

By contrast, Table 6.18 includes only the last sexual encounter with a non-regular partner during the 12 months preceding the interview. The last non-regular partner a respondent had sex with may not be the last person the respondent had sex with. In the MKAPH survey, a "non-regular partner" was defined as a person other than a spouse whom the respondent did not see on a regular basis.

Table 6.18 Use of condoms with non-regular partners
Percentage of women and men who used a condom during last sexual intercourse with a non-regular partner, Malawi 1996

	Percent who used condoms during last sex with non-regular partner	Number of women or men who had had sex with non-regular partner
Respondent	(23.7)	38
Women	42.7	352
Men		

Note: Figure in parentheses is based on 25-49 unweighted cases.

As Table 6.18 reveals, among women who reported a non-regular partner during the 12 months before the survey, 24 percent used a condom during the last sexual intercourse with such a partner. Of males with non-regular partners during the reference period, 43 percent used a condom at last sex with a non-regular partner.

REFERENCES

AIDS Secretariat (AIDSEC) [Malawi]. 1994. Medium Term Plan II. 1994-1998. Vol. 1. Malawi AIDS Control Programme. Lilongwe: Ministry of Health.

Development Data Group. 1997. World Development Indicators 1997 on CD-ROM. Washington, DC: The World Bank.

Ministry of Health and Family Planning (MOHP) [Malawi]. 1995. Health policy framework. Lilongwe: Ministry of Health and Population.

National Statistical Office [Malawi]. 1980. Malawi Population Census 1977: Final report. Vol. 1. Zomba: National Statistical Office.

National Statistical Office [Malawi]. 1987. Malawi Family Formation Survey 1984. Zomba: National Statistical Office.

National Statistical Office [Malawi]. 1991. Malawi Population and Housing Census 1987: Summary of final results. Vol. 1. Zomba: National Statistical Office.

National Statistical Office [Malawi]. 1994. Demographic and Health Survey 1992. Calverton, Maryland: National Statistical Office and Macro International Inc.

Office of the President and Cabinet (OPC) [Malawi]. 1994. National population policy. Lilongwe: Department of Economic Planning and Development.

World Health Organisation (WHO). 1995. Fifty facts from the World Health Report 1995. Geneva: WHO (Published on the Internet at http://www.who.ch/programmes/whr/facts.htm

APPENDIX A

SURVEY DESIGN

Table A.10.1 Sample implementation

Percent distribution of households and eligible women in the ZDHS sample by results of the interviews and household, eligible women, and overall response rates, according to region and residence, Malawi 1996

Result	Region			Residence		Total
	Northem	Central	Southern	Urban	Rural	
Selected households						
Completed(C)	93.6	92.0	91.6	92.4	92.0	92.2
Household present but						
no competent respondent at home (HP)	1.1	0.5	1.1	1.3	0.5	0.9
Refused (R)	0.0	0.1	0.1	0.1	0.0	0.1
Dwelling not found (DNF)	0.0	0.3	0.1	0.2	0.1	0.1
Household absent (HA)	1.5	1.5	2.5	1.6	2.1	1.9
Dwelling vacant (DV)	3.5	5.3	4.1	3.8	5.0	4.4
Dwelling destroyed (DD)	0.3	0.3	0.4	0.6	0.2	0.4
Other (O)	0.0	0.0	0.2	0.0	0.1	0.1
Total percent	100.0	100.0	100.0	100.0	100.0	100.0
Number	659	1162	1214	1426	1609	3035
Household response rate (HRR)	98.9	99.1	98.7	98.3	99.4	98.9
Eligible women						
Completed (EWC)	97.3	98.1	98.4	98.4	97.6	98.0
Not at home (EWNH)	1.9	1.0	1.2	1.0	1.6	1.3
Refused (EWR)	0.2	0.2	0.0	0.1	0.1	0.1
Parly completed (EWPC)	0.0	0.0	0.2	0.1	0.1	0.1
Incapacitated (EWI)	0.5	0.5	0.2	0.1	0.6	0.4
Other (EWO)	0.2	0.2	0.1	0.3	0.0	0.1
Total percent	100.0	100.0	100.0	100.0	100.0	100.0
Number	639.0	1058	1040	1354	1383	2737
Eligible woman response rate (EWRR) ${ }^{2}$	97.3	98.1	98.4	98.4	97.6	98.0
Overall resppnse rate (ORR)	96.2	97.2	97.1	96.8	97.0	96.9
Eligible men						
Completed (EMC)	92.4	94.0	92.1	91.7	94.4	92.9
Not at home (EMNH)	6.3	4.6	5.7	6.2	4.5	5.4
Refused (EMR)	0.2	0.5	1.1	1.1	0.1	0.6
Parly completed (EMPC)	0.2	0.0	0.4	0.1	0.2	0.2
Incapacitated (EMI)	1.1	0.7	0.6	0.7	0.9	0.8
Other (EMO)	0.0	0.2	0.1	0.2	0.0	0.1
Total percent	100.0	100.0	100.0	100.0	100.0	100.0
Number	655	1108	1098	1585	1276	2861
Eligible men response rate (EMRR) ${ }^{2}$	92.4	94.0	92.1	91.7	94.4	92.9
Overall resppnse rate (ORR)	91.3	93.2	90.9	90.2	93.8	91.9
Eligible children						
Completed (ECC)	98.9	99.4	99.8	99.6	99.2	99.4
Not at home (ECNH)	0.6	0.5	0.1	0.3	0.5	0.4
Refused (ECR)	0.5	0.0	0.1	0.1	0.2	0.2
Other (ECO)	0.0	0.1	0.0	0.1	0.0	0.0
Total percent	100.0	100.0	100.0	100.0	100.0	100.0
Number	626	989	818	1122	1311	2433
Eligible child response rate (ECRR)	98.9	99.4	99.8	99.6	99.2	99.4
Overall resppnse rate (ORR)	97.8	98.5	98.4	97.8	98.6	98.3

Note: The household response rate is calculated for completed households as a proportion of completed, no competent respondent, refused, and dwelling not found. The eligible woman response rate is calculated for completed interviews as a proportion of completed, not at home, postponed, refused, partially completed, incapacitated and "other." The overall response rate is the product of the household and woman response rates. ${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HRR) is

APPENDIX B

ESTIMATES OF SAMPLING ERRORS

APPENDIX B

ESTIMATES OF SAMPLING ERRORS

The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the MKAPH to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the MKAPH is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the MKAPH sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the MKAPH is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

The Taylor linearization method treats any percentage or average as a ratio estimate, $r=y / x$, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance:

$$
\operatorname{var}(r)=\frac{1-f}{x^{2}} \sum_{h=1}^{H}\left[\frac{m_{h}}{m_{h}-1}\left(\sum_{i=1}^{m_{h}} z_{h i}^{2}-\frac{z_{h}^{2}}{m_{h}}\right)\right]
$$

in which

$$
z_{h i}=y_{h i}-r \cdot x_{h i}, \text { and } z_{h}=y_{h}-r \cdot x_{h}
$$

where $h \quad$ represents the stratum which varies from 1 to H ,
$m_{h} \quad$ is the total number of enumeration areas selected in the $h^{\text {th }}$ stratum,
$y_{h i} \quad$ is the sum of the values of variable y in EA I in the $h^{\text {th }}$ stratum,
$x_{h i} \quad$ is the sum of the number of cases in EA I in the $h^{\text {th }}$ stratum, and
$f \quad$ is the overall sampling fraction, which is so small that it is ignored.
The Jackknife repeated replication method derives estimates of complex rates from each of several replications of the parent sample, and calculates standard errors for these estimates using simple formulae. Each replication considers all but one clusters in the calculation of the estimates. Pseudo-independent replications are thus created. In the MKAPH, there were 106 non-empty clusters. Hence, 106 replications were created. The variance of a rate r is calculated as follows:

$$
\operatorname{var}(r)=\frac{1}{k(k-1)} \sum_{i=1}^{k}\left(r_{i}-r\right)^{2}
$$

in which

$$
r_{i}=k r-(k-1) r_{(i)}
$$

where r is the estimate computed from the full sample of 106 clusters,
$r_{(i)}$ is the estimate computed from the reduced sample of 105 clusters ($\mathrm{i}^{\text {th }}$ cluster excluded), and
$k \quad$ is the total number of clusters.
In addition to the standard error, SAMPERR computes the design effect (DEFT) for each estimate, which is defined as the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. SAMPERR also computes the relative error and confidence limits for the estimates.

Sampling errors for the MKAPH are calculated for selected variables considered to be of primary interest. Two sets of results, one for women and for men, are presented in this appendix for the country as a whole, for urban and rural areas, for each of the three administrative Regions: Northem, Central, and Southem. For each variable, the type of statistic (mean, proportion, or rate) and the base population are given in Table B.1. Tables B.2.1 to B.7.3 present the value of the statistic (R), its standard error (SE), the number of unweighted (N) and weighted (WN) cases, the design effect (DEFT), the relative standard error (SE/R), and the 95 percent confidence limits ($\mathrm{R} \pm 2 \mathrm{SE}$), for each variable. The DEFT is considered undefined when the standard error considering simple ramdom sample is zero (when the estimate is close to 0 or 1).

In general, the relative standard error for most estimates for the country as a whole is small, except for estimates of very small proportions. There are some differentials in the relative standard error for the estimates of sub-populations. For example, to estimate the proportion using a modern contraceptive method among currently married women aged 15-49, the relative standard errors as a percent of the estimated mean for the whole country, for urban areas, and for rural areas are 8.9 percent, 6.2 percent, and 11.5 percent, respectively.

The confidence interval (e.g., as calculated for the proportion for using a modern contraceptive method among currently married women aged 15-49) can be interpreted as follows: the overall national
sample proportion is 0.144 and its standard error is .013 . Therefore, to obtain the 95 percent confidence limits, one adds and subtracts twice the standard error to the sample estimate, ie. $0.144 \pm 2 x .013$. There is a high probability (95 percent) that the true value of using a modem contraceptive method among currently married women aged 15 to 49 is between 0.119 and 0.170 .

