LEVELS AND TRENDS IN CARE SEEKING FOR CHILDHOOD ILLNESS IN USAID MCH PRIORITY COUNTRIES

DHS COMPARATIVE REPORTS 38

SEPTEMBER 2015

This publication was produced for review by the United States Agency for International Development (USAID). The report was prepared by Rebecca Winter, Wenjuan Wang, Lia Florey, and Thomas Pullum of ICF International.

DHS Comparative Reports No. 38

Levels and Trends in Care Seeking for Childhood Illness in USAID MCH Priority Countries

Rebecca Winter
Wenjuan Wang
Lia Florey
Thomas Pullum

ICF International
Rockville, Maryland, USA

September 2015

Corresponding author: Rebecca Winter, International Health and Development, ICF International, 530 Gaither Road, Suite 500, Rockville, Maryland, 20850, USA; phone: 301-572-0541; fax: 301-407-6501; email: Rebecca.Winter@icfi.com

Acknowledgment: The authors are grateful for input and feedback from Debra Prosnitz, Fred Arnold, the Maternal and Child Health group in the Office of Health, Infectious Diseases, and Nutrition at USAID, Roland T. Suomie, Vicki MacDonald, Eric Sarriot, Sarah Staveteig, Lindsay Mallick, Clara Burgert, and Matt Pagan.

Editors: Bryant Robey and Diane Stoy
Document Production: Natalie La Roche
This study was carried out with support provided by the United States Agency for International Development (USAID) through The DHS Program (\#AID-OAA-C-13-00095). The views expressed are those of the authors and do not necessarily reflect the views of USAID or the United States Government.

The DHS Program assists countries worldwide in the collection and use of data to monitor and evaluate population, health, and nutrition programs. For additional information about The DHS Program, contact The DHS Program, ICF International, 530 Gaither Road, Suite 500, Rockville, MD 20850, USA; phone: 301-407-6500; fax: 301-407-6501; email: reports@dhsprogram.com; Internet: www.dhsprogram.com.

Recommended citation:
Winter, Rebecca, Wenjuan Wang, Lia Florey, and Thomas Pullum. 2015. Levels and Trends in Care Seeking for Childhood Illness in USAID MCH Priority Countries. DHS Comparative Reports No. 38. Rockville, Maryland, USA: ICF International.

Contents

Tables
Figures vii
Preface xi
Abstract xiii
Executive Summary xV

1. Introduction 1
1.1. Rationale for this Study 1
1.2. Background 1
2. Data and Methods 5
2.1. Data 5
2.2. Analytic Strategy 9
2.3. Definitions of Indicators 9
2.4. Limitations 12
3. Results 13
3.1. Current Care Seeking in USAID MCH Priority Countries 13
3.2. Trends in Care Seeking 21
3.3. Equity in Recent Trends in Care Seeking 26
3.4. Country Case Studies: Have Child Health Interventions Helped? 38
3.5. Appropriateness of Care 44
4. Discussion and Conclusions 53
4.1. Levels of Care Seeking 53
4.2. Recent Trends in Care Seeking 55
4.3. Appropriateness of Care 56
References 59
Appendix 63

Tables

Table 1. USAID priority countries for maternal and child health and DHS survey availability. 5
Table 2. Percentage of children under age 5 who were reported to have fever, symptoms of ARI, or diarrhea in the two weeks preceding the interview, USAID MCH priority countries. 7
Table 3. Percent distribution of combinations of illness symptoms among children with recent fever, symptoms of ARI, or diarrhea, USAID MCH priority countries 8
Table 4. Care seeking for diarrhea for POUZN and non-POUZN districts in Nepal, 2006 and 2011 Nepal DHS 40
Table 5. Odds ratios for care seeking for children with recent diarrhea in POUZN Project Districts vs. non-project districts after adjusting for maternal, child, and household characteristics, Nepal 2006 and 2011 DHS 40
Table 6. Care seeking for recent fever within EQUIP and non-EQUIP counties, Liberia 2007 DHS and 2011 MIS 43
Table 7. Odds ratios for care seeking for children with recent fever in EQUIP project districts vs. non-project districts after adjusting for maternal, child, and household characteristics, Liberia 2007 DHS and 2011 MIS 44
Table 8a. Among children under age 5 with recent fever, the percentage who had a finger or heel stick for malaria testing, by source of care, USAID MCH priority countries. 45
Table 8b. Among children under age 5 with recent fever, the percentage who received Artemisinin-based Combination Therapy (ACT) among children who received any antimalarial, by source of care, USAID MCH priority countries 46
Table 8c. Among children under age 5 with recent fever, the percentage who received first-line antimalarial treatment among children who received any antimalarial, by source of care, USAID MCH priority countries. 47
Table 9a. Among children under age 5 with recent diarrhea for whom care was sought, the percentage who received ORS, by source of care, USAID MCH priority countries 49
Table 9b. Among children under age 5 with recent diarrhea for whom care was sought, the percentage who received ORS and zinc, by source of care, USAID MCH priority countries. 50
Table 9c. Among children under age 5 with recent non-bloody diarrhea for whom care was sought, the percentage who received antibiotics, by source of care, USAID MCH priority countries 51
Table A1. Sources of care for fever by place of residence, USAID MCH priority countries. 64
Table A2. Sources of care for symptoms of ARI by place of residence, USAID MCH priority countries 67
Table A3. Sources of care for diarrhea by place of residence, USAID MCH priority countries 70
Table A4. Sources of care for fever by household wealth, USAID MCH priority countries 73
Table A5. Sources of care for symptoms of ARI by household wealth, USAID MCH priority countries. 78
Table A6. Sources of care for diarrhea by household wealth, USAID MCH priority countries. 83
Table A7. Use of public, private, pharmacy, and other sources of care for fever, symptoms of ARI, and diarrhea by place of residence, with confidence intervals, USAID MCH priority countries88
Table A8. Use of public, private, pharmacy, and other sources of care for fever, symptoms of ARI, and diarrhea by household wealth, with confidence intervals, USAID MCH priority countries 90
Table A9. Trend in coverage of care seeking among rural children and urban children and rural-urban gap in care seeking equity, USAID MCH priority countries 94
Table A10. Trend in coverage of care seeking among children in poorest and wealthiest quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries 96
Table A11. Background characteristics among children with recent diarrhea by intervention coverage area, Nepal 2006 and 2011 DHS. 97
Table A12. Background characteristics among children with recent fever by intervention coverage area, Liberia 2007 DHS and 2011 MIS. 98

Figures

Figure 1. USAID priority countries for maternal and child health 2
Figure 2. Percentage of children who received care from any source for recent illness, USAID MCH priority countries 13
Figure 3. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent fever, USAID MCH priority countries 14
Figure 4. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent symptoms of ARI, USAID MCH priority countries 15
Figure 5. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent diarrhea, USAID MCH priority countries 15
Figure 6. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent fever by place of residence, USAID MCH priority countries 16
Figure 7. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent symptoms of ARI by place of residence, USAID MCH priority countries 17
Figure 8. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent diarrhea by place of residence, USAID MCH priority countries 17
Figure 9. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent fever by wealth quintile, USAID MCH priority countries 18
Figure 10. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent symptoms of ARI by wealth quintile, USAID MCH priority countries 18
Figure 11. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent diarrhea by wealth quintile, USAID MCH priority countries 19
Figure 12. Percentage of children who received care from any source among children with recent fever, by the co-occurrence of other illness symptoms, USAID MCH priority countries 19
Figure 13. Percentage of children who received care from any source among children with recent symptoms of ARI, by the co-occurrence of other illness symptoms, USAID MCH priority countries 20
Figure 14. Percentage of children who received care from any source among children with recent diarrhea, by the co-occurrence of other illness symptoms, USAID MCH priority countries 20
Figure 15. Trend in coverage of care seeking from any source among children under age 5 with fever in the two weeks preceding the survey, USAID MCH priority countries 21
Figure 16. Trend in coverage of care seeking from public sources among children under age 5 with fever in the two weeks preceding the survey, USAID MCH priority countries 22
Figure 17. Trend in coverage of care seeking from private sources among children under age 5 with fever in the two weeks preceding the survey, USAID MCH priority countries 22
Figure 18. Trend in coverage of care seeking from any source among children under age 5 with symptoms of ARI in the two weeks preceding the survey, USAID MCH priority countries 23
Figure 19. Trend in coverage of care seeking from public sources among children under age 5 with symptoms of ARI in the two weeks preceding the survey, USAID MCH priority countries 23
Figure 20. Trend in coverage of care seeking from private sources among children under age 5 with symptoms of ARI in the two weeks preceding the survey, USAID MCH priority countries 24
Figure 21. Trend in coverage of care seeking from any source among children under age 5 with diarrhea in the two weeks preceding the survey, USAID MCH priority countries 24
Figure 22. Trend in coverage of care seeking from public sources among children under age 5 with diarrhea in the two weeks preceding the survey, USAID MCH priority countries 25
Figure 23. Trend in coverage of care seeking from private sources among children under age 5 with diarrhea in the two weeks preceding the survey, USAID MCH priority countries 25
Figure 24. Trend in coverage of public care seeking for fever among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries 27
Figure 25. Trend in coverage of private care seeking for fever among children in rural households and rural-urban gap in care seeking equity, USAID Asian MCH priority countries and Haiti 27
Figure 26. Trend in coverage of private care seeking for fever among children in rural households and rural-urban gap in care seeking equity, African USAID MCH priority countries 28
Figure 27. Trend in coverage of public care seeking for symptoms of ARI among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries 29
Figure 28. Trend in coverage of private care seeking for symptoms of ARI among children in rural households and rural-urban gap in care seeking equity, USAID Asian MCH priority countries and Haiti 29
Figure 29. Trend in coverage of private care seeking for symptoms of ARI among children in rural households and rural-urban gap in care seeking equity, USAID African MCH priority countries 30
Figure 30. Trend in coverage of public care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries 31
Figure 31. Trend in coverage of private care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, Asian USAID MCH priority countries and Haiti 31
Figure 32. Trend in coverage of private care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, African USAID MCH priority countries 32
Figure 33. Trend in coverage of public care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries 33
Figure 34. Trend in coverage of private care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, Asian USAID MCH priority countries and Haiti 33
Figure 35. Trend in coverage of private care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, African USAID MCH priority countries 34
Figure 36. Trend in coverage of public care seeking for symptoms of ARI among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries 35
Figure 37. Trend in coverage of private care seeking for symptoms of ARI among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries 35
Figure 38. Trend in coverage of public care seeking for diarrhea among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries 36
Figure 39. Trend in coverage of private care seeking for diarrhea among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, Asian USAID MCH priority countries and Haiti 37
Figure 40. Trend in coverage of private care seeking for diarrhea among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, African USAID MCH priority countries 37
Figure 41. Percentage of children with recent diarrhea for whom care was sought from a private source, Nepal 2006 and 2011 DHS 39
Figure 42. Percentage of children with recent diarrhea for whom care was sought from a public source, Nepal 2006 and 2011 DHS 39
Figure 43. Percentage of children with recent diarrhea for whom care was sought from any source, Nepal 2006 and 2011 DHS 39
Figure 44. Percentage of children with recent diarrhea who were treated with ORS, Nepal 2006 and 2011 DHS 39
Figure 45. Percentage of children with recent diarrhea who were given zinc, Nepal 2006 and 2011 DHS 39
Figure 46. Percentage of children with recent fever for whom care was sought from a public source, Liberia 2007 DHS and 2011 MIS 42
Figure 47. Percentage of children with recent fever for whom care was sought from a private source, Liberia 2007 DHS and 2011 MIS 42
Figure 48. Percentage of children with recent fever for whom care was sought from any source, Liberia 2007 DHS and 2011 MIS 43
Figure A1. Comparison of care seeking from public versus private facilities for fever, USAID MCH priority countries 63
Figure A2. Comparison of care seeking from public versus private facilities for symptoms of ARI, USAID MCH priority countries 63
Figure A3. Comparison of care seeking from public versus private facilities for diarrhea, USAID MCH priority countries 63
Figure A4. Trend in coverage of any care seeking for fever among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries. 99
Figure A5. Trend in coverage of any care seeking for symptoms of ARI among children in rural households and rural-urban equity gap in care seeking 99
Figure A6. Trend in coverage of any care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries. 100
Figure A7. Trend in coverage of any care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries 100

Figure A8. Trend in coverage of any care seeking for symptoms of ARI among children in poorestquintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries.
Figure A9. Trend in coverage of any care seeking for diarrhea among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

Preface

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, HIV/AIDS, malaria, and provision of health services.