Table B. 1 List of selected variables for samoling errors. Malawi. 1996		
Variable	Description	Base population
WOMEN		
Urban	Proportion	All women 15-49
With no education	Proportion	All women 15-49
With secondary education or more	Proportion	All women 15-49
Currently married	Proportion	All women 15-49
Married before age 20	Proportion	Ever married 20-49
Currently pregnant	Proportion	All women 15-49
Children ever born	Mean	All women 15-49
Children ever born to women over 40	Mean	All women 40-49
Children surviving	Mean	All women 15-49
Knowing any contraceptive method	Proportion	Currently married women
Knowing any modern method	Proportion	Currently married women
Ever used any method	Proportion	Currently married women
Currently using any method	Proportion	Currently married women
Currently using a modern method	Proportion	Currently married women
Currently using the pill	Proportion	Currently married women
Currently using IUD	Proportion	Currently married women
Currently using injectables	Proportion	Currently married women
Currently using a condom	Proportion	Currently married women
Currently using female sterilisation	Proportion	Currently married women
Currently using male sterilisation	Proportion	Currently married women
Currently using periodic abstinence	Proportion	Currently married women
Currently using withdrawal	Proportion	Currently married women
Using public sector source	Proportion	Currently married women
Had non-spousal parter during past 12 months	Proportion	All women 15-49
Number of partners during past 4 weeks	Mean	All women 15-49
Knowing AIDS	Proportion	All women 15-49
Knowing at least two valid ways of preventing AIDS	Proportion	All women 15-49
Received vitamin A within 8 weeks of giving birh	Proportion	Women who had given birth
Had at least one non-regular parner during past 12 months	Proportion	All women 15-49
MEN		
Urban	Proportion	All men 15-54
With no education	Proportion	All men 15-54
With secondary education or more	Proportion	All men 15-54
Currently married	Proportion	All men 15-54
Had non-spousal parter during past 12 months	Proportion	All men 15-54
Number of partners during past 4 weeks	Mean	All men 15-54
Knowing AIDS	Proporion	All men 15-54
Knowing at least two valid ways of preventing AIDS	Proportion	All men 15-54
Had at least one non-regular partner during past 12 months	Proportion	All men 15-54
CHILDREN		
Had fever in past two weeks	Proporion	All children under five
Had diarrhoea in past two weeks	Proporion	All children under five
Had cough in past two weeks	Proportion	All children under five
Had fast or difficult breathing in past two weeks	Proportion	All children under five
Had health card	Proportion	Children 12-23 months
Received BCG vaccine	Proportion	Children 12-23 months
Received DPT vaccine	Proportion	Children 12-23 months
Received polio vaccine	Proportion	Children 12-23 months
Received measles vaccine	Proportion	Children 12-23 months
Fully immunised	Proportion	Children 12-23 months
Received vitamin A	Proportion	Children 12-23 months

Table B. 2 Sampling errors - National sample: Malawi 1996

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban	0.131	0.009	2683	2683	1.365	0.068	0.113	0.148
With no education	0.397	0.020	2683	2683	2.120	0.050	0.357	0.437
With secondary education or higher	0.051	0.006	2683	2683	1.415	0.118	0.039	0.063
Currently married (in union)	0.726	0.013	2683	2683	1.538	0.018	0.699	0.752
Married before age 20	0.742	0.014	2057	2065	1.413	0.018	0.715	0.769
Currently pregnant	0.127	0.008	2683	2683	1.270	0.064	0.111	0.143
Children ever born	3.505	0.087	2683	2683	1.403	0.025	3.331	3.678
Children ever bom to women over 40	7.233	0.205	426	509	1.373	0.028	6.824	7.643
Children surviving	2.504	0.059	2683	2683	1.309	0.024	2.386	2.623
Knowing any contraceptive method	0.989	0.003	1893	1947	1.264	0.003	0.983	0.995
Knowing any modern method	0.987	0.003	1893	1947	1.174	0.003	0.981	0.993
Ever used any method	0.414	0.015	1893	1947	1.366	0.037	0.383	0.445
Currently using any method	0.219	0.014	1893	1947	1.505	0.065	0.190	0.248
Currently using a modern method	0.144	0.013	1893	1947	1.585	0.089	0.119	0.170
Currently using the pill	0.034	0.007	1893	1947	1.759	0.215	0.020	0.049
Currently using IUD	0.004	0.002	1893	1947	1.184	0.441	0.000	0.007
Currently using injectables	0.064	0.009	1893	1947	1.525	0.134	0.047	0.082
Currently using a condom	0.016	0.003	1893	1947	1.154	0.206	0.010	0.023
Currenly using female sterilisation	0.025	0.005	1893	1947	1.402	0.200	0.015	0.035
Currently using male sterilisation	0.000	0.000	1893	1947	NA	NA	0.000	0.000
Currently using periodic abstinence	0.020	0.005	1893	1947	1.441	0.232	0.011	0.029
Currently using withdrawal	0.019	0.003	1893	1947	0.994	0.166	0.012	0.025
Using public sector source	0.586	0.055	468	327	2.426	0.094	0.476	0.697
Had non-spousal partner during past 12 months	0.008	0.002	2373	2395	0.937	0.219	0.004	0.011
Number of partners during past 4 weeks	0.668	0.016	2374	2396	1.570	0.024	0.637	0.700
Knowing AIDS	0.967	0.004	2683	2683	1.229	0.004	0.958	0.975
Knowing at least two valid ways of preventing AIDS	0.282	0.010	2636	2594	1.134	0.035	0.262	0.301
Received vitamin A within 8 weeks of giving birth	0.229	0.017	2035	2067	1.841	0.075	0.194	0.263
Had at least one non-regular partner during past 12 months	0.018	0.004	2168	2178	1.262	0.203	0.010	0.025
MEN								
Urban	0.164	0.011	2658	2658	1.597	0.070	0.141	0.187
With no education	0.176	0.013	2658	2658	1.775	0.074	0.150	0.202
With secondary education or more	0.137	0.012	2658	2658	1.777	0.086	0.114	0.161
Currently married	0.646	0.014	2658	2658	1.504	0.022	0.618	0.674
Had non-spousal partner during past 12 months	0.077	0.011	2350	2364	2.039	0.146	0.055	0.100
Number of partners during past 4 weeks	0.811	0.020	2349	2366	1.562	0.025	0.771	0.851
Knowing AIDS	0.994	0.002	2658	2658	1.360	0.002	0.990	0.998
Knowing at least two valid way of preventing AIDS	0.531	0.019	2649	2642	1.919	0.035	0.494	0.569
Had at least one non-regular parner during past 12 months	0.156	0.013	2185	2238	1.730	0.086	0.130	0.183
CHILDREN								
Had fever in past two weeks	0.448	0.019	2071	2071	1.773	0.043	0.409	0.487
Had diarrhoea in past two weeks	0.161	0.013	2071	2071	1.579	0.079	0.135	0.186
Had cough in past two weeks	0.555	0.021	2071	2071	1.925	0.038	0.512	0.597
Had fast or difficult breathing in past								
two weeks	0.123	0.012	2071	2071	1.707	0.100	0.099	0.148
Had health card	0.889	0.020	426	425	1.306	0.022	0.849	0.929
Received BCG vaccine	0.979	0.008	426	425	1.215	0.009	0.962	0.996
Received DPT vaccine	0.914	0.017	426	425	1.251	0.019	0.880	0.948
Received polio vaccine	0.891	0.022	426	425	1.439	0.024	0.848	0.935
Received measles vaccine	0.883	0.024	426	425	1.516	0.027	0.836	0.931
Fully immunised	0.813	0.027	426	425	1.402	0.033	0.760	0.866
Received vitamin A	0.157	0.016	2071	2071	1.960	0.100	0.126	0.188

[^11]Table B. 3 Sampling errors - Urban sample: Malawi 1996

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
WOMEN								
Urban	1.000	0.000	1333	350	NA	0.000	1.000	1.000
With no education	0.151	0.013	1333	350	1.332	0.086	0.125	0.178
With secondary education or higher	0.258	0.023	1333	350	1.931	0.090	0.212	0.304
Currently married (in union)	0.664	0.017	1333	350	1.300	0.025	0.631	0.698
Married before age 20	0.653	0.021	1005	264	1.419	0.033	0.610	0.695
Currently pregnant	0.103	0.009	1333	350	1.081	0.088	0.085	0.121
Children ever bom	2.781	0.086	1333	350	1.143	0.031	2.610	2.953
Children ever born to women over 40	6.790	0.302	163	42	1.299	0.044	6.186	7.393
Children surviving	2.274	0.066	1333	350	1.049	0.029	2.142	2.406
Knowing any contraceptive method	0.999	0.001	886	233	0.979	0.001	0.997	1.000
Knowing any modern method	0.998	0.001	886	233	0.963	0.001	0.995	1.000
Ever used any method	0.597	0.019	886	233	1.167	0.032	0.559	0.636
Currently using any method	0.360	0.017	886	233	1.057	0.047	0.326	0.395
Currently using a modern method	0.287	0.018	886	233	1.164	0.062	0.252	0.323
Currently using the pill	0.048	0.008	886	233	1.083	0.162	0.033	0.064
Currently using IUD	0.015	0.007	886	233	1.690	0.466	0.001	0.028
Currently using injectables	0.140	0.013	886	233	1.152	0.096	0.113	0.167
Currently using a condom	0.027	0.005	886	233	0.952	0.192	0.017	0.037
Currenly using female sterilisation	0.055	0.006	886	233	0.809	0.112	0.043	0.068
Currently using male sterilisation	0.000	0.000	886	233	NA	NA	0.000	0.000
Currently using periodic abstinence	0.027	0.007	886	233	1.196	0.241	0.014	0.040
Currently using withdrawal	0.022	0.004	886	233	0.894	0.200	0.013	0.031
Using public sector source	0.617	0.029	326	83	1.089	0.048	0.559	0.676
Had non-spousal partner during past	0.003	0.002	1157	304	1.134	0.581	0.000	0.007
12 months	0.719	0.016	1157	304	1.183	0.023	0.686	0.752
Number of partners during past 4 weeks								
Knowing AIDS	0.999	0.001	1333	350	0.959	0.001	0.997	1.000
Knowing at least two valid ways of preventing AIDS	0.499	0.018	1331	350	1.280	0.035	0.464	0.534
Received vitamin A within 8 weeks of giving birth	0.222	0.015	972	254	1.119	0.067	0.192	0.251
during past 12 months	0.025	0.005	1068	282	1.112	0.212	0.015	0.036
MEN								
Urban	1.000	0.000	1454	437	NA	0.000	1.000	1.000
With no education	0.065	0.009	1454	437	1.458	0.144	0.047	0.084
With secondary education or more	0.370	0.031	1454	437	2.451	0.084	0.308	0.432
Currently married	0.546	0.016	1454	437	1.209	0.029	0.515	0.578
Had non-spousal partner during past								
12 months	0.055	0.007	1292	393	1.071	0.123	0.041	0.069
Number of partners during past 4 weeks	0.684	0.028	1290	392	1.417	0.041	0.628	0.741
Knowing AlDS	1.000	0.000	1454	437	NA	0.000	1.000	1.000
Knowing at least two valid way of preventing AIDS	0.626	0.018	1454	437	1.457	0.030	0.589	0.663
Had at least one non-regular partner during past 12 months	0.133	0.013	1178	358	1.329	0.099	0.107	0.159
CHILDREN								
Had fever in past two weeks	0.356	0.017	948	239	1.088	0.048	0.322	0.390
Had diarrhoea in past two weeks	0.144	0.016	948	239	1.406	0.111	0.112	0.176
Had cough in past two weeks	0.484	0.016	948	239	0.972	0.033	0.452	0.516
Had fast or difficult breathing in past two weeks	0.068	0.010	948	239	1.183	0.142	0.049	0.087
Had health card	0.848	0.032	202	51	1.280	0.038	0.783	0.913
Received BCG vaccine	0.979	0.012	202	51	1.233	0.013	0.954	1.000
Received DPT vaccine	0.953	0.015	202	51	1.029	0.016	0.923	0.984
Received polio vaccine	0.911	0.027	202	51	1.355	0.030	0.856	0.965
Received measles vaccine	0.943	0.023	202	51	1.389	0.024	0.898	0.989
Fully immunised	0.880	0.033	202	51	1.447	0.038	0.814	0.946
Received vilamin A	0.188	0.018	948	239	1.410	0.095	0.152	0.223

NA $=$ Not applicable

Table B. 4 Sampling errors - Rural sample: Malawi 1296

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	$\xrightarrow{\text { R+2SE }}$
WOMEN								
Urban	0.000	0.000	1350	2333	NA	NA	0.000	0.000
With no education	0.434	0.023	1350	2333	1.669	0.052	0.389	0.479
With secondary education or higher	0.020	0.005	1350	2333	1.300	0.246	0.010	0.030
Currently married (in union)	0.735	0.015	1350	2333	1.241	0.020	0.705	0.765
Married before age 20	0.755	0.015	1052	1800	1.136	0.020	0.725	0.785
Currently pregnant	0.131	0.009	1350	2333	1.007	0.071	0.112	0.149
Children ever born	3.613	0.098	1350	2333	1.105	0.027	3.417	3.809
Children ever born to women over 40	7.274	0.221	263	467	1.164	0.030	6.831	7.716
Children surviving	2.539	0.067	1350	2333	1.051	0.026	2.404	2.673
Knowing any contraceptive method	0.988	0.003	1007	1715	0.989	0.003	0.981	0.995
Knowing any modern method	0.986	0.003	1007	1715	0.924	0.004	0.979	0.992
Ever used any method	0.389	0.017	1007	1715	1.107	0.044	0.355	0.423
Currently using any method	0.200	0.016	1007	1715	1.275	0.080	0.168	0.232
Currently using a modern method	0.125	0.014	1007	1715	1.376	0.115	0.096	0.154
Currently using the pill	0.032	0.008	1007	1715	1.483	0.256	0.016	0.049
Currently using IUD	0.002	0.002	1007	1715	1.082	0.706	0.000	0.006
Currently using injectables	0.054	0.010	1007	1715	1.344	0.177	0.035	0.073
Currently using a condom	0.015	0.004	1007	1715	0.990	0.253	0.007	0.023
Currenly using female sterilisation	0.021	0.006	1007	1715	1.255	0.269	0.010	0.033
Currently using male sterilisation	0.000	0.000	1007	1715	NA	NA	0.000	0.000
Currently using periodic abstinence	0.019	0.005	1007	1715	1.204	0.273	0.009	0.029
Currently using withdrawal	0.018	0.003	1007	1715	0.821	0.190	0.011	0.025
Using public sector source	0.576	0.073	142	244	1.744	0.126	0.431	0.721
Had non-spousal partner during past 12 months	0.008	0.002	1216	2091	0.725	0.227	0.005	0.012
Number of partners during past 4 weeks	0.661	0.018	1217	2091	1.280	0.027	0.625	0.697
Knowing AIDS	0.962	0.005	1350	2333	0.948	0.005	0.952	0.972
Knowing at least two valid ways of preventing AIDS	0.248	0.011	1305	2244	0.947	0.046	0.225	0.270
giving birth	0.230	0.019	1063	1813	1.507	0.085	0.191	0.268
during past 12 months	0.016	0.004	1100	1896	1.047	0.245	0.008	0.02
MEN								
Urban	0.000	0.000	1204	2221	NA	NA	0.000	0.000
With no education	0.198	0.016	1204	2221	1.351	0.078	0.167	0.229
With secondary education or more	0.092	0.012	1204	2221	1.497	0.136	0.067	0.117
Currently married	0.666	0.016	1204	2221	1.196	0.024	0.633	0.698
Had non-spousal partner during past 12 months	0.081	0.013	1058	1971	1.592	0.164	0.055	0.108
Number of partners during past 4 weeks	0.836	0.023	1059	1973	1.277	0.028	0.790	0.883
Knowing AIDS	0.993	0.002	1204	2221	1.003	0.002	0.988	0.998
Knowing at least two valid way of preventing AIDS	0.513	0.022	1195	2205	1.539	0.043	0.468	0.557
Had at least one non-regular partner during past 12 months	0.161	0.016	1007	1879	1.366	0.098	0.129	0.193
CHILDREN								
Had fever in past two weeks	0.460	0.022	1123	1832	1.451	0.047	0.417	0.503
Had diarhoea in past two weeks	0.163	0.014	1123	1832	1.291	0.087	0.134	0.191
Had cough in past two weeks	0.564	0.023	1123	1832	1.576	0.041	0.517	0.610
Had fast or difficult breathing in past								
two weeks	0.131	0.014	1123	1832	1.355	0.104	0.103	0.158
Had health card	0.895	0.022	224	374	1.084	0.025	0.850	0.939
Received BCG vaccine	0.979	0.009	224	374	0.985	0.010	0.960	0.998
Received DPT vaccine	0.909	0.019	224	374	0.997	0.021	0.870	0.947
Received polio vaccine	0.889	0.024	224	374	1.158	0.027	0.840	0.937
Received measles vaccine	0.875	0.027	224	374	1.213	0.031	0.822	0.929
Fully immunised	0.804	0.030	224	374	1.124	0.037	0.744	0.864
Received vitamin A	0.153	0.018	1123	1832	1.631	0.115	0.118	0.188

NA = Not applicable

Table B. 5 Samoling_errors - Northern sample:_Malawi 1996

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
WOMEN								
Urban	0.132	0.012	622	313	0.888	0.092	0.107	0.156
With no education	0.191	0.053	622	313	3.342	0.276	0.086	0.297
With secondary education or higher	0.061	0.006	622	313	0.605	0.095	0.050	0.073
Currently married (in union)	0.794	0.018	622	313	1.113	0.023	0.758	0.830
Married before age 20	0.857	0.014	496	256	0.888	0.016	0.829	0.885
Currently pregnant	0.147	0.011	622	313	0.777	0.075	0.125	0.169
Children ever born	3.732	0.135	622	313	1.131	0.036	3.463	4.002
Children ever born to women over 40	7.303	0.335	89	49	1.250	0.046	6.633	7.973
Children surviving	2.752	0.166	622	313	1.796	0.060	2.421	3.083
Knowing any contraceptive method	0.973	0.016	462	249	2.090	0.016	0.941	1.004
Knowing any modern method	0.973	0.016	462	249	2.090	0.016	0.941	1.000
Ever used any method	0.650	0.048	462	249	2.164	0.074	0.554	0.746
Currently using any method	0.273	0.037	462	249	1.807	0.137	0.198	0.348
Currently using a modern method	0.150	0.020	462	249	1.184	0.131	0.110	0.189
Currently using the pill	0.047	0.014	462	249	1.458	0.305	0.018	0.076
Currently using IUD	0.001	0.001	462	249	0.506	1.002	0.000	0.002
Currently using injectables	0.038	0.008	462	249	0.947	0.221	0.021	0.055
Currently using a condom	0.038	0.009	462	249	1.015	0.239	0.020	0.056
Currenly using female sterilisation	0.025	0.005	462	249	0.629	0.182	0.016	0.034
Currently using male sterilisation	0.000	0.000	462	249	NA	NA	0.000	0.000
Currently using periodic abstinence	0.014	0.007	462	249	1.309	0.511	0.000	0.028
Currently using withdrawal	0.090	0.015	462	249	1.106	0.163	0.061	0.120
Using public sector source	0.683	0.071	118	41	1.641	0.103	0.541	0.824
Had non-spousal partner during past 12 months	0.013	0.009	562	288	2.001	0.746	0.000	0.032
Number of partners during past 4 weeks	0.592	0.037	563	289	1.699	0.063	0.518	0.666
Knowing AIDS	0.997	0.003	622	313	1.277	0.003	0.992	1.000
Knowing at least two valid ways of preventing AIDS	0.288	0.016	621	312	0.906	0.057	0.255	0.320
Received vitamin A within 8 weeks of giving birth	0.296	0.029	503	263	1.432	0.099	0.237	0.354
Had at least one non-regular partner during past 12 months	0.027	0.012	502	1896	1.731	0.467	0.002	0.052
MEN								
Urban	0.136	0.015	605	331	1.083	0.111	0.106	0.166
With no education	0.078	0.028	605	331	2.583	0.362	0.021	0.134
With secondary education or more	0.168	0.024	605	331	1.568	0.142	0.121	0.216
Currently married	0.608	0.038	605	331	1.934	0.063	0.531	0.685
Had non-spousal partner during past								
12 months	0.087	0.018	508	276	1.417	0.203	0.052	0.123
Number of partners during past 4 weeks	0.845	0.047	506	276	1.690	0.055	0.752	0.939
Knowing AIDS	0.992	0.003	605	331	0.820	0.003	0.986	0.998
Knowing at least two valid way of preventing AIDS	0.563	0.034	602	329	1.696	0.061	0.495	0.632
Had at least one non-regular partner during past 12 months	0.245	0.026	468	259	1.292	0.105	0.193	0.296
CHILDREN								
Had fever in past two weeks	0.437	0.043	534	283	2.014	0.099	0.351	0.524
Had diarthoea in past two weeks	0.145	0.031	534	283	2.018	0.212	0.084	0.207
Had cough in past two weeks	0.619	0.034	534	283	1.610	0.055	0.551	0.687
Had fast or difficult breathing in past two weeks	0.097	0.013	534	283	1.035	0.137	0.070	0.124
Had health card	0.812	0.039	102	51	0.995	0.048	0.734	0.889
Received BCG vaccine	1.000	0.000	102	51	NA	0.000	1.000	1.000
Received DPT vaccine	0.904	0.032	102	51	1.079	0.035	0.841	0.967
Received polio vaccine	0.867	0.060	102	51	1.789	0.070	0.746	0.988
Received measles vaccine	0.883	0.037	102	51	1.152	0.042	0.809	0.957
Fully immunised	0.817	0.066	102	51	1.721	0.081	0.684	0.949
Received vitamin A	0.212	0.024	534	283	1.338	0.112	0.165	0.259