One of the objectives of The DHS Program is to provide policymakers and program managers in low- and middle-income countries with easily accessible data on levels and trends for a wide range of health and demographic indicators. DHS Comparative Reports provide such information, usually for a large number of countries in each report. These reports are largely descriptive, without multivariate methods, but when possible they include confidence intervals and/or statistical tests.

The topics in the DHS Comparative Reports series are selected by The DHS Program in consultation with the U.S. Agency for International Development.

It is hoped that the DHS Comparative Reports will be useful to researchers, policymakers, and survey specialists, particularly those engaged in work in low- and middle-income countries.

Sunita Kishor
Director, The DHS Program

Abstract

This study uses Demographic and Health Survey (DHS) data to examine patterns and trends in care seeking for children who have experienced recent fever, symptoms of acute respiratory infection (ARI), or diarrhea in USAID maternal and child health (MCH) priority countries. Overall, current levels of care seeking among children with recent illness vary widely across the 21 priority countries, from nearly 90 percent in the Indonesia 2012 survey to 33 percent in Ethiopia 2011. Results show that care seeking from public sources is predominant in African MCH priority countries while care seeking from private sources is predominant in Asian MCH priority countries. The majority of countries did not show significant improvements between the two most recent DHS surveys in the level of care seeking for fever or symptoms of ARI, although care seeking for diarrhea showed more widespread improvement. The use of appropriate antimalarial treatment varied widely across MCH priority countries. Despite the widespread increase in care seeking for diarrhea, there has not been a parallel increase in coverage of appropriate treatment for diarrhea. In conclusion, our results show that the percentage of children with diarrhea, fever, and symptoms of ARI who reach the health system remains low in many high childhood mortality settings. Findings would be most useful when interpreted at the country-level, with national childhood illness management goals in mind.

KEY WORDS: child health, care seeking for childhood illness, pneumonia, diarrhea, malaria

Executive Summary

This study, a follow-up to Hodgins, Pullum, and Dougherty (2013), examines patterns in care seeking for children who have experienced recent fever, symptoms of acute respiratory infection (ARI), or diarrhea in USAID maternal and child health (MCH) priority countries for which Demographic and Health Surveys (DHS) data are available since 2000. The results are categorized into five sections. First, we describe the current landscape of care seeking for children's recent illness. Second, we present trends in care seeking between the two most recent surveys in the 20 countries. Third, we focus specifically on the equity of these recent trends. Fourth, we present two case studies as examples, in which we use DHS data to look for ecological evidence of intervention impact on care seeking patterns in two countries, Liberia and Nepal. Finally, we examine the appropriateness of the care that was received for fever and diarrhea.

Overall, current levels of care seeking among children with recent illness vary widely across the priority countries, from nearly 90 percent in the Indonesia 2012 survey to 33 percent in Ethiopia 2011. In three countries-Ethiopia, Madagascar, and Haiti-less than half of children under age 5 with recent illness received care from any source. For all three illnesses, care seeking from public sources is predominant in African MCH priority countries while care seeking from private sources is predominant in Asian MCH priority countries.

The majority of countries did not show significant improvements between the two most recent DHS surveys in the level of care seeking for fever or for symptoms of ARI (from any source, private sources, or public sources). Care seeking for diarrhea, however, showed more widespread improvement; 13 of 20 countries showed a statistically significant increase in care seeking from any source for diarrhea, and no country showed a decrease in coverage.

The study identified distinct patterns in recent trends in care seeking from public versus private sources. For all three illnesses, the use of public sources of care either remained the same or increased between surveys; there were no decreases. The trend in use of private sources of care was more mixed. For fever and diarrhea, some countries, primarily in Asia, experienced an increase in the level of care seeking from private sources while others, all in sub-Saharan Africa, experienced a decrease in the level of care seeking from private sources.

There is general agreement that to have the greatest impact on child survival and wellness, interventions around childhood illness should focus on the poorest and most vulnerable children. Nevertheless, we found only limited evidence that increases in care seeking were concentrated in these vulnerable children. We examined trends specifically among children in poorest-wealth quintile households and among children in rural households, and found that the patterns within these populations roughly followed the national patterns. In most cases, the change in coverage of care seeking between surveys was not significantly different between children in the poorest and the wealthiest households, or between rural and urban children.

Using case studies in Liberia and Nepal, we attempted to identify ecological evidence of the impact of programs by examining temporal trends in care seeking separately for areas covered and not covered by two USAID health initiatives. In Liberia our results show that the increase in care seeking from public facilities between 2007 and 2011 was significantly greater in Liberian counties covered by the PMIfunded EQUIP project compared with the increase in areas with no EQUIP presence, after adjusting for socio-demographic characteristics. However, overall levels of care seeking from any source did not improve in EQUIP project districts between 2007 and 2011. Instead, there appears to have been a shift from the use of private providers to public providers. In Nepal, despite countrywide improvements in levels of care seeking for diarrhea between the 2006 and 2011 DHS surveys, we did not find evidence that increases in districts covered by the POUZN project were greater than those in non-project districts. There
are several possible explanations for this null finding, such as the time lapse between the end of the program and the 2011 survey, the possibility that using district as a proxy for program exposure may be inappropriate, and the fact that certain aspects of the program's communication campaigns were broadcast nationally, which could potentially dilute the differential between primary project districts and the noncovered districts.

Levels and trends in coverage of care seeking are only meaningful if the sources of care consistently provide children and caregivers with appropriate diagnoses, advice, and treatment. Despite the widespread increase in coverage of care seeking for diarrhea, there has not been a parallel increase in coverage of appropriate treatment. Treatment with oral rehydration solution (ORS) increased significantly in just four of the 20 countries, coverage of treatment with both ORS and zinc remains under 5 percent in 16 of the 18 countries with data available, and no country showed an improvement (reduction) in inappropriate use of antibiotics to treat non-bloody diarrhea.

Appropriateness of antimalarial treatment-in terms of the percentage of children who had a finger or heel stick among those with recent fever for whom care was sought, and the percentage who received artemisinin-based combination therapy (ACT) or other first-line treatment among those who received any antimalarial-varied widely across MCH priority countries. The results indicate varied levels of access to essential medications but do not provide reasons for successes or failures in the provision of appropriate antimalarial treatment.

We know that in order to save lives, children need to receive ACT for malaria, antibiotics for pneumonia, and ORS and zinc for diarrhea. Yet coverage of these proven interventions remains far too low. In order to receive the correct treatment, children first must receive appropriate diagnosis, care, and counseling from a qualified provider. Our results show that the percentage of children with diarrhea, fever, and symptoms of ARI who reach the health system remains low in many high childhood mortality settings. The results would be most useful when interpreted within the landscape of child health interventions and programming, and with national childhood illness management goals in mind.

1. Introduction

1.1. Rationale for this Study

Malaria, diarrhea, and pneumonia are the leading causes of death among children under age 5. Together, as of 2013, these three conditions account for about 40 percent of under-five deaths in sub-Saharan Africa, about 25 percent of under-five deaths in Southern Asia, and nearly one-third of under-five deaths globally (UNICEF et al. 2014). Scale-up of both preventive interventions and case management interventions for improved care and treatment of illness are needed to reduce the burden of child illness and death from these conditions. In order to develop appropriate potentially life-saving case management programs, it is essential to understand where caregivers are taking their sick children. This study, a follow-up to Hodgins, Pullum, and Dougherty (2013), examines patterns in care seeking for children who have experienced recent fever, symptoms of acute respiratory infection (ARI) ${ }^{1}$, or diarrhea.

Chapter 1 provides background information on the burden of malaria, pneumonia, and diarrhea, and on international standards for case management. Chapter 2 describes the data and the methodology of the study, defines all variables, and presents study limitations. Chapter 3 has five sections that describe results. First, we describe the current landscape of care seeking for children's fever, symptoms of ARI, and diarrhea in the 21 USAID maternal and child health (MCH) priority countries for which Demographic and Health Surveys (DHS) data are available since 2000. Second, among the 20 countries with data available from at least two surveys since 2000, we present trends in care seeking between the two most recent surveys. Third, we focus specifically on the equity of these recent trends. Fourth, as examples, we present two case studies in which we use DHS data to find ecological evidence of intervention impact on care seeking patterns in two countries, Nepal and Liberia. Finally, we examine the appropriateness of the care that was received for fever and diarrhea. Chapter 4 provides interpretation of key findings, overall conclusions, and policy implications.

1.2. Background

Millennium Development Goal 4 (MDG 4) established the target of a two-thirds reduction in under-five mortality between 1990 and 2015. Although this goal will not be met, impressive gains have been made. Between 2000 and 2013, under-five mortality declined from 77 to 46 deaths per 1,000 live births, with the largest reductions found in pneumonia, diarrhea and measles deaths (Liu et al. 2015). The reductions in pneumonia and diarrhea deaths alone accounted for nearly 40 percent of the total observed reduction in under-five mortality. During this period, under-five deaths caused by diarrhea, pneumonia, and malaria declined at annual rates of 6.5 percent, 5 percent, and 4.5 percent, respectively (Liu et al. 2015).

Despite these gains, malaria, diarrhea, and pneumonia remain leading causes of death among children under age 5. In 2013, pneumonia was responsible for an estimated 935,000 deaths to children under age 5, diarrhea for an estimated 578,000 deaths, and malaria for an estimated 456,000 deaths (Liu et al. 2015).

[^0]
1.2.1. Equity and the geography of burden

The vast majority of under-five deaths occur in low- and middle-income countries, with the highest numbers in South Asia and sub-Saharan Africa. Nearly 90 percent of all child deaths from pneumonia and diarrhea occur in sub-Saharan Africa and South Asia (WHO and UNICEF 2013). More generally, nearly half of all under-five deaths worldwide occur in just four countries: India (22 percent), Nigeria (13 percent), Pakistan (6 percent), and the Democratic Republic of Congo (6 percent) (UNICEF 2013). Based on the distribution of the global burden of maternal and child death, USAID selected 24 MCH priority countries-displayed in Figure 1-as the focus of programmatic efforts designed to scale up high-impact interventions and strengthen health systems (USAID 2013). These 24 priority countries are the focus of the current study.

Figure 1. USAID priority countries for maternal and child health

Beyond the global concentration of child deaths in a few low- and middle-income countries, inequities exist within these high-burden countries. The children who become sick with diarrhea and pneumonia are often those who are poor and malnourished, live in remote areas, and lack access to simple life-saving interventions (UNICEF 2012). Highlighting the economic inequity in intervention coverage and its impact on under-five mortality, the United Nations Children's Fund (UNICEF) estimated that, within the 75 countries with the highest burden of child death, more than two million child deaths related to pneumonia and diarrhea could be averted between 2012 and 2015 if national coverage of key pneumonia and diarrhea interventions were raised to levels found in the wealthiest 20 percent of households in each country. Scale-up to the levels of intervention coverage in the wealthiest 20 percent of households could reduce under-five deaths from pneumonia by 30 percent, and under-five deaths from diarrhea by as much as 60 percent (UNICEF 2012). Our report examines levels of inequity in patterns of care seeking in USAID MCH priority countries and recent trends in care seeking, specifically among children in rural areas and the poorest households.

1.2.2. Management of childhood illness

Health ministries, international partners, and aid organizations have utilized numerous approaches in their attempts to reach all children-with specific efforts that target the poor, remote, and hard-to-reach-and with expanded access to preventive and curative care for childhood illnesses. One key approach, the Integrated Management of Childhood Illnesses (IMCI), was developed by WHO (World Health Organization) and UNICEF in the mid-1990s. IMCI has been implemented widely across low- and middle-income countries. Given that 70 percent of child deaths are caused by five conditionspneumonia, diarrhea, malaria, measles, and malnutrition-and that these often occur in combination and could be prevented with many of the same measures, IMCI uses an integrated approach to the prevention and treatment of childhood illness that works at the family, community, and health systems levels (UNICEF 2012). IMCI guidelines for assessing, classifying, treating, counseling, and preventing the most common childhood illnesses focus on the child rather than on any single illness.