NA $=$ Not applicable

Table B. 6 Sampling errors - Central sample: Malawi 1996

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	$\begin{aligned} & \text { Relative } \\ & \text { error } \\ & \text { (SE/R) } \end{aligned}$	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban	0.120	0.014	1038	1118	1.367	0.115	0.092	0.147
With no education	0.390	0.027	1038	1118	1.772	0.069	0.336	0.444
With secondary education or higher	0.040	0.008	1038	1118	1.374	0.209	0.023	0.057
Currently married (in union)	0.706	0.027	1038	1118	1.920	0.038	0.652	0.760
Married before age 20	0.729	0.025	782	857	1.593	0.035	0.678	0.780
Currently pregnant	0.136	0.014	1038	1118	1.344	0.105	0.108	0.165
Children ever born	3.728	0.169	1038	1118	1.608	0.045	3.390	4.066
Children ever born to women over 40	7.643	0.322	173	224	1.406	0.042	6.998	8.288
Children surviving	2.612	0.109	1038	1118	1.481	0.042	2.394	2.830
Knowing any contraceptive method	0.989	0.004	713	789	0.993	0.004	0.982	0.997
Knowing any modern method	0.987	0.003	713	789	0.644	0.003	0.981	0.992
Ever used any method	0.435	0.017	713	789	0.939	0.040	0.400	0.470
Currently using any method	0.231	0.022	713	789	1.406	0.096	0.187	0.276
Currently using a modern method	0.152	0.020	713	789	1.478	0.131	0.113	0.192
Currently using the pill	0.039	0.013	713	789	1.828	0.341	0.012	0.065
Currently using IUD	0.001	0.001	713	789	0.474	0.583	0.000	0.002
Currently using injectables	0.069	0.014	713	789	1.467	0.202	0.041	0.097
Currently using a condom	0.015	0.006	713	789	1.272	0.383	0.004	0.027
Currenly using female sterilisation	0.029	0.005	713	789	0.807	0.175	0.019	0.039
Currently using male sterilisation	0.000	0.000	713	789	NA	NA	0.000	0.000
Currently using periodic abstinence	0.023	0.008	713	789	1.415	0.342	0.007	0.040
Currently using withdrawal	0.008	0.004	713	789	1.130	0.485	0.000	0.015
Using public sector source	0.606	0.088	196	143	2.526	0.146	0.430	0.783
Had non-spousal partner during past 12 months	0.002	0.002	889	959	1.263	0.925	0.000	0.006
Number of partners during past 4 weeks	0.714	0.030	889	959	1.952	0.042	0.654	0.775
Knowing AIDS	0.983	0.004	1038	1118	1.104	0.004	0.975	0.992
Knowing at least two valid ways of preventing AIDS	0.277	0.019	1027	1099	1.337	0.067	0.240	0.315
giving birth	0.179	0.031	762	838	2.253	0.175	0.117	0.242
during past 12 months	0.011	0.003	815	862	0.883	0.289	0.005	0.018
MEN								
Urban	0.154	0.020	1042	1084	1.803	0.131	0.113	0.194
With no education	0.226	0.021	1042	1084	1.631	0.094	0.184	0.268
With secondary education or more	0.098	0.018	1042	1084	1.932	0.182	0.062	0.133
Currently married	0.664	0.021	1042	1084	1.458	0.032	0.621	0.707
Had non-spousal partner during past								
12 months	0.038	0.011	902	929	1.794	0.301	0.015	0.061
Number of partners during past 4 weeks	0.788	0.036	903	931	1.915	0.046	0.715	0.861
Knowing AIDS	0.996	0.003	1042	1084	1.431	0.003	0.990	1.000
Knowing at least two valid way of preventing AIDS	0.512	0.034	1040	1080	2.208	0.067	0.443	0.580
during past 12 months	0.089	0.012	836	866	1.196	0.132	0.065	0.113
CHILDREN								
Had fever in past two weeks	0.443	0.030	847	928	1.756	0.068	0.383	0.503
Had diarrhoea in past two weeks	0.168	0.021	847	928	1.640	0.126	0.125	0.210
Had cough in past two weeks	0.554	0.038	847	928	2.251	0.069	0.477	0.631
Had fast or difficult breathing in past								
two weeks	0.150	0.021	847	928	1.729	0.141	0.108	0.193
Had health card	0.867	0.036	173	185	1,401	0.042	0.795	0.940
Received BCG vaccine	0.958	0.017	173	185	1.100	0.018	0.924	0.992
Received DPT vaccine	0.858	0.031	173	185	1.177	0.037	0.795	0.920
Received polio vaccine	0.845	0.041	173	185	1.485	0.049	0.763	0.927
Received measles vaccine	0.829	0.045	173	185	1.561	0.054	0.739	0.918
Fully immunised	0.729	0.050	173	185	1.467	0.068	0.629	0.828
Received vitamin A	0.167	0.020	847	928	1.545	0.119	0.127	0.206

NA = Not applicable

Table B. 7 Samplingerrors - Southern sample: Malawi 1996

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	$\begin{aligned} & \text { Relative } \\ & \text { error } \\ & \text { (SE/R) } \end{aligned}$	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
WOMEN								
Urban	0.140	0.014	1023	1253	1.277	0.099	0.112	0.168
With no education	0.454	0.031	1023	1253	1.976	0.068	0.393	0.516
With secondary education or higher	0.059	0.010	1023	1253	1.369	0.172	0.039	0.079
Currently married (in union)	0.726	0.015	1023	1253	1.058	0.020	0.697	0.756
Married before age 20	0.723	0.019	779	951	1.203	0.027	0.684	0.761
Currently pregnant	0.114	0.011	1023	1253	1.105	0.096	0.092	0.136
Children ever born	3.249	0.111	1023	1253	1.151	0.034	3.027	3.470
Children ever born to women over 40	6.829	0.303	164	236	1.213	0.044	6.224	7.435
Children surviving	2.346	0.073	1023	1253	1.011	0.031	2.199	2.493
Knowing any contraceptive method	0.993	0.004	718	910	1.206	0.004	0.986	1.000
Knowing any modern method	0.991	0.004	718	910	1.253	0.004	0.982	1.000
Ever used any method	0.332	0.024	718	910	1.375	0.073	0.283	0.380
Currently using any method	0.193	0.021	718	910	1.447	0.110	0.151	0.236
Currently using a modern method	0.136	0.020	718	910	1.599	0.151	0.095	0.177
Currently using the pill	0.027	0.010	718	910	1.655	0.373	0.007	0.047
Currently using IUD	0.007	0.004	718	910	1.120	0.492	0.000	0.014
Currently using injectables	0.068	0.014	718	910	1.464	0.203	0.040	0.095
Currently using a condom	0.012	0.004	718	910	1.117	0.386	0.003	0.020
Currenly using female sterilisation	0.022	0.010	718	910	1.771	0.440	0.003	0.042
Currently using male sterilisation	0.000	0.000	718	910	NA	NA	0.000	0.000
Currently using periodic abstinence	0.019	0.007	718	910	1.383	0.375	0.005	0.033
Currently using withdrawal	0.009	0.004	718	910	1.087	0.436	0.001	0.016
Using public sector source	0.539	0.084	154	143	2.080	0.156	0.371	0.706
Had non-spousal partner during past 12 months	0.011	0.002	922	1147	0.623	0.194	0.007	0.015
Number of partners during past 4 weeks	0.649	0.017	922	1147	1.039	0.026	0.615	0.683
Knowing AIDS	0.944	0.008	1023	1253	1.087	0.008	0.929	0.960
Knowing at least two valid ways of preventing AIDS	0.284	0.013	988	1183	0.881	0.045	0.259	0.309
Received vitamin A within 8 weeks of giving bith	0.253	0.020	770	966	1.289	0.080	0.213	0.293
during past 12 months	0.020	0.006	851	1059	1.248	0.297	0.008	0.033
MEN								
Urban	0.181	0.016	1011	1243	1.338	0.089	0.149	0.214
With no education	0.159	0.018	1011	1243	1.590	0.115	0.123	0.196
With secondary education or more	0.164	0.018	1011	1243	1.506	0.107	0.129	0.199
Currently married	0.641	0.020	1011	1243	1.343	0.032	0.600	0.682
Had non-spousal partner during past								
12 months	0.106	0.018	940	1158	1.830	0.173	0.069	0.143
Number of partners during past 4 weeks	0.822	0.025	940	1158	1.188	0.031	0.771	0.872
Knowing AIDS	0.993	0.003	1011	1243	1.329	0.004	0.986	1.000
Knowing at least two valid way of preventing AIDS	0.540	0.025	1007	1234	1.588	0.046	0.490	0.590
Had at least one non-regular partner during past 12 months	0.188	0.023	881	1113	1.720	0.120	0.143	0.234
CHILDREN								
Had fever in past two weeks	0.457	0.031	690	860	1.620	0.067	0.396	0.519
Had diarrhoea in past two weeks	0.158	0.017	690	860	1.249	0.110	0.123	0.193
Had cough in past two weeks	0.534	0.028	690	860	1.472	0.052	0.478	0.590
Had fast or difficult breathing in past								
two weeks	0.103	0.016	690	860	1.363	0.153	0.072	0.135
Had health card	0.931	0.020	151	189	0.990	0.022	0.891	0.972
Received BCG vaccine	0.994	0.003	151	189	0.550	0.003	0.988	1.001
Received DPT vaccine	0.972	0.015	151	189	1.140	0.016	0.941	1.003
Received polio vaccine	0.944	0.020	151	189	1.039	0.021	0.904	0.983
Received measles vaccine	0.937	0.026	151	189	1.322	0.028	0.885	0.990
Fully immunised	0.895	0.026	151	189	1.018	0.028	0.844	0.946
Received vitamin A	0.129	0.029	690	860	2.302	0.228	0.070	0.187

NA $=$ Not applicable

APPENDIX C

DATA QUALITY TABLES

Table C. 1 Household age distribution

Single-year age distribution of the de facto household population by sex (weighted), Malawi 1996

Age	Males		Females		Age	Males		Females	
	Number	Percent	Number	Percent		Number	Percent	Number	Percent
<1	245	4.3	223	3.6	36	49	0.9	66	1.1
1	216	3.8	203	3.3	37	47	0.8	39	0.6
2	193	3.4	245	3.9	38	63	1.1	68	1.1
3	182	3.2	209	3.4	39	45	0.8	35	0.6
4	149	2.6	179	2.9	40	37	0.7	89	1.4
5	145	2.6	202	3.3	41	39	0.7	41	0.7
6	212	3.7	196	3.2	42	55	1.0	68	1.1
7	176	3.1	160	2.6	43	30	0.5	43	0.7
8	176	3.1	181	2.9	44	50	0.9	60	1.0
9	177	3.1	202	3.3	45	47	0.8	37	0.6
10	189	3.3	186	3.0	46	60	1.1	41	0.7
11	162	2.9	133	2.1	47	42	0.7	43	0.7
12	206	3.6	211	3.4	48	47	0.8	51	0.8
13	189	3.4	182	2.9	49	35	0.6	24	0.4
14	132	2.3	155	2.5	50	46	0.8	40	0.7
15	127	2.2	141	2.3	51	12	0.2	36	0.6
16	124	2.2	128	2.1	52	18	0.3	53	0.9
17	81	1.4	96	1.6	53	43	0.8	41	0.7
18	105	1.9	127	2.0	54	29	0.5	43	0.7
19	97	1.7	122	2.0	55	24	0.4	52	0.8
20	135	2.4	121	1.9	56	40	0.7	27	0.4
21	85	1.5	115	1.9	57	25	0.4	34	0.5
22	71	1.3	126	2.0	58	18	0.3	22	0.4
23	66	1.2	85	1.4	59	15	0.3	18	0.3
24	109	1.9	79	1.3	60	26	0.5	42	0.7
25	82	1.4	85	1.4	61	12	0.2	12	0.2
26	91	1.6	77	1.2	62	22	0.4	21	0.3
27	59	1.1	62	1.0	63	23	0.4	16	0.3
28	57	1.0	92	1.5	64	24	0.4	18	0.3
29	35	0.6	64	1.0	65	18	0.3	25	0.4
30	62	1.1	66	1.1	66	20	0.4	23	0.4
31	55	1.0	55	0.9	67	12	0.2	14	0.2
32	91	1.6	101	1.6	68	13	0.2	31	0.5
33	55	1.0	67	1.1	69	12	0.2	24	0.4
34	58	1.0	60	1.0	70+	107	1.9	104	1.7
35	48	0.9	56	0.9	Don't know/ missing		0.1	4.0	0.1
					Total	5,652	100.0	6,197	100.0

Note: The de facto population includes all residents and nonresidents who slept in the household the night before the interview.

Table C.2 Age distribution of eligible and interviewed women and men

Percent distribution of the de facto household population of women age $10-54$ and men age $10-69$, five-year age distribution of interviewed women age 15-49 and men age 15-59, and the percentage of eligible women and men who were interviewed (weighted) by five-year age groups, Malawi 1996

Age	Household population		Persons interviewed		Percent interviewed (weighted)
	Number	Percent	Number	Percent	
WOMEN					
10-14	868	NA	NA	NA	NA
15-19	614	23.4	590	22.9	96.1
20-24	526	20.0	512	19.9	97.4
25-29	380	14.4	375	14.6	98.7
30-34	349	13.3	344	13.4	98.4
35-39	263	10.0	261	10.2	99.3
40-44	302	11.5	298	11.6	98.9
45-49	195	7.4	193	7.5	98.8
50-54	213	NA	NA	NA	NA
15-49	2,630		2,573		97.9

MEN					
$10-14$	877	NA	NA	NA	NA
$15-19$	534	21.5	501	21.4	93.8
$20-24$	466	18.7	435	18.6	93.3
$25-29$	324	13.0	309	13.2	95.3
$30-34$	322	12.9	300	12.8	93.4
$35-39$	252	10.1	229	9.8	91.0
$40-44$	211	8.5	198	8.5	93.7
$45-49$	231	9.3	223	9.5	96.4
50.54	147	5.9	144	6.1	97.7
$55-59$	122	NA	NA	NA	NA
$15-59$	2.487		2.339		94.0

Note: The de facto population includes all residents and nonresidents who slept in the household the night before the interview.
NA = Not applicable

APPENDIX D

QUESTIONNAIRES

MALAWI KNOWLEDGE, ATTITUDES, AND PRACTICES IN HEALTH SURVEY MALAWI GOVERNMENT - NATIONAL STATISTICAL OFFICE

HOUSEHOLD SCHEDULE

IDENTIFICATION		
VILLAGE OR PLACE		
MKAPH CLUSTER NUMBER.		
HOUSEHOLD NUMBER		
URBAN/RURAL (urban=1, rural=2)		

LANGUAGE OF QUESTIONNAIRE: ENGLISH	3	LANGUAGE OF INTERVIEW: CHICHEWA...... 1 TUMBUKA. 2 OTHER \qquad .3

NAME DATE	FIELD EDITED BY	OFFICE EDITED BY	KEYED BY	KEYED BY
	-			
	-_____			

MO.	questions and filters	CODING CATEGORIES
27	Kave you or any other menter of this household bought any of this spray in the last month? If YES: Please show me a can of this spray.	YES, SPRAY SEEN. \qquad YES, SPRAY NOT SEEN. \qquad но. \qquad DK. \qquad
	Was everybody who slept in the household last night covered by a mosquito bed net?	YES...................................... 1 NO. \qquad DK. \qquad
	How many mosquito bed nets are now in the household?	NUMBER OF BED NETS........ \square
	Have you or any menber of this household purchased a mosquito bed net in the last 12 months?	YES. \qquad NO. \qquad DK. \qquad $\xrightarrow{.2 \longrightarrow} 32$

INTERVIEWER'S OBSERVATIONS
 (To be filled in after completing interview)

Comments About Respondent:

Comments on Specific Questions: \qquad
\qquad

Any Other Comments:

SUPERVISOR'S OBSERVATIONS

EDITOR'S OBSERVATIONS

\qquad
\qquad

MALAWI KNOWLEDGE, ATTITUDES, AND PRACTICES IN HEALTH SURVEY MALAWI GOVERNMENT - NATIONAL STATISTICAL OFFICE
 FEMALE OUESTIONNAIRE

| LANGUAGE $O F$ | |
| :---: | :--- | :--- | :--- |
| QUESTIONNAIRE : ENGLISH | 3 |

$\begin{aligned} & \text { NAME } \\ & \text { DATE } \end{aligned}$	FIELD EDITED BY	OFFICE EDITED BY	KEYED BY	KEYED BY
	——		-	

No.	QUESTIONS AND FILTERS	CODIng Categories	SKIP
121	What kind of toilet facility does your household have?	FLUSH TOILET OUN FLUSH TOILET................. 11 SHARED FLUSH TOILET............. 12 PIT LATRINE traditional pit latrine........ 21 Ventilated improved pit (VIP) LATRINE................... 22 NO FACILITY 31 OTHER \qquad 41 (SPECIFY)	
122	Does your household have:	YES NO	
	Electricity?	ELECTRICITY................. 1	
	A radio?	RADI0...................... 1 2	
	A paraffin lamp?	Paraffin Lamp............... 1 2	
	How many rooms in all of the dwelling units of this household are used for sleeping?	ROOMS	
	Does any member of your household own:	YES NO	
	A bicycle?	BICYCLE..................... 1	
	A motorcycle?	MOTORCYCLE.................. 1 2	
	A car?	CAR........................ 1 I	
	An oxcart?	OXCART..................... 1 1 2	

229 Did you visit a clinic during this pregnancy?	YES. NO.
When you went to the clinic for your pregnancy, were you given malaria medicine to take?	YES. \qquad NO. \qquad .2 DON'T REMEMBER. \qquad $\rightarrow 234$
231 Did you take the medicine you were given?	
232 Did you take the medicine at the clinic?	
Why didn't you take the medicine? CIRCLE ALL RESPONSES.	MALARIA MEDICINE IS not goco for pregnant homen..... A wANTED TO SAVE THE MEDICINE FOR FAMILY................. OTHER \qquad ...W OTHER \qquad x

Now I would like to talk about family planning - the various ways or methods
that a couple can use to delay or avoid a pregnancy.
circle cooe 1 in 301 for each method mentioned spontaneously. then proceed doun column 302, reading the hame and description of each method not mentioned spontaneously. circle cooe 2 if methoo is RECOGNIZED, AND CODE 3 IF NOT RECOGNIZED. THEN, FOR EACH METHOD WITH CODE 1 OR 2 CIRCLED IN 301 OR 302, ASK 303.