Another strategy supported by UNICEF and WHO to bring appropriate care to hard-to-reach children with malaria, pneumonia, and diarrhea is the use of community health workers. In most high-mortality countries, facility-based health services alone cannot provide adequate access to timely treatment. The aim of integrated community case management (iCCM) is to train, supply, and supervise the community health workers who will identify, diagnose, and treat sick children. The iCCM strategy is supported by research that estimates that community case management of diarrhea, pneumonia, and malaria with oral rehydration solution (ORS) and zinc, antibiotics, and artemisinin-based combination therapy (ACT), respectively, can reduce mortality attributed to these three diseases by 50 percent (WHO and UNICEF 2012).

Promotion of the private sector is a third strategy for increasing the reach of health systems. The USAID Strengthening Health Outcomes through the Private Sector (SHOPS) program, for example, works with nongovernmental organizations (NGOs) and for-profit facilities to increase availability, improve quality, and expand coverage of essential health products and services in the private health sector (Abt. Associates n.d.). Support for the private health sector through the SHOPS program is expected to work in tandem with the expansion of public sector health services to serve those with the greatest need (USAID 2009). The rationale suggests that "increasing private sector involvement to serve those who can pay for private health services, drugs and health products will free up public sector resources to better serve low-income populations" (USAID 2009).

1.2.3. Public versus private sources of care

Since the 1990s, international partners and aid organizations have encouraged low-income countries to expand their private health sectors. Public sectors in developing countries face a number of challenges, such as government decentralization, economic hardships, humanitarian crises, political instability and corruption, and an exodus of educated health care workers. Within the health care system, additional challenges include poor infrastructure, insufficient funding, inconsistent supplies of pharmaceuticals and commodities, and weak health information and referral systems (White and Levin 2006). A World Bank study (2008) estimated that in select countries where the environment is favorable to private sector participation, the private sector could potentially provide 45-70 percent of the needed increase in health care capacity (International Finance Corporation World Bank Group 2008). In theory, the private sector has the potential to provide higher quality care, a broader range of care, and more flexible hours and payment options (International Finance Corporation World Bank Group 2008). Despite these potential benefits, growth in the private sector raises concerns about the potential impact on equity, affordability, regulation, and the quality of service provision (Hanson et al. 2008; Lagomarsino, Nachuk, and Kundra 2009). This report examines patterns in the use of public and private sources of care to treat children's
illness and to the extent possible, the appropriateness of treatment provided by public versus private sources of care (see Section 2.3 for a discussion of indicators that assess the appropriateness of treatment).

1.2.4. Symptoms of illness and recommended treatments

The scale-up of both preventive and case management interventions are needed to reduce the burden of child death from malaria, pneumonia, and diarrhea. This study, however, focuses primarily on patterns in care seeking for sick children. International treatment recommendations for sick children with suspected malaria, suspected pneumonia, and diarrhea are summarized below, along with key symptoms of the illnesses.

Malaria. Early symptoms of malaria are nonspecific and include headache, lassitude, fatigue, abdominal discomfort, and muscle/joint aches. These are usually followed by fever, chills, perspiration, anorexia, vomiting, and worsening malaise. Young children may also experience lethargy, poor feeding, and cough. If treated promptly with effective antimalarials at an early stage with no evidence of vital organ dysfunction, a child can typically expect a rapid, full recovery. Disease progression to severe malaria (which can take days or hours) usually includes coma, metabolic acidosis, severe anemia, hypoglycemia, acute renal failure, and/or acute pulmonary edema (WHO, 2015).

According to the latest WHO recommendations, all cases of suspected malaria should have a parasitological test, with either microscopy or a rapid diagnostic test (RDT) to confirm the diagnosis (WHO 2015). Treatment of malaria depends on the Plasmodium species and disease severity. For uncomplicated, i.e., non-severe, P. falciparum malaria, children should be treated with ACT for three days. For uncomplicated P. vivax, P. ovale, P. malariae, or P. knowlesi malaria in areas with chloroquinesusceptible infections, children may be treated with either ACT or chloroquine. In areas with chloroquineresistant infections, children should be treated with ACT. For severe malaria, children should first be given intravenous or intramuscular artesunate for at least 24 hours, after which they should be treated with three days of ACT when they can tolerate oral medication. Some cases may require pre-referral rectal administration of a single dose of artesunate. Dosages depend on the child's weight and age (WHO 2015).

Pneumonia. In low-income settings, chest radiology, blood tests, and sputum samples are often unavailable to confirm a pneumonia diagnosis and identify the disease-causing pathogen. As a result, pneumonia is classified and treated based on symptoms and physical examinations, according to WHO and UNICEF IMCI guidelines (UNICEF 2012). Pneumonia symptoms include coughing and fast/difficult breathing. The 2014 IMCI guidelines outline two paths to treatment which depend on the severity of symptoms (WHO 2014). Children with a cough or difficult breathing, as well as stridor (a high-pitched wheezing sound caused by disrupted airflow) or any general danger sign, are classified as having severe or very severe pneumonia. These children should be given a first dose of an appropriate antibiotic and referred urgently to a hospital. Children with a cough or difficult breathing, and either chest indrawing or rapid breathing for their age and no signs of severe pneumonia, are diagnosed with pneumonia. These children should be treated with oral amoxicillin for five days, and given home care. IMCI provides specific guidance on home care, which should include more frequent, longer periods of breastfeeding and increased fluid intake. Young infants must be breastfed and kept warm at all times. The dosage of amoxicillin depends on the child's age and weight, and the presence of chest indrawing. Injectable antibiotics are given only in cases of severe pneumonia (WHO 2014).

Diarrhea. WHO and UNICEF recommend the provision of low-osmolarity ORS with zinc supplementation for 10-14 days to treat diarrhea in children under age 5 (WHO and UNICEF 2004). Continued feeding and increased breastfeeding are recommended during this time, in which unnecessary antibiotics should be avoided. Antibiotics are only appropriate in the presence of bloody diarrhea or shigellosis (WHO and UNICEF 2004).

2. Data and Methods

2.1. Data

This study uses data from DHS surveys in 21 of the 24 USAID MCH priority countries. These are nationally representative, population-based household surveys that monitor demographic trends, reproductive health behaviors, attitudes, outcomes, and socio-demographic characteristics of women and men of reproductive age. The data are collected with face-to-face household interviews. All surveys include information on care seeking for children under age 5 with reported fever, diarrhea, or symptoms of acute respiratory infection (ARI) in the two weeks preceding the interview. Each survey includes a standard core questionnaire that enables comparisons across countries and over time.

Table 1 lists the USAID MCH priority countries and DHS survey availability. The study uses the two most recent DHS surveys. For 20 countries-Bangladesh, DR Congo, Ethiopia, Ghana, Haiti, Indonesia, Kenya, Liberia, Madagascar, Malawi, Mali², Mozambique, Nepal, Nigeria, Pakistan, Rwanda, Senegal, Tanzania, Uganda, and Zambia-two DHS surveys are available since 2000. For India, just one survey is available since 2000 .

Table 1. USAID priority countries for maternal and child health and DHS survey availability

Country and DHS country code	Survey 1	Survey 2
Afghanistan (AF)	n/a	n/a
Bangladesh (BD)	2007 DHS	2011 DHS
DR Congo (CD)	2007 DHS	2013-14 DHS
Ethiopia (ET)	2005 DHS	2011 DHS
Ghana (GH)	2003 DHS	2008 DHS
Haiti (HT)	2005-6 DHS	2012 DHS
India (IA)	n/a	2005-6 DHS
Indonesia (ID)	2007 DHS	2012 DHS
Kenya (KE)	2003 DHS	2008-9 DHS
Liberia (LB)	2007 DHS	2013 DHS
Madagascar (MD)	2003-4 DHS	2008-9 DHS
Malawi (MW)	2004 DHS	2010 DHS
Mali (ML)	2006 DHS	2012-13 DHS
Mozambique (MZ)	2003 DHS	2011 DHS
Nepal (NP)	2006 DHS	2011 DHS
Nigeria (NG)	2008 DHS	2013 DHS
Pakistan (PK)	2006-7 DHS	2012-13 DHS
Rwanda (RW)	2005 DHS	2010 DHS
Senegal (SN)	2005 DHS	2010-11 DHS
South Sudan (SS)	n/a	n/a
Tanzania (TZ)	2004-5 DHS	2010 DHS
Uganda (UG)	2006 DHS	2011 DHS
Yemen (YE)	n/a	n/a
Zambia (ZM)	2007 DHS	2013-14 DHS

Note: We have no data for Afghanistan, South Sudan, or Yemen as of June 2014. Recode files are not available for the Afghanistan 2010 Mortality Survey. n/a= data not available

[^1]The study population was restricted to the 143,961 children under age 5 with reported illness-fever, symptoms of ARI, or diarrhea-in the two weeks preceding the mother's interview. While identifying the population of children with recent malaria, pneumonia, and diarrhea is ideal, the DHS is limited in its ability to diagnose these illnesses, particularly malaria and pneumonia. We do not know if a child had malaria in the two weeks preceding the survey; instead, we know if the mother reports that the child had a fever during this period. The percentage of fever cases due to malaria varies across country and across endemicity zones within a country, and can be highly dependent on the season of fieldwork.

We also do not know from the DHS whether a child had pneumonia. Instead, we know if the child had a reported cough and chest-related rapid/difficult breathing. These symptoms are not specific to pneumonia and could identify a number of childhood illnesses such as the common cold or bronchitis. For this reason, the collection of symptoms is referred to as ARI. The indicator is based on the following standard DHS questions: Respondents are asked whether the child has had an illness with a cough at any time in the last two weeks. If the response is yes, the respondents are asked "When [name of child] had an illness with a cough, did he/she breathe faster than usual with short, rapid breaths or have difficulty breathing?" For most surveys conducted after 2003, respondents are then asked "Was the fast or difficult breathing due to a problem in the chest or to a blocked or runny nose?" For consistency, the analysis of trends in care seeking for symptoms of ARI was restricted to surveys with all three questions. In the study, children are classified as having had symptoms of ARI if they were reported to have had a cough with difficulty breathing or short, rapid breaths, and if the child's difficulty breathing was due to a problem in the chest or to a problem in the chest and blocked/runny nose. The need for caution in interpreting the ARI estimates is underscored by a recent prospective study in Pakistan and Bangladesh (Hazir et al. 2013). This study found that the specificity (the true negative rate) of the symptoms of ARI questions used by DHS and the UNICEF MICS surveys is well below the levels required for the proxy measure to provide accurate estimates of the prevalence of pneumonia; thus, estimates should not be used for that purpose.

Finally, while we know if a child had diarrhea in the two weeks preceding the survey and if the diarrhea was bloody, we have no further information about the severity or duration of illness or the cause of the diarrhea. According to the 2013 Global Burden of Disease Study, rotavirus was the main cause of diarrhea in children younger than age 5 , and the most common cause of diarrhea deaths for children under age 5 in 2013, followed by cholera, cryptosporidium, and shigellosis (Liu et al. 2015).

Table 2 lists the prevalence of the three illnesses among children under age 5 in each survey. The prevalence of fever ranged from 9 percent among children under age 5 in the Madagascar 2008-9 survey and the Mali 2012-13 survey to about 40 percent in Kenya 2003 and Uganda in 2006 and 2011. The prevalence of symptoms of ARI ranged from 2 percent in Mali 2012-13, Mozambique 2011, and Nigeria 2013, to 19 percent of children under age 5 in Malawi 2004. The prevalence of diarrhea in the two weeks preceding the survey ranged from 5 percent in the Bangladesh 2011 survey to 26 percent in Uganda 2006. The analysis of care seeking is restricted to these children with recent illness symptoms.

Table 2. Percentage of children under age 5 who were reported to have fever, symptoms of ARI, or diarrhea in the two weeks preceding the interview, USAID MCH priority countries

Country/survey year	Fever \%	Symptoms of ARI \%	$\begin{gathered} \hline \text { Diarrhea } \\ \text { (any) } \\ \% \\ \hline \end{gathered}$	Diarrhea (bloody) \%	$\begin{gathered} \mathrm{N} \\ \text { children under } \\ \text { age } 5 \\ \hline \end{gathered}$
Bangladesh 2007	38.2	4.8	9.8	n/a	5,719
Bangladesh 2011	36.5	5.8	4.6	0.6	8,395
Congo DR $2007{ }^{1}$	30.8	15.4	16.4	n/a	8,009
Congo DR 2013-14	29.5	6.7	16.8	3.0	17,017
Ethiopia $2005{ }^{1}$	18.7	12.6	18.0	6.2	10,109
Ethiopia 2011	17.1	7.0	13.4	3.3	11,042
Ghana $2003{ }^{1}$	21.3	10.0	15.2	n/a	3,340
Ghana 2008	19.9	5.5	19.8	3.1	2,731
Haiti 2005-6	27.9	10.3	23.7	5.0	5,322
Haiti 2012	27.1	14.4	20.8	2.0	6,410
India 2005-6	14.9	5.8	9.0	0.9	52,868
Indonesia $2007{ }^{1}$	31.6	11.2	13.7	n/a	15,925
Indonesia 2012	31.0	5.1	14.3	0.1	16,380
Kenya $2003{ }^{1}$	40.6	18.4	16.0	n/a	5,560
Kenya 2008-9	23.7	7.6	16.6	2.6	5,481
Liberia 2007	30.7	8.6	19.8	4.9	5,132
Liberia 2013	28.6	6.5	22.0	3.9	6,047
Madagascar 2003-4¹	20.6	8.6	9.8	n/a	5,841
Madagascar 2008-9	9.3	2.9	8.3	0.9	11,976
Mali $2006{ }^{1}$	17.9	5.6	13.3	n/a	12,523
Mali 2012-13	8.6	1.6	8.6	2.0	9,655
Malawi $2004{ }^{1}$	37.1	18.8	22.3	n/a	9,777
Malawi 2010	34.5	6.8	17.5	2.4	18,013
Mozambique $2003{ }^{1}$	26.7	9.8	14.1	2.8	9,400
Mozambique 2011	13.4	1.5	11.1	1.5	10,835
Nepal 2006	16.9	5.3	11.9	2.0	5,252
Nepal 2011	18.7	4.6	13.8	1.6	5,140
Nigeria 2008	15.9	2.8	10.1	2.0	24,975
Nigeria 2013	12.5	2.0	10.2	2.1	28,950
Pakistan 2006-7	30.7	14.1	12.6	3.1	8,367
Pakistan 2012-13	37.6	15.9	22.5	2.3	11,040
Rwanda $2005{ }^{1}$	26.2	17.1	14.1	n/a	7,797
Rwanda 2010	15.8	3.7	13.2	2.0	8,605
Senegal $2005{ }^{1}$	29.8	13.2	22.3	n/a	9,709
Senegal 2010-11	22.6	5.4	20.6	2.0	10,893
Tanzania 2004-51	24.4	8.1	12.6	n/a	7,976
Tanzania 2010	22.9	4.3	14.5	1.9	7,667
Uganda 2006	40.9	14.5	25.8	5.6	7,664
Uganda 2011	40.4	14.8	23.4	4.2	7,535
Zambia 2007	17.8	5.2	15.5	2.0	5,861
Zambia 2013-14	21.0	3.7	16.1	2.5	12,634

${ }^{1}$ For 12 surveys, "symptoms of ARI" is defined by a less specific definition (having a cough with rapid breathing, rather than having a cough with rapid breathing that is chest-related), because these surveys did not collect information on whether the child's rapid breathing was chest-related. $\mathrm{n} / \mathrm{a}=$ data not available

For the most part, this study examines care seeking separately by illness; that is, we examine care seeking in three populations: all children with recent fever, all children with recent symptoms of ARI, and all children with recent diarrhea. However, children may have experienced combinations of these illnesses. Table 3 presents the percent distribution of illness symptoms among all children with reported illness in the two weeks preceding the interview. In all surveys the largest percentage of children with recent illness experienced only fever in the two weeks preceding the interview, without coinciding symptoms of ARI or diarrhea. This percentage ranged from 19 percent in the Ethiopia 2005 survey to 75 percent in Bangladesh 2011. Between 1 percent (Bangladesh 2007) and 13 percent (Haiti 2012) of children with recent illness experienced only symptoms of ARI, and between 5 percent (Bangladesh 2011) and 39 percent (Mali 2012-13) experienced only diarrhea.

In all surveys except Bangladesh 2011, at least 10 percent of children with recent illness were reported to have experienced both fever and diarrhea. The reported co-occurrence of diarrhea and symptoms of ARI is much less common; in all surveys, 4 percent of children or less experienced both diarrhea and symptoms of ARI. Between 2 percent (Mozambique 2011) and 23 percent (Pakistan 2006-7) experienced fever along with symptoms of ARI.

Finally, a small percentage of children experienced all three illnesses or illness symptoms in the two weeks preceding the survey. This ranged from 1 percent in Bangladesh 2007 and 2011 and in Mali 201213 to 14 percent in Ethiopia 2005.

Table 3. Percent distribution of combinations of illness symptoms among children with recent fever, symptoms of ARI, or diarrhea, USAID MCH priority countries

Countrylsurvey year	Fever only \%	Symptoms of ARI only \%	```Diarrhea only %```	Fever and ARI \%	Fever and diarrhea \%	Diarrhea and ARI \%	$\begin{gathered} \text { All three } \\ \% \\ \hline \end{gathered}$	Total \%	N children with recent illness
Bangladesh 2007	67.6	1.4	9.9	8.3	11.3	0.1	1.4	100.0	2,467
Bangladesh 2011	74.8	2.3	4.9	11.2	5.5	0.1	1.1	100.0	3,306
Congo DR $2007{ }^{1}$	35.2	7.9	14.7	17.0	12.6	2.5	10.0	100.0	3,299
Congo DR 2013-14	46.5	5.0	19.4	6.5	17.4	1.8	3.3	100.0	6,802
Ethiopia $2005{ }^{1}$	19.1	9.8	26.0	13.1	14.4	4.0	13.6	100.0	3,133
Ethiopia 2011	30.9	7.4	24.6	9.7	17.4	1.9	8.2	100.0	2,848
Ghana $2003{ }^{1}$	32.2	9.4	24.2	12.3	13.3	2.2	6.3	100.0	1,107
Ghana 2008	31.7	4.7	35.2	5.3	17.0	1.6	4.5	100.0	930
Haiti 2005-6	28.9	6.8	25.8	8.9	21.3	2.2	6.1	100.0	2,279
Haiti 2012	30.0	12.5	23.0	11.0	14.8	4.0	4.8	100.0	2,866
India 2005-6	38.9	6.6	24.8	14.0	10.2	1.6	3.9	100.0	11,717
Indonesia $2007{ }^{1}$	45.0	6.6	11.3	13.5	15.1	1.5	7.0	100.0	6,245
Indonesia 2012	53.5	3.1	17.0	6.8	16.5	0.5	2.6	100.0	6,404
Kenya 2003 ${ }^{1}$	40.6	7.1	9.4	20.0	12.8	1.7	8.4	100.0	2,755
Kenya 2008-9	37.5	3.6	25.7	10.3	14.5	1.1	7.4	100.0	1,868
Liberia 2007	40.8	2.9	21.7	8.6	16.8	1.3	7.8	100.0	2,129
Liberia 2013	36.5	3.9	24.6	5.9	22.9	1.7	4.6	100.0	2,474
Madagascar 2003-4¹	41.2	7.7	16.3	15.6	11.0	1.0	7.2	100.0	1,602
Madagascar 2008-9	33.9	5.6	34.8	8.3	13.2	1.0	3.1	100.0	1,906
Mali $2006{ }^{1}$	37.6	5.6	27.0	8.1	14.7	1.7	5.3	100.0	3,409
Mali 2012-13	37.8	4.7	39.3	2.9	12.6	1.5	1.3	100.0	1,523
Malawi $2004{ }^{1}$	33.9	10.9	13.1	11.8	16.3	3.7	10.3	100.0	5,020
Malawi 2010	48.6	2.8	16.2	7.9	19.5	1.0	4.0	100.0	7,763
Mozambique $2003{ }^{1}$	42.6	8.5	16.0	10.1	14.5	2.2	5.9	100.0	3,427
Mozambique 2011	42.2	2.3	32.9	2.4	17.7	0.6	2.0	100.0	2,268
Nepal 2006	38.7	3.2	29.1	11.5	11.5	1.2	4.8	100.0	1,339
Nepal 2011	38.2	3.2	28.5	8.5	16.5	0.7	4.3	100.0	1,421
Nigeria 2008	46.6	2.4	25.6	5.7	15.4	0.9	3.5	100.0	5,577
Nigeria 2013	41.5	2.4	32.4	3.6	16.1	0.9	3.0	100.0	5,654
Pakistan 2006-7	39.6	5.7	14.8	22.5	9.8	1.2	6.4	100.0	3,283
Pakistan 2012-13	32.5	4.1	17.2	17.4	17.9	1.8	9.1	100.0	5,399
Rwanda $2005{ }^{1}$	28.2	11.4	14.7	21.9	10.8	2.6	10.4	100.0	2,871
Rwanda 2010	36.6	4.9	30.7	5.6	17.6	1.1	3.4	100.0	2,142
Senegal $2005{ }^{1}$	29.9	7.0	21.7	11.7	18.1	2.8	8.8	100.0	4,217
Senegal 2010-11	30.5	3.1	30.3	6.8	23.6	1.2	4.5	100.0	3,769
Tanzania 2004-51	45.1	2.4	24.5	6.8	16.7	0.8	3.7	100.0	2,428
Tanzania 2010	42.9	6.2	15.6	11.1	15.8	0.9	7.5	100.0	2,522
Uganda 2006	37.1	5.5	16.4	9.7	19.7	2.2	9.4	100.0	4,134
Uganda 2011	38.1	7.4	13.7	10.1	20.1	2.4	8.1	100.0	3,979
Zambia 2007	34.2	6.1	30.1	5.8	17.7	2.0	4.2	100.0	1,688
Zambia 2013-14	41.3	4.0	28.0	3.8	18.9	1.4	2.5	100.0	3,991

${ }^{1}$ For 12 surveys, "symptoms of ARI" is defined using a less specific definition (having a cough with rapid breathing, rather than having a cough with rapid breathing that is chest-related), because these surveys did not collect information on whether the child's rapid breathing was chest-related.

2.2. Analytic Strategy

The analysis is primarily descriptive. First, we describe the current landscape of care seeking in MCH priority countries, and the differentials by household wealth and place of residence. The confidence intervals around point estimates are adjusted for the DHS sample design.

Second, we examine temporal trends in levels ${ }^{3}$ of care seeking from public sources of care, private sources of care, and any source of care between the two most recent DHS surveys. Logit regression tested if the levels of care seeking changed significantly between surveys.

Third, we examine trends over time in equity (between children in rural versus urban households, and between children in the poorest versus wealthiest quintiles of household wealth). Trends in care seeking from public sources and from private sources are presented for rural children and for children in the poorest households in Figures 24-40. In these figures, bubble size represents the percentage point difference in care seeking coverage between the disadvantaged (rural children and children in the poorest households) and advantaged groups (urban and children in the wealthiest households).

To test whether the differential in care seeking between children in rural versus urban households changed significantly between surveys, logit regression models were run on the two combined surveys with an indicator for survey year, urban/rural residence, and an interaction term between the two. A significant interaction term indicates that the change in care seeking over time differed significantly between children in rural versus urban households. Similarly, logit regression models tested whether the trend in care seeking over time was different between children in the poorest and wealthiest quintiles, with children in the middle three wealth quintiles removed.

Fourth, in two MCH priority countries (Liberia and Nepal) where subnational USAID-funded interventions were implemented to promote appropriate care seeking for childhood illness, logit regression examined whether improvements in care seeking behavior between surveys were significantly greater in intervention catchment areas than in non-intervention areas.

Finally, to assess the appropriateness of care that children received during the study period, we compared indicators of appropriate care (described in detail below) for children in study countries who received care from private sources, public sources, and from any source. All analyses were conducted with STATA 13. STATA svy commands generated robust standard error estimates that incorporated the DHS complex sample design.

2.3. Definitions of Indicators

2.3.1. Place of treatment

Indicators for place of treatment are based on two standard DHS interview questions asked of female respondents who reported that their child under age 5 had an illness in the two weeks preceding the survey. These women were asked "Did you seek advice or treatment for the illness from any source?" and, if yes, "Where did you seek advice or treatment?" The women were then asked the question "Anywhere else?" to identify all sources of care. These questions were asked one time for women who reported that their child had either fever or cough, and separately for respondents who reported their child had diarrhea.