IF SOURCE IS HOSPITAL, HEALTH CENTRE, OR CLINIC, URITE THE NAME OF THE PLACE. PROBE TO IDENTIFY the type of source and circle the appropriate code.
(NAME OF PLACE)

Have you had sex with anyone other than (your husband/ the man you are living with) in the last 12 months?	
416C In the last 12 months, how many different persons other than (your husband/man you are living with) have you had sex with?	NUMBER OF PERSONS....... \square
4160 Have you had sex with a non-regular partner in the last 12 months. By non-regular, I mean a person whom you do not see on a regular basis. IF YES: With how many non-regular partners did you have sex in the last 12 months? IF NO, CIRCLE 'OO' AND FOLLOW SKIP.	NUMBER OF NON-REGULAR PARTNERS. \qquad NO. \qquad
$416 E$ When was the last time you had sexual intercourse with a non-regular partner?	DAYS AGO \qquad WEEKS AGO. \qquad \qquad
416F Did you use a condom that time?	
416 G What was the main reason a condom was not used?	
Now I need to ask you some questions about sexual activity in order to gain a better understanding of some family health issues. When was the last time you had sexual intercourse (if ever)? If the answer is "NeVER", CIRCLE "000" and SKip TO Q. 499.	NEVER . $000 \xrightarrow{\text { I }} 419$ DAYS AGO. WEEKS AGO. MONTHS AGO. YEARS AGO.

но.	Questions and filters	COOING CATEGORIES
501A	Have you heard about diseases that can be transmitted through sex?	YES..
501B	Which diseases do you know? Any others? RECORD ALL RESPONSES	SYPHILIS. A GONORRHEA. AIDS/HIV INFECTION. C GENITAL HARTS.......................... D CHANCROID. E TRICHOMONIASIS......................... . . BUBOES.................................... G OTHER \qquad OTHER \qquad x (SPECIFY) DK.
501C	CHECK 415, 416H: has had sexual INTERCOURSE	NEVER HAD AL Intercourse 5010
5010	CHECK 501A: KNOWS STDS	
$501 E$	During the last twelve months, did you have any of the diseases?	
501F	Which of the diseases did you have? RECORD ALL RESPONSES	sYphilis. gonorrhea. \qquad AIDS/HIV INFECTION................. C GENITAL HARTS........................ D CHANCROID.............................. TRICHOMONIASIS.......................... BUBOES................................... OTHER \qquad ψ (SPECIFY) OTHER \qquad x (SPECIFY) DK. \qquad
$501 \mathrm{~J}$	The last time you had (DISEASE FROM 501F) did you seek treatment?	

NO. QUESTIONS AND FILTERS	CODES SKIP
Do you think that persons with AIDS almost never die from the disease, sometimes die, or almost always die from the disease?	
508A Can AIDS be cured?	
508B Can Alds be transmitted from mother to child?	
Do you personally know someone who has AIDS or has died of AIDS?	YES................................ ${ }^{1}$
Do you think your chances of getting AIDS are small, moderate, great, or no risk at all?	
509A Why do you think that you have (NO RISK/A SMALL CHANCE) of getting AIDS? Any other reasons? RECORD ALL MENTIONED	ABSTAIN FROM SEX USE CONDOMS............................. C HAVE ONLY ONE SEX PARTNER........ D LIMITED NUMBER OF SEX PARTNERS..E SPOUSE HAS NO OTHER PARTNER.....G NO BLOOD TRANSFUSIONS.............. NO INJECTIONS. OTHER \qquad x
Why do you think that you have a (MODERATE/GREAT) chance of getting AIDS? Any other reasons? RECORD ALL MENTIONED	DO NOT USE CONDOMS................... MORE THAN ONE SEX PARTNER........D MANY SEX PARTNERS.................. . E SPOUSE HAS OTHER PARTNER(S).....G HAD BLOOD TRANSFUSION.............. I HAD INJECTIONS. J SPOUSE, PARTNER HAS AIDS OR DIED OF AIDS..................... OTHER \qquad X

NO.	QUESTIONS AND FILTERS	COOES SKIP
511A	Since you heard of AIDS, have you changed your behaviour to prevent getting AIDS? IF YES, what did you do? Anything else? RECORD ALL MENTIONED	DIDN'T START SEX. STOPPED ALL SEX. \qquad REDUCED NUMBER OF PARTNERS. \qquad STOPPED INJECTIONS................... ASK SPOUSE TO BE FAITHFUL........ OTHER \qquad H (SPECIFY) OTHER \qquad X (SPECIFY) NO BEHAVIOUR CHANGE................. Y
5118	Has your knowledge of AIDS influenced or changed your decisions about having sex or your sexual behaviour? IF YES: What did you do? Anything else?	DIDN'T START SEX....................A STOPPED ALL SEX...................... STARTED USING CONDONS............. C RESTRICTED SEX TO ONE PARTNER...D REDUCED NUMBER OF PARTNERS......E OTHER \qquad X (SPECIFY) NO CHANGE IN SEXUAL BEHAVIOUR... Y
511C	Some people use a condon during sexual intercourse to avoid getting AIDS or other sexually transmitted diseases? Have you ever heard of this?	
5110	CHECK 415 AND 416H: HAS HAD SEXUAL INTERCOURSE	EVER HAD INTERCOURSE \square $\rightarrow 513$
511E	We may already have talked about this. Have you ever used a condon during sex to avoid getting or transmitting diseases, such as AIDS?	YES. \qquad .1 NO. \qquad

INTERVIEWER'S OBSERVATIONS
 (To be filled in after completing interview)

Comments About Respondent: \qquad
\qquad
\qquad
Comments on Specific Questions: \qquad
\qquad
\qquad
Any Other Comments: \qquad
\qquad

SUPERVISOR'S OBSERVATIONS
\qquad
\qquad
\qquad
\qquad
Name of Supervisor: Date:

EDITOR'S OBSERVATIONS

MALAWI KNOWLEDGE, ATTITUDES, AND PRACTICES IN HEALTH SURVEY MALAWI GOVERNMENT - NATIONAL STATISTICAL OFFICE

MALE OUESTIONNAIRE

IDENTIFICATION		
VILLAGE OR PLACE		
MKAPH CLUSTER NUMBER.		
HOUSEHOLD NUMBER		
NAME AND LINE NUMBER OF MAN		

LANGUAGE OF

QUESTIONNAIRE: ENGLISH
OTHER

E-M7

Have you or your wife/partner ever used anything or tried in any way to detay or avoid having children?

306
What have you used or done?

CORRECT 303 AND 304 (AND 302 IF NECESSARY).

How many living children did you have at that time, if any?

IF NONE, RECORD '00'.
306A \mid Now I would like to ask you about the first time that you did something or used a method to avoid having children.

NUMBER OF CHILDREN. \qquad
\square
did you want to have another child but at a later time,

3068 When you first used family planning, or did you not want to have another child at all?
WANTED CHILD LATER............... 1
DID NOT WANT ANOTHER CHILD...... ${ }^{6}$
OTHER_S_SECIFY)

307
Are you or your wife currently doing something or using any method to delay or avoid pregnancy?

NO.	QUESTIONS AND FILTERS	cooing categories
308	Which method are you using? CIRCLE 'O8' for male sterilization.	
309	CHECK 308/308A: SHE/HE STERILIZED Where did the sterilization take place? USING ANOTHER METHOD $\stackrel{\rightharpoonup}{v}$ Where did you obtain (METHOD) the last time?	
310	How long does it take to travel from your home to this place? If less than 2 hours, record minutes. OTHERWISE, RECORD HOURS.	MINUTES. \qquad HOURS. \qquad DK. \qquad 9998
311	For how many months have you been using (CURRENT METHOO) continuously? If LESS than 1 mONTH, RECORD 'OO'.	

313 Do you know of a place where you can obtain a method of family planning?
312 What is the mein reason you are not using
a method of contraception to avoid pregnancy?
not married 11
FERTILITY-RELATED REASONS
NOT HAVING SEX. 21
HIFE MENOPAUSAL/HYSTERECTOMY. 23
WIFE SUBFECUND/INFECUND 24
WANTS (MORE) CHILDREN 26
WIFE PREGNANT 27
a method of contraception to avoid pregnancy?
OPPOSITION TO USE
RESPONDENT OPPOSED. 31
WIFE OPPOSED 32
OTHERS OPPOSED 33
RELIGIOUS PROHIBITION 34
LACK OF KNONLEDGEKNOWS NO METHOO41
XNOWS NO SOURCE 42
METHOD-RELATED REASONS
HEALTH CONCERNS 51
FEAR OF SIDE EFFECTS 52
LACK OF ACCESS/TOO FAR 53
COST TOO MUCH. 54
INCONVENIENT TO USE 55
INTERFERES WITH BOOY'S
NORMAL PROCESSES 56
OTHER 96
DK. 98
YES

NO.
\qquad $\xrightarrow{\text { I }} 315$
PUBLIC SECTOR GOVERNMENT ROSPITAL 11
PRIMARY HEALTH CENTRE. 12
DISPENSARY/MATERNITY CLINIC 13
MOBILE CLINIC 14
CBD. 15
OTHER PUBLIC 16(SPECIFY)
MEDICAL PRIVATE SECTOR
PRIVATE HOSPITAL 21
PRIVATE HEALTH CENTRE 22
DISPENSARY/MATERNITY CLINIC 23
MOBILE CLINIC. 24
PRIVATE DOCTOR 25
OTHER MEDICALPRIVATE26 (SPECIFY)
OTHER PRIVATE SECTOR SHOP 31
PHARMACY 32
BOTTLE SHOP 33
REST HOUSE 34
FRIENDS/RELATIVES 35
OTHER 96(SPECIFY)

DK98
\qquad

IF SOURCE IS HOSPITAL, HEALTH CENTRE, OR CLINIC, WRITE THE NAME OF THE PLACE. PROBE TO IDENTIFY THE TYPE OF SOURCE AND CIRCLE THE APPROPRIATE COOE.

no.	QUESTIONS AND FILTERS	CODING CATEGORIES
415	Now I need to ask you some questions about sexual activity in order to gain a better understanding of some family health issues. When was the last time you had sexual intercourse with (your wife/the woman you are living with)?	DAYS AGO. \qquad WEEKS AGO \qquad MONTHS AGO. \qquad YEARS AGO \qquad \square
416	CHECK 301 AND 302: KNOWS CONDOM The last time you had sex with (your wife/ the woman you are living with), did you use a condom? DOES NOT KNOW CONDOM Some men use a condom, which means that they put a rubber sheath on their penis during sexual intercourse. The last time you had sex with (your wife/ the woman you are tiving with), did you use a condom?	
416A	What was the main reason a condom was not used during that last time?	CONDOM NOT AVAILABLE............. 01 CONDOM TOO EXPENSIVE............. 02 PARTNER OBJECTED................... . . 03 DON'T LIKE THEM.................... 04 UNINFECTED PARTNER. 05 CONDOMS BREAK, LEAK.............. . 06 OTHER \qquad 96 (SPECIFY) DK.................................... . . 98
4168	Have you had sex with anyone other than (your wife/ the woman you are living with) in the last 12 months?	