[^2]The majority of tables and figures in this report categorize care seeking into four groups: public sources of care, private sources of care, pharmacy only, and any other source. Some tables and figures also use a summary indicator to identify children who received any care outside the home for a recent illness. The place of treatment indicators are defined below:

Public sources of care include a public hospital, health center, health post, mobile clinic, community health worker, or any other public sector source.

Private sources of care include a private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, or other private sector source.

Pharmacy only indicates children for whom care was sought only from a pharmacy.
Other sources include a market or informal shop, traditional healer or other non-allopathic sources, friend, relative, or any other source of care sought outside the home.

Any care includes all sources of care included in the four summary groups defined above.
With the exception of pharmacies, care for a child that is sought from multiple sources (i.e., from both a public and private facility) contributes to both categories. However, in some settings, pharmacies are used as a primary source of advice and treatment rather than a place for filling a prescription based on advice from another category of provider. To differentiate between pharmacy as a primary source of care and as a secondary source of medication, the analyses restrict this category to children for whom care was sought only from a pharmacy.

Annex tables provide more detailed information about where children were taken for care for each illness. These tables provide the percentage of children who were taken to a public hospital, public peripheral health facility (health center, health post, mobile clinic, or other public sector care), private clinic or clinician (private hospital, doctor, nurse, mobile clinic, or other private sector care), public community health worker, private community health worker, religious or NGO facility, pharmacy, market, informal market/shop, non-allopathic source of care (traditional healer), or any other source outside the home (friend, relative, other) disaggregated by place of residence (Annex Tables A1-A3), and by household wealth (Annex Tables A4-A6). Unless otherwise specified, the child contributes to multiple categories if care was sought from multiple sources.

2.3.2. Background characteristics

Place of residence. This variable identifies whether the household in which the child's mother was interviewed is in an urban or rural location. The DHS uses the prevailing definitions of urban and rural residence in each country. Children in urban locations are generally expected to have better access to care and reduced exposure to some infections. However, the benefits of an urban residence depend on the economic resources of the household and community. Children in urban slums, for example, are particularly vulnerable to childhood illness because of overcrowding, unhygienic surroundings, poverty, and the absence of basic health infrastructure (Fernandez, Mondkar, and Mathai 2003; Mutisya et al. 2010).

Household wealth quintile. The standard DHS wealth index uses household-level data on assets, services, and amenities to rank households according to their level of wealth. The survey population in each country was divided into fifths from poorest to wealthiest, based on the distribution of wealth index scores. Caregivers in poorer households are expected to face more barriers to accessing care for their sick children, who are expected to be more exposed and vulnerable to some infections (UNICEF 2012).

2.3.3. Indicators of appropriate care

Fever

The percentage of children who had a finger or heel stick for malaria testing, among children under age 5 with fever in the last two weeks. In DHS surveys conducted since roughly 2008, respondents who indicated that a child had fever in the two preceding weeks were asked: "At any time during the illness, did the child have blood taken from his/her finger or heel for testing?" We examined the percentage of children who were tested, among children with recent fever for whom care was sought from a public source, private source, and any source. This standard Roll Back Malaria Partnership (RBM) indicator is a proxy measure of the extent to which children with fever obtain a parasitological diagnosis when they present at a health facility. Since most malaria endemic countries now have policies that require universal diagnostic testing for malaria before treatment, this is an important measure of the appropriateness of care (MEASURE Evaluation et al.2013).

The percentage of children who received ACT, among children under age 5 with fever in the last two weeks who received any antimalarial drugs. For each child who had a fever or cough in the two weeks preceding the survey, DHS respondents are asked: "At any time during the illness, did the child take any drugs for the illness?" and, if yes, "What drugs did the child take?" Respondents are asked the question "Any other drugs?" to identify all drugs given to the child. This indicator is calculated separately among children with recent fever for whom care was sought from any public source, private source, and any source. This standard RBM indicator measures the extent to which ACT (where ACT is the recommended first-line treatment for uncomplicated malaria) is being used instead of another antimalarial option. This assumes that an appropriate diagnosis was made. The indicator is a measure of the appropriateness of treatment (MEASURE Evaluation et al. 2013). Ideally, in surveys conducted since the inception of policies that recommend ACT as first-line antimalarial treatment and in which Plasmodium vivax infections are uncommon, ACT should represent almost all antimalarial treatment.

The percentage of children who received first-line antimalarial therapy, among children under age 5 with fever in the last two weeks who received any antimalarial drugs. Much like the previous indicator, this outcome is intended to assess the appropriateness of treatment that follows a correct diagnosis of malaria. Given that recommended treatments for malaria have changed over the course of the study period, two indicators are needed for this outcome. To include surveys from the earlier part of the study period when ACT may not have been a treatment option, the prevailing first-line antimalarial is included. Ideally, all children who are given an antimalarial should receive a first-line antimalarial treatment.

Diarrhea

The percentage of children who were given ORS, among children under age 5 with diarrhea in the last two weeks. For each child who had diarrhea in the two weeks preceding the survey, DHS respondents are asked: "Was he/she given any of the following to drink at any time since he/she started having the diarrhea: (a) A fluid made from a special packet called [local name for ORS packet]? (b) A pre-packaged ORS liquid [in countries that have this type of ORS] (c) A government-recommended homemade fluid?" and "What (else) was given to treat the diarrhea?" Interviewers are required to probe to record all treatments given to the child. ORS has been the primary treatment for children's diarrhea since the 1980s and is known to reduce diarrhea mortality (WHO 2005). This standard indicator, which measures the extent to which ORS is being used to treat diarrhea, is a measure of the appropriateness of treatment. Ideally, all children with diarrhea should be treated with ORS.

The percentage of children who received ORS with zinc, among children under age 5 with diarrhea in the last two weeks. Since 2004, WHO and UNICEF have recommended the use of zinc supplementation for 10-14 days along with an updated ORS formula with reduced levels of glucose and salt to treat children's diarrhea (WHO 2005). This indicator is based on the same open-ended question described above: "What (else) was given to treat the diarrhea?" The indicator, which measures the extent to which ORS and zinc are being used to treat diarrhea, is thus a measure of the appropriateness of treatment. Ideally, all children with diarrhea should be treated with both ORS and zinc.

The percentage of children who received antibiotics, among children under age 5 with non-bloody diarrhea in the last two weeks. Unlike the indicators above, which describe appropriate care, this indicator measures inappropriate care, in which antibiotics are given to children with non-bloody diarrhea. The indicator is based on the same DHS question about what drugs the child was given, but is restricted to children with non-bloody diarrhea.

2.4. Limitations

The study has several limitations. The study relies heavily on the respondent's recall of the care her children received for recent illnesses. Such information is subject to recall bias, reporting bias, and misclassification. For example, a respondent may not accurately recall the type of medication her child was given for fever, or she may misclassify the type of facility to which her child was brought (e.g. incorrectly identify a private religious or non-profit clinic as a public clinic because it does not charge fees). She may not know where the child was taken if another person took the child to the facility. A respondent whose child had severe disease, co-morbidities, or unsuccessful treatment may also differentially recall and report on her care seeking behavior. Given that the period of recall is only two weeks, we expect most types of bias to be minimal.

As mentioned, we are interested in care seeking for malaria, pneumonia, and diarrhea but are limited in our ability to identify children with clinical or parasitological diagnoses. Instead, we study patterns of care seeking among all children with recent fever, symptoms of ARI, and diarrhea. A large number of children with symptoms of ARI do not have pneumonia, and some children with fever do not have malaria. Thus, some children in our study may not have needed the care or medical treatment we are examining, or would like to examine. Such discrepancies are particularly problematic for children with symptoms of ARI. While antibiotics are the recommended treatment for pneumonia, antibiotic treatment is not necessary for children with some other acute respiratory infections such as the common cold. Since we cannot distinguish children with recent pneumonia from children with other acute respiratory infections, we cannot evaluate the appropriateness of the treatment provided for these children.

In order to examine the appropriateness of care for fever and diarrhea, we assume that the child obtained drugs or treatment from the source of care identified. However, this may not have been the case. When children sought care from both public and private sources, we attribute the drug treatment given to the child to both sources, since we cannot identify the true source. This bias will dilute any genuine differences in the appropriateness of care received from public versus private sources.

Finally, the scope of the analysis is limited by the sample size. While we would like to examine patterns in appropriateness of care by children's background characteristics such as wealth, we could not do so because of the small number of children in the sample who had the symptoms and who sought care from the various providers.

3. Results

3.1. Current Care Seeking in USAID MCH Priority Countries

In this section we examine the most recent data on care seeking available for each MCH priority country. Figure 2 shows the percentage of children who received care from any source outside the home, among all children under age 5 who experienced any illness symptom (i.e., fever, symptoms of ARI, or diarrhea) in the two weeks preceding the interview. In Asian MCH priority countries, care seeking from any source ranged from 69 percent in Nepal to 87 percent in Indonesia while in African MCH priority countries, care seeking ranged from 33 percent in Ethiopia to 84 percent in Uganda. In Madagascar, Ethiopia, and Haiti, care outside the home was sought for less than half of children under age 5 with recent illness.

Figure 2. Percentage of children who received care from any source for recent illness, USAID MCH priority countries

Note: The figure presents the prevalence of care seeking from any source among children with reported fever, diarrhea, or symptoms of ARI in the two weeks preceding the survey. Here and in all subsequent figures, LAC refers to Latin America and the Caribbean.

Figures 3, 4, and 5 highlight the percentage of children who received care from any public source, private source, a pharmacy only, and from any other source for children with recent fever, recent symptoms of ARI, and recent diarrhea. Since children can contribute to multiple categories if care was sought from multiple sources, the sum of the percentages across the four groupings in most cases yields a slightly larger number than the total percentage of children for whom care was sought.

Care seeking from public sources is consistently more prevalent in African MCH priority countries than in Asian MCH priority countries (see Figures 3-5). For fever, for example, care seeking from public sources in Africa ranges from 17 percent of children with recent fever in Ethiopia to 68 percent of children with recent fever in Zambia, while in Asian MCH priority countries care seeking from public sources ranges from 9 percent in Pakistan and Bangladesh to 25 percent in Indonesia (see Figure 3).

In contrast, care seeking from private sources is consistently more prevalent in Asian MCH priority countries than in African MCH priority countries. In Asia, care seeking from private sources ranges from 24 percent of children with recent fever in Nepal to 71 percent in Pakistan, while in African MCH priority countries the prevalence of care seeking from private sources is well under 20 percent in all countries
with the exception of Uganda (48 percent). Use of the private sector is less than 5 percent in Zambia, Mozambique, Mali, and Rwanda. Appendix Figures 1-3 highlight the public-private differential.

The use of pharmacies as the sole source of care for children's illness ranges widely across MCH priority countries. In nine countries, a pharmacy was the only source of advice or treatment for a recent fever for less than 5 percent of children, compared with 10 percent to 20 percent in six countries, 28 percent in Nepal, and 35 percent in Nigeria. In these cases, the pharmacy was the source of advice or treatment, although this does not necessarily mean that the child was taken to the pharmacy for treatment. The caregiver could have visited the pharmacy, described the child's symptoms, and received medication.

Other sources of care include a market/informal shop, traditional healer or other non-allopathic sources, friends, relatives, and other sources. In three countries-Indonesia, Liberia, and Mali-more than 10 percent of children with recent fever were taken to one of these sources of care.

The patterns of care seeking for children's illnesses are quite similar across the three illnesses (see Figures $3-5)$. For all three, Uganda is the only African country in which care seeking from private facilities is more prevalent than from public facilities. Nigeria is noteworthy for its widespread use of pharmacies as the single source of care for children's illness, and Mali for its use of other sources of care.

Figure 3. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent fever, USAID MCH priority countries

Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care.

Figure 4. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent symptoms of ARI, USAID MCH priority countries

Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Children for whom care was sought from multiple sources contribute to each source's total, so the total percentage may exceed the percentage of children who received any care.

Figure 5. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent diarrhea, USAID MCH priority countries

Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Children for whom care was sought from multiple sources contribute to each source's total, so the total percentage may exceed the percentage of children who received any care.

3.1.1. Place of residence and care seeking

Figures 6, 7, and 8 present patterns in care seeking for fever, symptoms of ARI, and diarrhea, respectively, disaggregated by place of residence. There is strikingly little variation in the patterns of care seeking between children in urban and rural households.

In the majority of countries there is little difference in the level of care seeking from public sources for fever between urban and rural households (see Figure 6). In three countries-Mozambique, Senegal, and Mali-the level of care seeking from public sources for fever is higher for children in urban households
compared with rural households, and the confidence intervals between estimates do not overlap ${ }^{4}$ (see Appendix Table A7 for the confidence intervals). In contrast, the level of care seeking from public sources in DR Congo is higher among children in rural households compared with urban households, with non-overlapping 95 percent confidence intervals.

There is a more consistent differential between children in urban and rural households in the level of care seeking from private sources. In 13 countries-more than half of the MCH priority countries-the level of care seeking for fever from private sources is higher in urban areas than in rural areas, with nonoverlapping confidence intervals.

The percentage of children with recent fever for whom care was sought only from a pharmacy is similar in urban and rural households. However, the level of care seeking from a pharmacy in Indonesia, Senegal, and Mali is higher among children in urban areas than in rural areas, with non-overlapping confidence intervals.

Levels of care seeking for fever from other sources are approximately the same for children in urban and rural households. However, in Indonesia, Nigeria, Mozambique, and Madagascar, care seeking for fever from other sources is higher among children in rural households, with non-overlapping confidence intervals.

Figure 6. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent fever by place of residence, USAID MCH priority countries

Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

The general patterns of care seeking described for children with recent fever also apply to care seeking for symptoms of ARI and diarrhea, as depicted in Figures 7 and 8. The confidence intervals around estimates are available in Appendix Table A7.

[^3]Figure 7. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent symptoms of ARI by place of residence, USAID MCH priority countries

Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy Only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care. Please refer to Table 1 for a listing of DHS country codes and corresponding country names. Care seeking estimates for urban areas in the Ghana 2008 DHS and the Mali 2012-13 DHS are based on 25-49 unweighted cases and should be interpreted with caution.

Figure 8. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent diarrhea by place of residence, USAID MCH priority countries

Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

3.1.2. Household wealth and care seeking

Interesting patterns emerge when we examine care seeking by household wealth quintile. Figure 9 shows patterns in care seeking for fever across levels of household wealth, while Figures 10 and 11 show these patterns for symptoms of ARI and diarrhea, respectively. The patterns of care seeking for symptoms of ARI and diarrhea across levels of household wealth are very similar to those described for fever.

Figure 9 shows that in nearly all MCH priority countries, the use of private sources of care for fever increases incrementally with increasing household wealth. The association between wealth and the use of public sources of care is more varied. In Indonesia, Nepal, Uganda, and Liberia, for example, the use of public facilities is negatively associated with household wealth. In these countries, as the level of wealth
increases, care seeking from public sources decreases. In other countries such as Mozambique, Senegal, Mali, Rwanda, and Ethiopia, care seeking from public sources for fever increases with increasing household wealth. In Pakistan, Bangladesh, and Tanzania, care seeking from public sources is similar across all wealth quintiles.

In most countries, there is no clear association between household wealth and the use of a pharmacy as the only source of care for fever. However, in DR Congo, pharmacy use increases with increasing household wealth. Finally, there is a negative association between household wealth and the use of other sources of care in Indonesia, Liberia, Nigeria, and Mali. The use of other sources of care is highest among children in the poorest households. Appendix Table A8 shows the coverage estimates included in Figures 9,10 , and 11 , with confidence intervals.

Figure 9. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent fever by wealth quintile, USAID MCH priority countries

Note: Public sources include public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

Figure 10. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent symptoms of ARI by wealth quintile, USAID MCH priority countries

[^4]Figure 11. Percentage of children who received care from public, private, pharmacy, and other sources among children with recent diarrhea by wealth quintile, USAID MCH priority countries

Note: Public sources include public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care. Care seeking estimates for children in the wealthiest quintile in Ghana 2008 are based on 25-49 unweighted cases and should be interpreted with caution. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

3.1.3. Co-occurrence of symptoms and care seeking

Figure 12 shows the prevalence of any care seeking for fever, by co-occurrence with other symptoms. In four of the five Asian countries-Indonesia, Pakistan, Bangladesh, and India-levels of care seeking are higher for children who had both fever and symptoms of ARI than for children who had only fever, with non-overlapping confidence intervals between estimates. In most African countries a similar pattern is found, but it is weaker. The confidence intervals overlap in all but four of 14 African countries, and in Haiti. Having diarrhea in addition to fever did not increase the likelihood of care seeking. In five of the 21 countries studied-Pakistan, Malawi, Nigeria, Kenya, and Rwanda-care seeking was higher for children with all three illness symptoms than for children who had only fever, with no overlap in the confidence intervals.

Figure 12. Percentage of children who received care from any source among children with recent fever, by the co-occurrence of other illness symptoms, USAID MCH priority countries

[^5]Figure 13 shows the prevalence of any care seeking for symptoms of ARI, by co-occurrence with other symptoms. Compared with children who experienced only symptoms of ARI, children who experienced both ARI symptoms and fever were more likely to have received care in 11 of the 21 countries with no overlap in the confidence intervals. Having diarrhea in addition to symptoms of ARI did not increase the likelihood of care seeking, and the combination of all three illnesses did not increase the likelihood of care seeking beyond the likelihood among children with symptoms of ARI and fever.

Figure 13. Percentage of children who received care from any source among children with recent symptoms of ARI, by the co-occurrence of other illness symptoms, USAID MCH priority countries

Note: Care seeking estimates for children with all three illnesses in Bangladesh 2011 and Ghana 2008, and for children with symptoms of ARI and fever only in Mali 2012-13 are based on 25-49 unweighted cases and should be interpreted with caution. Care seeking estimates for children with all three illnesses in Mali 2012-13 are based on fewer than 25 cases and are not shown. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

Figure 14 shows the prevalence of any care seeking for diarrhea, by co-occurrence with other symptoms. Compared with children who experienced only diarrhea, children who experienced both diarrhea and fever were more likely to have received any care, with non-overlapping confidence intervals in 11 of the 21 countries. Having symptoms of ARI in addition to diarrhea did not increase the likelihood of care seeking, and the combination of all three illnesses did not increase the likelihood of care seeking beyond the likelihood among children with diarrhea and fever.

Figure 14. Percentage of children who received care from any source among children with recent diarrhea, by the co-occurrence of other illness symptoms, USAID MCH priority countries

[^6]
3.2. Trends in Care Seeking

3.2.1. National trends in care seeking for fever

In this section we examine trends in care seeking among children under age 5 between the most recent two DHS surveys in the 20 MCH priority countries with two recent surveys available. Figures 15 , 16, and 17 present trends in care seeking for fever from any source, public sources, and private sources. Logit regression models were run to determine whether the change in coverage between surveys was statistically significant. In the figures, a solid line indicates a significant change between surveys, while a dotted line indicates no change. Detailed regression results are not shown.

Figure 15 presents the trend in coverage of care seeking from any source for recent fever. In 11 of the 20 countries examined, there was no change in the level of care seeking from any source between the two most recent surveys. In four countries-Ethiopia, Nepal, Nigeria, and Zambia-there was a significant increase in coverage, while in five countries-Kenya, Mali, Malawi, Rwanda, and Tanzania-there was a significant decrease.

Figure 15. Trend in coverage of care seeking from any source among children under age 5 with fever in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

Figure 16 presents the trend between surveys in coverage of care seeking from public sources for fever. In 14 of the 20 countries there was no change in this level. In six African countries-Kenya, Malawi, Mozambique, Rwanda, Uganda, and Zambia-there was a significant increase in coverage. No significant decreases in care seeking from public sources for fever were observed in any country.

Figure 16. Trend in coverage of care seeking from public sources among children under age 5 with fever in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

Figure 17 shows the trend in coverage of care seeking from private sources for fever. In seven African countries there was a significant decrease in care seeking from private sources for fever. In six countries-Ethiopia, Malawi, and four Asian countries-there was a significant increase in care seeking from private sources for fever.

Figure 17. Trend in coverage of care seeking from private sources among children under age 5 with fever in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

3.2.2. \quad National trends in care seeking for symptoms of ARI

For symptoms of ARI, we examine the trend in care seeking in the eight countries with complete information on symptoms of ARI in both DHS surveys. In three of the countries-Nigeria, Nepal, and Haiti-care seeking from any source for symptoms of ARI increased significantly (see Figure 18). No significant decreases in care seeking for symptoms of ARI were observed in any country.

Figure 18. Trend in coverage of care seeking from any source among children under age 5 with symptoms of ARI in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). The figure is restricted to USAID MCH priority countries with complete information on symptoms of ARI in two surveys. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

In seven of the eight countries there was no change between surveys in the coverage of care seeking from public sources for symptoms of ARI (see Figure 19). In Liberia, the level of care seeking from public sources for symptoms of ARI decreased significantly.

Figure 19. Trend in coverage of care seeking from public sources among children under age 5 with symptoms of ARI in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). The figure is restricted to USAID MCH priority countries with complete information on symptoms of ARI. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

In two of the eight countries-Uganda and Bangladesh-there was a significant increase in care seeking from private sources for symptoms of ARI (see Figure 20). There was no change in the remaining six countries.

Figure 20. Trend in coverage of care seeking from private sources among children under age 5 with symptoms of ARI in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). The figure is restricted to USAID MCH priority countries with complete information on symptoms of ARI. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

3.2.3. National trends in care seeking for diarrhea

As Figure 21 shows, there have been substantial improvements in recent years in the coverage of care seeking for diarrhea, with statistically significant increases in care seeking from any source in 13 of the 20 countries studied. No significant decreases in care seeking for diarrhea were observed in any country.

Figure 21. Trend in coverage of care seeking from any source among children under age 5 with diarrhea in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

Figure 22 highlights the trend in care seeking from public sources for children’s diarrhea. Coverage increased significantly in nine of 20 countries, all in Africa. There were no significant decreases in coverage in any country.

Figure 22. Trend in coverage of care seeking from public sources among children under age 5 with diarrhea in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

Figure 23 shows the trend in care seeking from private sources for children's diarrhea. In seven of 20 countries-DR Congo, Ethiopia, Malawi and all four Asian countries-there was a statistically significant increase in coverage. Bangladesh showed the greatest increase in coverage, from 11 percent in 2007 to 41 percent in 2011. There were significant decreases in the level of care seeking from private sources in Liberia, Nigeria, Tanzania, and Zambia. In the other nine countries, there was no significant change in the level of care seeking from private sources for children's diarrhea.

Figure 23. Trend in coverage of care seeking from private sources among children under age 5 with diarrhea in the two weeks preceding the survey, USAID MCH priority countries

Note: A solid line indicates a significant change between surveys, while a dotted line indicates no significant change (detailed regression results not shown). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

3.3. Equity in Recent Trends in Care Seeking

There is a consensus that to have the greatest impact on child survival and wellness, interventions for childhood illness should focus on the poorest, most vulnerable children (UNICEF 2012). In recent years, many countries, health ministries, and child health programs have focused on reaching these vulnerable groups with strategies such as IMCI, iCCM, and private-public partnerships. Policymakers could benefit from knowing the extent to which these efforts have raised the level of care seeking in vulnerable populations, and narrowed the equity gap between children in rural compared with urban areas, and between children in the poorest households compared with the wealthiest.

To address these questions, we examine recent trends in care seeking specifically among children in rural households and among children in households in the poorest wealth quintile. Figures 24-32 depict trends in care seeking from public and private sources among rural children. A solid line indicates a significant change in care seeking coverage between surveys, while a dotted line indicates no change. The bubble size represents the percentage point difference in care seeking between rural and urban children as an indicator of equity. Larger bubble size indicates greater inequity between rural and urban children. Bubbles in a solid color identify a rural disadvantage, while clear bubbles identify an advantage among rural children. An "E" identifies countries with a significant change in inequity between surveys. Similarly, Figures 33-40 present trend lines for care seeking from public and private sources among the children in the poorest households compared with children in households in the wealthiest quintile. Appendix Figures A4-A9 present trends in care seeking from any source among rural children and among children in households in the poorest quintile.