Where is that?
IF SOURCE IS hOSPITAL, HEALTH CENTRE, OR CLINIC, hrite the name of the place. probe to identify the type of source and circle the appropriate cooe.PUBLIC SECTOR
GOVERNMENT HOSPITAL/CLINIC..... 11
health centre..................... 12
maternity CLinic...................... 13
MOBILE CLINIC..................... 14
FP CLINIC............................... 15
HEALTH POST (DISPENSARY)....... 16
CBD.................................... 17
OTHER PUBLIC
(SPECIFY)
MEDICAL PRIVATE SECTOR
PRIVATE HOSPITAL/CLINIC........ 21
PRIVATE MATERNITY CLINIC....... 22
PRIVATE MOBILE CLINIC........... 23
PRIVATE FP CLINIC................ 24
PHARMACY............................ . 25
OTHER MEDICAL PRIVATE
SECTOR
\qquad26
(SPECIFY)
OTHER PRIVATE SECTOR

 SHOP. 31
 SHOP.
32
BOTtLE SHOP33
REST HOUSE.
34
FRIENDS/RELATIVES.
96
OTHER (SPECIFY)DK.98

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
501A	Have you heard about diseases that can be transmitted through sex?	$\begin{aligned} & \text { YES . } \end{aligned}$	$501 \mathrm{C}$
501B	Which diseases do you know? Any other? RECORD ALL RESPONSES	SYPHILIS................................. GONORRHEA. B AIDS/HIV INFECTION................... GENITAL WARTS....................... D CHANCROID............................ . . E TRICHOMONIASIS.......................... BUBOES. G OTHER \qquad OTHER \qquad X (SPECIFY) DK..................................... 2	
503C	CHECK 415, 416H: has had sexual INTERCOURSE	NEVER HAD AL INTERCOURSE \square	5010
501D	CHECK 501A: KNOWS STDS	NOT KNOW STDS	501G
$501 E$	During the last twelve months, did you have any of the diseases?	\qquad	501G
501F	Which of the diseases did you have? RECORD ALL RESPONSES	SYPHILIS.................................. GONORRHEA............................. B AIDS/HIV INFECTION.................. . . GENITAL WARTS......................... D TRICHOMONIASIS........................ . . BUBOES....................................... G OTHER \qquad W (SPECIFY) OTHER \qquad x (SPECIFY) DK. \qquad	
501G	I would like to ask you some questions about your health in the last 12 months. Men sometimes have pain when they urinate or have discharge from the penis. During the last twelve months, have you had pain when you urinate or discharge from your penis?		

NO.	QUESTIONS AND FILTERS	COOING CATEGORIES
501H	During the last twelve months, have you had any sores in your genital area?	
501 I	CHECK 501F, 501G AND 501H HAD ONE OR MORE diseases	
501]	The last time you had (DISEASE FROM 501F/501G/501H) did you seek treatment?	YES. NO.
501k	Where did you seek treatment? Any other place or person? RECORD ALL MENTIONED	PUBLIC SECTOR gOVT. HOSPITAL/CLINIC...........A health centre....................... . mobile clinic..................... D health post (dispensary).......f OTHER PUBLIC \qquad (SPECIFY) MEDICAL PRIVATE SECTOR PRIVATE HOSPITAL/CLINIC........ H PRIVATE MOBILE CLINIC............ J PHARMACY............................. . . other med. private SECTOR \qquad M (SPECIFY) OTHER RELATIVES/FRIENDS................. 0 traditional healer............... тВА................................... OTHER \qquad x DK................ (SPECIFY) . .
5011	When you had (DISEASE FROM 501F/5016/501H) did you inform your partner(s)?	Yes............................ 1
$501 \mathrm{M}$	When you had (DISEASE FROM 501F/5016/501H) did you do something not to infect your partner(s)?	

NO.	QUESTIONS AMD FILTERS	COOING Categories
501N	What did you do? RECORD ALL MENTIONED	NO SEXUAL INTERCOURSE..............A USED CONDONS........................... took medicines........................ . OTHER \qquad x (SPECIFY)
5010	CHECX 501A AND 501B did not mention 'Aids' \square mentioned	
	Have you ever heard of an illness called Alds?	
502	From which sources of information have you learned most about AIDS? Any other sources? record all mentioned	RADIO. TV. ... NEHSPAPERS/MAGAZINES. C PAMPHLETS/POSTERS. D HEALTH WORXERS.. E MOSQUES/CHURCHES...................... . SCHOOLS/TEACHERS. G COMMUNITY MEETINGS................... FRIENDS/RELATIVES...................... I WORX PLACE............................... OTHER \qquad (SPECIFY)
502A	How can a person get AIDS? Any other ways? RECORD ALL MENTIONED	SEXUAL INTERCOURSE..................A SEXUAL INTERCOURSE HITH MULTIPLE PARTNERS................. . SEX WITH PROSTITUTES................ NOT USING CONDOM...................... homosexual contact................... bLOOD TRANSFUSION..................... INJECTIONS............................ KISSING................................... MOSQUITO, OTHER INSECT BITES....I OTHER \qquad H (SPECIFY) OTHER \qquad x (SPECIFY) DK...................................... 2
	Is there anything a person can do to avoid getting AIDS or the virus that causes AIDS?	

NO.	Questions and filters	COOING CATEGORIES SKIP
504	What can a person do? Any other ways? record all mentioneo	avoid sexual intercourse......... A avoid sexual intercourse with multiple partners.................. avoid sex with prostitutes.......c USE CONDONS........................... AVOID HOMOSEXUAL CONTACT..........E AVOID BLOOO TRANSFUSIONS..........F AVOID INJECTIONS.................... AVOID KISSING......................... AVOID MOSQUITO, OTHER INSECT 日ITES................................. SEEK PROTECTION FROM TRADITIONAL HEALER................J OTHER \qquad H (SPECIFY) OTHER \qquad x (SPECIFY) DK.......................................
507	Is it possible for a healthy-looking person to have the AIDS virus?	YES........................ 1 NO...................... 2 DK..................... ${ }^{8}$
508	Do you think that persons with AIDS almost never die from the disease, sometimes die, or almost always die from the disease?	
	Can AIDS be cured?	YES........................... 1 1
5088	Can AIDS be transmitted from mother to child?	Yes..................... 1 ,
$508 c$	Do you personally know someone who has AIDS or has died of AIDS?	
509	Do you think your chances of getting AIDS are small, moderate, great, or no risk at all?	

No.	QUESTIONS AND FILTERS	COOING CATEGORIES SKIP
509A	Why do you think that you have (NO RISK/A SMALL CHANCE) of getting AIDS? Any other reasons? record all mentioned	ABSTAIN FROM SEX. USE CONDOMS. have only one sex parther........ D LIMITED NUMBER OF SEX PARTNERS..E AVOID SEX WITH PROSTITUTES.......F SPOUSE HAS NO OTHER PARTNER......G NO HOMOSEXUAL CONTACT............... NO BLOOD TRANSFUSIONS.............. I NO INJECTIONS............................. OTHER \qquad
5098	Why do you think that you have a (MODERATE/GREAT) chance of getting AlDS? Any other reasons? record all mentioned	DO NOT USE CONDONS................. C MORE THAN ONE SEX PARTNER........D many Sex partners.................... SEX WITH PROSTITUTES................ SPOUSE HAS OTHER PARTNER(S)......G HOMOSEXUAL CONTACT. had BlOOD TRANSFUSION.............. HAD INJECTIONS......................... SPOUSE, PARTNER HAS AIDS OR DIED OF AIDS........................ OTHER \qquad x
511A	Since you heard of AIDS, have you changed your behaviour to prevent getting AIDS? If YES, what did you do? Anything else? RECORD ALL MENTIONED	DIDN'T START SEX. STOPPED ALL SEX. \qquad STARTED USING CONDONS.............. C RESTRICTED SEX TO ONE PARTNER...D REDUCED NUMBER OF PARTNERS......E AVOID SEX HITH PROSTITUTES.......F NO MORE HOMOSEXUAL CONTACTS......G STOPPED INJECTIONS................... ASK SPOUSE TO BE FAITHFUL......... OTHER \qquad N (SPECIFY) OTHER \qquad x (SPECIFY) NO BEHAVIOUR CHANGE................ Y
511B	Has your knowledge of AIDS influenced or changed your decisions about having sex or your sexual behaviour? If YES, In what way? RECORD ALL MENTIONED	DIDN'T START SEX. STOPPED ALL SEX. \qquad STARTED USING CONDONS.............. C RESTRICTED SEX TO ONE PARTNER...D REDUCED NUMBER OF PARTNERS.......E AVOID SEX WITH PROSTITUTES.......F NO MORE HOMOSEXUAL CONTACTS......G OTHER \qquad x (SPECIFY) NO CHANGE IN SEXUAL BEHAVIOUR...Y DK.. Z
511C	Some people use a condom during sexual intercourse to avoid getting AIDS or other sexually transmitted diseases? Have you ever heard of this?	YES. .1 NO. \square 2 $\xrightarrow[\mid]{\longrightarrow} 511 \mathrm{~F}$

INTERVIEWER'S OBSERVATIONS

(To be filled in after completing interview)

Comments About Respondent:

Comments on Specific Questions: \qquad
\qquad
\qquad
Any Other Comments: \qquad
\qquad

SUPERVISOR'S OBSERVATIONS

Name of Supervisor: Date:

EDITOR'S OBSERVATIONS

MALAWI KNOWLEDGE, ATTITUDES, AND PRACTICES IN HEALTH SURVEY

 MALAWI GOVERNMENT - NATIONAL STATISTICAL OFFICECARETAKER OUESTIONNAIRE

IDENTIFICATION	
VILLAGE OR PLACE	
MKAPH CLUSTER NUMBER.	
HOUSEHOLD NUMBER	
NAME AND LINE NUMBER OF CHILD	
NAME AND LINE NUMBER OF CARETAKER	

NAME DATE	FIELD EDITED BY	OFFICE EDITED BY	KEYED BY	KEYED BY
	-	-	-	

106 CHECK COLUMN 16 AND 17 IN THE HOUSEHOLD QUESTIONNAIRE:
CARETAKER IS NOT AN

CARETAKER IS AN

 ELIGIBLE WOMAN (15-49) ORELIGIBLE WOMAN ($15-49$) NOR AN ELIGIBLE MAN ($15-54$)
AN ELIGIBLE MAN (15-54)

106	CHECK COLUMN 16
	CARETAKER IS NO
	ELIGIBLE WOMAN
	AN ELIGIBLE MAN

In what month and year were you born?

110 What is the highest level of school you attended: primary, secondary, or higher?

> PRIMARY . 1 SECONDARY . 3

11
How many years of school did you complete at that level?

YEARS

204 (1) COPY Vaccination dates for each vaccine from the card.
(2) WRITE '44' IN 'DAY' COLUMN IF CARD SHOWS that a vaccination or has given gut no date IS RECORDED.
bcg
POLIO 0
POLIO 1
POLIO 2
POLIO 3
DPT 1
DPT 2
DPT 3
MEASLES

205 Has (NAME) received any vaccinations that are not recorded on the card? record 'yes' if respondent mentions BCG, POLIO 0-3, DPT 1-3, OR MEASLES VACCINE(S).	YES. (PROBE FOR VACCIKATIONS AND WRITE "66" IN CORRESPONDING day Column in 204.) No. \qquad DK \qquad
$206 \|$CHECK 204: ANY POLIO VACCINE RECORDED AS GIVEN ON JUNE 11 OR JUNE 12, 1996?	

\begin{tabular}{|c|c|c|c|}
\hline NO. \& QUESTIONS AND FILTERS \& CODING CATEGORIES \& SKIP \\
\hline 214 \& \begin{tabular}{l}
Please tell me if (NAME) received any of the following vaccinations: \\
A BCG vaccination against tuberculosis, that is, an injection in the right upper arm that left a scar? \\
Polio vaccine, that is, drops in the mouth? \\
IF YES: How many times? \\
If YES: When was the first polio vaccine given? Just after birth or later? \\
DPT vaccination, that is, an injection, usually given at the same time as polio drops? \\
IF YES: How many times? \\
An injection to prevent measles?
\end{tabular} \& \begin{tabular}{l}
\(\qquad\) \\
NUMBER OF TIMES. \(\square\) \\
JUST AFTER BIRTH. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \\
NO. 2 \\
DK... . . 8 \\
NUMBER OF TIMES. \(\qquad\)

\qquad
\qquad

DK....................................... 8
\end{tabular} \&

\hline \& CHECK 214: CHILD HAS RECEIVED POLIO VACCINE \& has not received POLIO VACCINE \& $$
\rightarrow 217
$$

\hline 216 \& Was (NAME) given polio vaccine on June 11 or June 12 this year? \& YES . 1
M0. 2
DK. 8 \&

\hline \& CHECK 214: SOME OR ALL VACCINATIONS NOT GIVEN \& VACCINATIONS GIVEN \square \& 219

\hline 218 \& | CHECK 214: |
| :--- |
| SOME BUT NOT ALL VACCINATIONS given |
| Why did (NAME) receive some but not all of his/her vaccinations? |
| NO |
| VACCINATIONS GIVEN |
| Why did (NAME) receive no vaccinations? |
| Any other reasons? | \& | UNAWARE OF NEED FOR VACCINATION..A UNAWARE OF NEED TO RETURN |
| :--- |
| FOR ALL REQUIRED DOSES...........B PLACE/TIME OF IMMUNIZATION |
| UNKNOWN................................. |
| FEAR OF SIDE REACTIONS............ D WRONG IDEAS ABOUT CONTRA- |
| INDICATIONS.......................... |
| INTENTION TO GET IMMUNIZATION |
| AT SOME FUTURE DATE................ |
| DO NOT BELIEVE IMMUNIZATION |
| HORKS................................ |
| RUMOURS..................................... H |
| PLACE OF IMMUNIZATION TOO FAR....I |
| TIME OF IMMUNIZATION NOT |
| CONVENIENT . J J |
| VACCINATOR ABSENT....................... |
| VACCINE NOT AVAILABLE............... |
| MOTHER TOO BUSY........................ |
| |
| CHILD ILL................................ 0 |
| CHILD BROUGHT BUT NOT GIVEN |
| BECAUSE CHILD ILL.................. P |
| LONG WAITING TIME.................. |
| OTHER \qquad X | \&

\hline
\end{tabular}

Where did you seek care?
Anywhere else?
GOVERNMENT CLINIC,
HEALTH CENTRE..........................
GOVERNMENT HOSPITAL..................
PRIVATE CLINIC...........................
MISSION HOSPITAL/ CLINIC......... D
PHARMACY..................................E
SHOP...................................... F
TRADITIONAL HEALER..................G
RELATIVE OR FRIEND.....................
OTHER \qquad .. x

RECORD ALL RESPONSES MENTIONED

319 CHECK 316: HOSPITAL, CLINIC, OR HEALTH CENTRE MENTIONED?
$320 \left\lvert\, \begin{aligned} & \text { After you noticed the fever, how } \\ & \text { take (NAME) to (HOSPITAL/CLINIC/ }\end{aligned}\right.$

Did the (HOSPITAL/CLINIC/HEALTH CENTRE) tell you \qquad that (NAME) had malaria?

Did the (HOSPITAL/CLINIC/HEALTH CENTRE) prescribe any tablets or syrup to cure (NAME) of malaria?

323
Did you obtain the medicine for (NAME)?

324 What was the name of the medicine in the tablets or syrup?
record all mentioned responses

00 NOT PROMPT

given at the clinic
OR hospital
P.......................... PURCHASED IT AT HOSP./CLINIC.... B pURCHASED IT AT PHARMACY.......... C PURCHASED IT AT A SHOP............ D HAD IT AT HOME......................... RELATIVE/ FRIEND...................... F

OTHER \qquad (SPECIFY)

NO. I	QUESTIONS AND FILTERS	I Cooing categories	\| SKIP
334	CHECK 302: had diarrhoea	did not have diarrhoea	
335	You have mentioned that (NAME) has had diarrhoea during the past two weeks. Was there any blood in the stools?	YES. \qquad NO \qquad	
336	On the worst day of the diarrhoea, how many bowel movements did (NAME) have?	NUMBER OF MOVEMENTS....	
337	Was (NAME) given the same amount to drink as before the diarrhoea, or more, or less?		
338	Was (NAME) given the same amount to eat as before the diarrhoea, or more, or less?	SAME \qquad MORE. \qquad LESS. \qquad	\}
339	Was (NAME) given ORS solution to drink?	YES....................	,
340	Was anything else given to treat the diarrhoea?	YES. \qquad NO \qquad	$\stackrel{i}{342}^{3}$

\qquad
\qquad
\qquad
Comments on Specific Questions: \qquad
\qquad
\qquad
Any Other Comments: \qquad
\qquad

SUPERVISOR'S OBSERVATIONS
\qquad
\qquad
\qquad
Name of Supervisor:
Date:

EDITOR'S OBSERVATIONS

[^0]: ${ }^{1}$ A household refers to a person or group of related and unrelated persons who live together in the same dwelling unit(s), who acknowledge one adult male or female as head of household, who share the same housekeeping arrangements, and are considered as one unit. A member of the household is any person who usually lives in the household and a visitor is someone who is not a usual member of the household but had slept in the household the night before the interview date. The household population presented in this chapter includes, unless otherwise stated, all usual members of the household who slept in the household the night before the survey and visitors (de facto population).

[^1]: ${ }^{2}$ The dependency ratio is the sum of persons under 15 years and over 64 years (the dependent population) divided by the number of persons age 15-64 (the productive population).

[^2]: ${ }^{1}$ Sexually active unmarried women and men are those who had sexual intercourse in the 30 days preceding the interview.

[^3]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ Sexually active unmarried women are those who have had sexual intercourse in the $\mathbf{3 0}$ days prior to interview.

[^4]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ Sexually active unmarried women are those who have had sexual intercourse in the 30 days prior to interview.

[^5]: Note: An arterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Sexually active unmarried men are those who have had sexual intercourse in the 30 days prior to interview.

[^6]: ${ }^{2}$ Note that this table should not be compared directly with data presented in the MDHS report because the latter were restricted to persons who also reported they did not intend to use a method in the future; the data presented here include persons regardless of whether or not they intend to use at some time in the future.

[^7]: Note: Figures in parentheses are based on $25-49$ children. An asterisk indicates that a figure is based on fewer than 25 cases and has been suppressed.

[^8]: ${ }^{1}$ A mosquito coil is a type of chemical mosquito repellent in the shape of a coil or spiral. The coil is lit at one end and burns slowly repelling mosquitos.

[^9]: Note: Figures are based on spontaneous knowledge of sexually transmitted diseases (i.e., without probing). Sce Table 6.4.2 for level of knowledge of HIV/AIDS after probing.

[^10]: Table 6.10 Reasons for perception of small or no risk of getting AIDS
 Percentage of women and men who think they have small or no risk of getting AIDS, by reasons for that perception and marital status, Malawi 1996

[^11]: NA = Not applicable