3.3.1. Trends in care seeking among children in rural households

Fever

Similar to the national trend, in 13 of 20 countries there was no change in the percentage of rural children for whom care was sought from a public source between surveys (see Appendix Table A9 for detailed results). Figure 24 highlights the trend in the seven countries with a significant change in either coverage or equity between surveys. In those seven countries, all in Africa, care seeking from public sources increased between surveys for rural children.

As indicated by the bubble color and size, in all surveys except Uganda 2012 and Liberia 2013, coverage of care seeking was lower among rural than urban children (see Figure 24, where an increasing differential is indicated by increasing colored bubble size). In Malawi and Liberia, the rural-urban equity gap narrowed significantly between surveys (identified by an "E" in Figure 24). This indicated that the increase in care seeking from public sources was more concentrated among rural children. In Liberia, coverage in rural areas appears to have actually surpassed coverage in urban areas.

Figure 24. Trend in coverage of public care seeking for fever among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries

Since the patterns in care seeking from private sources are quite different in Asia and Africa, the trends are presented separately in Figures 25 and 26, respectively. In all four Asian countries with two recent surveys available, there was a significant increase in care seeking from private sources for fever (see Figure 25). In Bangladesh, the rural-urban equity gap narrowed significantly due to a dramatic increase in care seeking from private sources among children in rural households.

Figure 25. Trend in coverage of private care seeking for fever among children in rural households and rural-urban gap in care seeking equity, USAID Asian MCH priority countries and Haiti

As Figure 26 shows, the pattern is very different in the 15 African MCH priority countries. Eight countries showed a significant decline in coverage of care seeking from private sources for fever among children in rural households. Two countries, Malawi and Ethiopia, showed a significant increase in coverage among rural children. In the remaining five countries, there was no change between the two surveys.

The rural-urban equity gap in care seeking from private sources for fever did not narrow in any African country. In Zambia, Liberia, and Uganda, the gap widened significantly. In Zambia and Liberia, the decline in coverage of care seeking from private sources was more concentrated among rural children. In Uganda, by contrast, the increase in use of private sources of care for fever was more concentrated among urban children.

Figure 26. Trend in coverage of private care seeking for fever among children in rural households and rural-urban gap in care seeking equity, African USAID MCH priority countries

Note: Due to low levels of private care seeking in African countries, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent coverage.

Symptoms of ARI

When we examine care seeking from public sources for symptoms of ARI among children in rural households, we find no evidence of change in coverage between the two surveys in any of the eight countries with complete information to identify children with symptoms of ARI. In Bangladesh and Liberia, however, there was a significant reduction in the rural-urban equity gap (see Figure 27). In both countries, unfortunately, this was due to a significant decline in care seeking from public sources among urban children, along with no change in coverage among rural children (see Appendix Table A9 for detailed results).

Figure 27. Trend in coverage of public care seeking for symptoms of ARI among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries

We also examine care seeking from private sources for symptoms of ARI among children in rural households. In both Nepal and Bangladesh, the percentage of rural children for whom care was sought from a private provider increased significantly, although there were no significant changes in the ruralurban equity gap (see Figure 28).

Figure 28. Trend in coverage of private care seeking for symptoms of ARI among children in rural households and rural-urban gap in care seeking equity, USAID Asian MCH priority countries and Haiti

Three of the six African MCH priority countries showed a significant decline in the percentage of rural children for whom care was sought from a private provider for symptoms of ARI (see Figure 29). In all three countries, the decline in coverage was disproportionately concentrated among rural children, thus leading to an even greater rural disadvantage.

Figure 29. Trend in coverage of private care seeking for symptoms of ARI among children in rural households and rural-urban gap in care seeking equity, USAID African MCH priority countries

Survey Year
Note: Due to low levels of private care seeking in African countries, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent
coverage.

Diarrhea

The trend in coverage of care seeking from public sources for diarrhea among children in rural households closely parallels the overall national trends, with significant increases in coverage in 10 of the 20 countries with data (see Figure 30). In seven of these countries, according to the most recent survey, care seeking from public sources was higher among rural households than urban households. In three countries-Ghana, DR Congo, and Liberia-there was a significant increase in the rural-urban equity gap between surveys. This favored rural areas where the increase in coverage was disproportionately concentrated.

Figure 30. Trend in coverage of public care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries

In four Asian study countries, there was a significant increase between surveys in the percentage of rural children for whom care was sought from a private provider for diarrhea (see Figure 31). In Indonesia, there was a significant change in the rural-urban equity gap, but favoring rural areas where the increase in coverage was disproportionately concentrated.

Figure 31. Trend in coverage of private care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, Asian USAID MCH priority countries and Haiti

In the majority of African countries, there was no significant change between surveys in the percentage of rural children for whom care was sought from a private provider for diarrhea. In Liberia, Zambia, and Tanzania, the percentage decreased while in Malawi and Ethiopia the percentage increased (see Figure 32).

In three African countries-Liberia, Zambia, and DR Congo-there was a significant change in the ruralurban equity gap between surveys with an increase in the rural disadvantage. In Liberia and Zambia, a decline in use of private sources of care was concentrated among rural children, while in DR Congo an increase in use of private sources of care was concentrated among urban children.

Figure 32. Trend in coverage of private care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, African USAID MCH priority countries

Note: Due to low levels of private care seeking in African countries, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent coverage.

3.3.2. Trends in care seeking among children in households in the poorest wealth quintile

Fever

In 13 countries, there was no change between surveys in the level of care seeking for fever from public sources among children in the poorest wealth quintile (see Appendix A10 for detailed results). Figure 33 presents the trend in the percentage of poorest-quintile children for whom care for fever was sought from any source for the seven countries with a significant change in coverage or equity. All seven countries showed a significant increase between surveys in care seeking from public sources among children in the poorest wealth quintile.

The level of equity in coverage of care seeking between children in the poorest and wealthiest wealth quintiles changed significantly in two countries, Liberia and Indonesia. In both, the increase in care seeking was disproportionately concentrated in poorest-quintile children (see Appendix Table A10). According to the most recent survey, coverage of care seeking from public sources in both countries was higher among the children in the poorest households than among children in the wealthiest households.

Figure 33. Trend in coverage of public care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

In two of the four Asian countries studied-Bangladesh and Indonesia-the percentage of poorestquintile children for whom care was sought from a private provider increased significantly between surveys. The wealth equity gap in care seeking decreased significantly in Bangladesh (see Figure 34).

Figure 34. Trend in coverage of private care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, Asian USAID MCH priority countries and Haiti

In contrast, in six of the seven African countries with a significant change between surveys, there was a decline in the percentage of poorest-quintile children for whom care was sought from a private provider for fever (see Figure 35). Only in Malawi was there an increase in the percentage of poorest-quintile children for whom care for fever was sought from a private provider.

In three countries-Senegal, Liberia, and Zambia-there was a significant increase in the disadvantage among poor children between surveys. This was driven by decreases in the level of care seeking from private sources for fever among poorest-quintile children.

Figure 35. Trend in coverage of private care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, African USAID MCH priority countries

Note: Due to low levels of private care seeking in African countries, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent coverage.

Symptoms of ARI

Among children in the poorest wealth quintile in the eight countries with complete information to identify children with symptoms of ARI, care seeking from public sources for symptoms of ARI increased significantly in Nigeria and Haiti but did not change in the other six countries (see Figure 36).

In Liberia, there was a significant change in the wealth equity gap, with higher levels of care seeking from public sources among poorest-quintile children in the most recent survey (see Figure 36). This shift was driven by a significant decline in care seeking from public sources among children in the wealthiest quintile (see Appendix Table A10).

Figure 36. Trend in coverage of public care seeking for symptoms of ARI among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

Survey Year
Note: For the following countries, care seeking estimates for children in the wealthiest quintile are based on 25-49 unweighted cases and should be interpreted with caution: Liberia 2007, Liberia 2013, Nigeria 2008, Nigeria 2013, Haiti 2005-6.

Among children in the poorest wealth quintile, the level of care seeking from private sources changed significantly in two of the eight countries with complete information to identify children with symptoms of ARI (see Figure 37). In Bangladesh, the percentage of poorest-quintile children for whom care was sought from a private provider increased significantly between surveys, from 13 percent to 42 percent. In contrast, in Zambia the coverage of care seeking from private sources for symptoms of ARI dropped significantly between surveys for children in the poorest quintile, from 13 percent to 2 percent. In Zambia, the decrease in coverage of care seeking from private sources among poorest-quintile children coincided with a significant increase in the wealth equity gap.

Figure 37. Trend in coverage of private care seeking for symptoms of ARI among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

Survey Year
Note: For the following countries, care seeking estimates for children in the wealthiest quintile are based on 25-49 unweighted cases and should be interpreted with caution: Bangladesh 2007, Zambia 2007.

Diarrhea

Among children in the poorest wealth quintile, there was a significant increase in coverage of care seeking for diarrhea from public sources in 10 of the 20 countries (see Figure 38). In seven of those countries, according to the most recent survey, the level of care seeking from public sources was higher in poorest-quintile households than in wealthiest-quintile households.

In Madagascar, Liberia, and DR Congo, the change in wealth equity in care seeking from public sources between surveys was statistically significant. In Liberia and DR Congo, the change resulted in higher coverage among the children in the poorest households relative to the wealthiest households; in Madagascar, the disadvantage among the children from the poorest households grew, with the increase in coverage of care seeking from public sources disproportionately concentrated in children from the wealthiest households.

Figure 38. Trend in coverage of public care seeking for diarrhea among children in poorestquintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

Note: For Ghana 2008, care seeking estimates for children in the wealthiest quintile are based on 25-49 unweighted cases and should be interpreted with caution.

In three Asian MCH priority countries, there was a significant increase between surveys in the percentage of poorest-quintile children for whom care was sought from a private provider for diarrhea (see Figure 39).

In Indonesia and Nepal, there was a significant change in wealth equity between surveys. In Indonesia, there was a significant narrowing of the wealth equity gap along with significant improvement in coverage among children in the poorest households; in Nepal, there was a significant increase in the wealth equity gap, despite a small but significant increase in use of private sources of care among children in poorest-quintile households.

Figure 39. Trend in coverage of private care seeking for diarrhea among children in poorestquintile households and poorest-wealthiest quintile gap in care seeking equity, Asian USAID MCH priority countries and Haiti

In most African MCH priority countries (11 of 15), there was no significant change between surveys in the percentage of poorest-quintile children for whom care was sought from a private provider for diarrhea. In both Malawi and Ethiopia, the percentage increased while in Tanzania and Nigeria, the percentage decreased (see Figure 40).

In two African countries, Mali and DR Congo, there was a significant change in wealth equity between surveys. In Mali, the level of wealth equity improved significantly, while in DR Congo the advantage among the wealthiest-quintile children grew.

Figure 40. Trend in coverage of private care seeking for diarrhea among children in poorestquintile households and poorest-wealthiest quintile gap in care seeking equity, African USAID MCH priority countries

Legend
Bubble size - Represents absolute percentage point difference in care seeking between children in the poorest and wealthiest quintile households Solid bubble - Indicates higher coverage among children in the wealthiest-quintile households

Clear bubble - Indicates higher coverage among children in the poorest-quintile households
E-Indicates a significant change in the wealth gap between surveys
-- - (dotted line) Indicates no significant change in the level of care seeking among children in the poorest wealth quintile between surveys

- (solid line) Indicates a significant change in the level of care seeking among children in the poorest quintile between surveys

Note: Due to low levels of private care seeking in African countries, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent coverage.

3.4. Country Case Studies: Have Child Health Interventions Helped?

To what extent can we attribute the observed trends in care seeking to intervention programs? Have community-based and other child health programs had a measureable impact on care seeking behavior? Since we cannot directly address these questions with cross-sectional data, we analyzed DHS data for ecological evidence of programmatic influence on care seeking. In this section we present two examples of subnational programs implemented during the study period. With DHS data, we identified the geographic areas covered and not covered by these programs, and compared changes in care seeking over time.

3.4.1. Diarrhea treatment in Nepal

In 2004, WHO and UNICEF revised their guidelines for the treatment of diarrhea in children under age 5 to include the use of zinc supplementation for 10-14 days, along with an updated ORS with reduced levels of glucose and salt (WHO 2005). Between 2005 and 2010, USAID funded the Social Marketing Plus for Diarrheal Disease Control: Point of Use Water Disinfection and Zinc Treatment (POUZN) project, which was implemented by Abt Associates in partnership with Population Services International (PSI). A central goal of this project was mobilizing the private sector to expand the use of zinc with ORS in the treatment of diarrhea in children. The POUZN project in Nepal began in January 2007 and was expanded to 30 of 75 districts by the project's end in September 2008 (Wang and MacDonald 2009).

The POUZN project identified and partnered with local manufacturers to ensure the availability of goodquality, affordable zinc tablets and to facilitate their distribution through private-sector channels. The POUZN project in Nepal used training materials, developed in partnership with the Ministry of Health and PSI, to train nearly 6,000 licensed private care providers across the 30 project districts and more than 2,000 public-sector care providers and volunteers in the three Kathmandu Valley districts. Training providers is believed to have an important impact on caregivers' behavior and children's treatment, since providers are often relied upon for treatment advice. The program also used multiple communication channels such as a national television campaign, which began in 2008, and a radio mass-media campaign, which began in 2007, to increase awareness of zinc as the correct treatment for diarrhea and to promote the use of zinc and ORS. More details of the project can be found in Wang and MacDonald (2009).

We analyzed the 2006 and 2011 Nepal DHS surveys to evaluate how trends in care seeking for children’s diarrhea in districts covered by the POUZN project compared with trends in care seeking in non-project districts. More specifically, we examined five indicators of care seeking: whether care was sought from any provider, any public provider, or any private provider, and whether the child received zinc or ORS. We compared absolute changes during the period in care seeking behavior between project districts and non-project districts (difference in differences). We then fitted logit regression models to test if the changes between the two groups were different after controlling for maternal, child, and household characteristics.

In Nepal, care seeking for diarrhea from any source increased significantly from 51 percent to 62 percent between the 2006 and 2011 surveys. There was also a significant increase in care seeking from any private source, from 6 percent to 15 percent. When we disaggregated the data to compare the trend in districts covered by the POUZN project with the trend in the remaining districts of Nepal, we found that the trends between 2006 and 2011 appeared similar across the two groups for all five indicators of interest (see Figures 41-45). Both groups showed significant increases in the coverage of care seeking from private sources and no change in the coverage of care seeking from public sources (see Figures 41 and 42). The increase in the use of ORS was not statistically significant in POUZN districts, but was significant in non-POUZN districts. Zinc use increased similarly and significantly in both groups.

Figure 41. Percentage of children with recent diarrhea for whom care was sought from a private source, Nepal 2006 and 2011 DHS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change.

Figure 43. Percentage of children with recent diarrhea for whom care was sought from any source, Nepal 2006 and 2011 DHS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change.

Figure 45. Percentage of children with recent diarrhea who were given zinc, Nepal 2006 and 2011 DHS

[^7]Figure 42. Percentage of children with recent diarrhea for whom care was sought from a public source, Nepal 2006 and 2011 DHS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change.

Figure 44. Percentage of children with recent diarrhea who were treated with ORS, Nepal 2006 and 2011 DHS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change. Due to low levels of ORS use, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent coverage.

For the five indicators, we found no evidence that the improvement in coverage was greater in districts covered by POUZN than in non-project districts (see Table 4).

Table 4. Care seeking for diarrhea for POUZN and non-POUZN districts in Nepal, 2006 and 2011 Nepal DHS

	Non-POUZN Districts			POUZN Districts			Difference in the differences	
	$\begin{gathered} 2006 \text { DHS } \\ \mathrm{N}=305 \end{gathered}$	$\begin{gathered} 2011 \text { DHS } \\ \mathrm{N}=318 \end{gathered}$	Change	$\begin{aligned} & 2006 \text { DHS } \\ & \mathrm{N}=328 \end{aligned}$	$\begin{gathered} 2011 \text { DHS } \\ \mathrm{N}=383 \end{gathered}$	Change		
	\%	\%	\%	\%	\%	\%	\%	Sig.
Any public care sought	21.8	25.3	3.5	19.6	22.9	3.3	-0.2	
Any private care sought	3.3	9.6	6.3	9.4	19.4	10.0	3.7	
Any care sought	47.0	57.9	10.9	54.1	65.6	11.5	0.6	
Child was given ORS	25.5	37.2	11.7	32.9	40.6	7.7	-4.0	
Child was given zinc	0.8	6.6	5.8	0.0	5.8	5.8	0.0	

Note: * indicates $\mathrm{p}<.05$; ** indicates $\mathrm{p}<.01$; *** indicates $\mathrm{p}<.001$.
As shown in Table 5, after adjusting for background characteristics of the child, household, and mother, we found no evidence that the improvement in care seeking for diarrhea was greater in project districts.

Table 5. Odds ratios for care seeking for children with recent diarrhea in POUZN Project Districts vs. non-project districts after adjusting for maternal, child, and household characteristics, Nepal 2006 and 2011 DHS

Outcome variable	Unadjusted OR	$\mathbf{9 5 \% ~ C I}$	Adjusted OR	$\mathbf{9 5 \%} \mathbf{C I}$
Any public care sought	1.012	$0.462-2.217$	0.937	$0.431-2.036$
Any private care sought	0.737	$0.242-2.238$	1.203	$0.381-3.797$
Any care sought	1.045	$0.529-2.063$	1.274	$0.642-2.528$
Child was given ORS	0.806	$0.413-1.572$	0.824	$0.417-1.628$
Child was given zinc	n/a	1,338		n / a
Observations			1,338	

Note: * indicates $\mathrm{p}<.05$; ** indicates $\mathrm{p}<.01$; *** indicates $\mathrm{p}<.001$. The adjusted model controls for place of residence, household wealth quintile, maternal age, maternal education, the mother's exposure to media, child's age, and the sex of child, as well as main effects for survey year and intervention coverage. Since at the time of the 2006 survey there was no zinc use in POUZN districts, the logit regression did not produce a coefficient that could be tested for significance. Using methods not shown, we were able to perform an approximate test of significance, and found no evidence that the increase in zinc use was greater in POUZN districts. Instead, POUZN districts had a lower increase in zinc use compared with non-POUZN districts. The difference was small but statistically significant.

Despite countrywide improvements in levels of care seeking, the two most recent DHS did not provide evidence that increases in project districts were greater than those in non-project districts. There are several possible explanations for this null finding. The first is related to the timing of the endline survey. Fieldwork in 2011 occurred several years after the end of the POUZN project in September 2008. According to a 2008 household survey conducted by the POUZN project, which was representative of 26 of the 30 POUZN districts, 15 percent of children with diarrhea in the past two weeks were treated with zinc (Wang and MacDonald 2009). According to the 2011 DHS, just 6 percent of children with diarrhea in the past two weeks in project districts were treated with zinc. It is possible that program effects on zinc use and diarrhea treatment peaked during and immediately after the project, but waned before the 2011 DHS. In addition, the discrepancy in zinc coverage between the 2008 POUZN survey and the 2011 DHS could be the result of differences in survey methodologies. In the POUZN project questionnaire, a visual aid was used to assist with the correct identification and classification of diarrhea treatments, while the DHS questionnaire asks the respondent to list all diarrhea treatments given to the child but provides no visual aids or direct questions about zinc. If the 2011 DHS survey underestimated zinc use in Nepal, this could dampen the observed intervention effect (MacDonald 2015). In addition, it is possible that using district as a proxy for program coverage was not appropriate. Many of the behavioral change components of POUZN relied on media channels, although only 34 percent of caregivers of children with recent
diarrhea interviewed in the 2011 DHS reported watching television at least once a week, 33 percent reported listening to the radio at least once a week, and 52 percent reported either watching television or listening to the radio at least once a week. It is possible that the program had a measurable impact on caregivers who were exposed to the program messaging but that this group represented only a small percentage of the DHS sample. The fact that the POUZN television programs and some radio programs were broadcast on national stations could have potentially diluted the differential between the 30 primary project districts and the remaining non-covered districts. In addition, POUZN was one of many child health initiatives underway between 2006 and 2011 in various regions of Nepal. The POUZN project and other programs operating across other districts could have each had a measurable impact, but these effects are difficult to isolate.

3.4.2. Malaria communities program in Liberia

Through the Malaria Communities Program (MCP), the President's Malaria Initiative (PMI) awarded small grants to local organizations in 12 countries to implement 20 projects ${ }^{5}$ on malaria prevention and treatment (USAID). One such organization, EQUIP Liberia, was awarded an MCP grant to work in two Liberian counties, Nimba and Sinoe. In these counties, the EQUIP project piloted integrated community case management (iCCM), trained more than 200 general Community Health Volunteers (gCHVs) on iCCM, and used behavior change communication with radio drama programs and household visits to share messages about malaria prevention and control, generate demand, and increase care seeking (Prosnitz 2015). In addition to increasing the demand for care seeking, EQUIP was committed to ensuring that care for childhood illnesses was accessible, available, and affordable. The EQUIP's health system support was heavily focused on the public sector. In 2008, EQUIP supported 15 Ministry of Health (MOH)/public clinics in the project counties. From 2009 to 2012, EQUIP supported 21 $\mathrm{MOH} /$ public health facilities and two private health facilities, and ensured that these facilities were fully functional with the required staff, medical services, and drug supplies (Suomie 2015).

Since the EQUIP MCP project commenced in 2008 and ended in 2011, the 2007 Liberia DHS survey and 2011 Liberia Malaria Indicator Survey (LMIS) ${ }^{6}$ were well-timed to provide baseline and endline information on coverage of care seeking for children's fever. With these data we evaluated how trends in care seeking in counties covered by the EQUIP project compared with trends in non-project counties. In particular, we examined the percentage of children for whom care was sought outside the home for fever-from a public provider, private provider, and any provider.

As Figures 46-48 show, care seeking patterns in non-EQUIP counties closely mirrored the overall national patterns, while EQUIP counties deviated from this national pattern. The level of care seeking from public sources appeared to increase in EQUIP counties (marginally significantly, $\mathrm{p}=0.06$). The level of care seeking from public sources decreased between 2007 and 2011 in non-EQUIP areas and in Liberia as a whole (statistically-significant in non-EQUIP areas only) (see Figure 46).

[^8]Figure 46. Percentage of children with recent fever for whom care was sought from a public source, Liberia 2007 DHS and 2011 MIS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change.

The level of care seeking from private sources, in contrast, decreased in EQUIP-counties but increased in non-EQUIP counties, with non-EQUIP areas again closely mirroring the national trend (see Figure 47).

Figure 47. Percentage of children with recent fever for whom care was sought from a private source, Liberia 2007 DHS and 2011 MIS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change.

Despite changes in the public-private mix of care seeking, the overall level of any care seeking for fever did not change between 2007 and 2011 in the counties covered by EQUIP, non-program counties, or Liberia as a whole (see Figure 48).

Figure 48. Percentage of children with recent fever for whom care was sought from any source, Liberia 2007 DHS and 2011 MIS

Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change.

Table 6 summarizes the trends in care seeking coverage in project and non-project areas between 2007 and 2011. As shown, the difference in the percentage point change between project and non-project areas was statistically significant for care seeking from both public and private sources.

Table 6. Care seeking for recent fever within EQUIP and non-EQUIP counties, Liberia 2007 DHS and 2011 MIS

	Non-EQUIP			EQUIP			Difference in the differences	Sig.
	2007 LDHS	2011 LMIS	Change	2007 LDHS	2011 LMIS	Change		
	\%	\%		\%	\%			
Any public care sought	39.5	30.3	-9.2	21.4	43.1	21.7	30.9	**
Any private care sought	17.8	25.1	7.3	37.1	14.2	-22.9	-30.2	**
Any care sought	74.6	77.7	3.1	82.7	74.7	-8.0	-11.1	

Note: * indicates $\mathrm{p}<.05$; ** indicates $\mathrm{p}<.01$; *** indicates $\mathrm{p}<.001$.
The observed coverage trends could have been affected by differing socio-demographic characteristics of children and caregivers in project and non-project areas, as well as by changes in these characteristics between the two surveys. In EQUIP project areas, for example, caregivers had more education according to the 2011 survey compared with the 2007 survey, and the percentage of children in households in the poorest wealth quintile in EQUIP project areas was lower in 2011 than in 2007 (see Appendix A12). We developed three logit regression models to assess the odds that care was sought from any public facility, private facility, and any source outside the home. We controlled for these and other socio-demographic characteristics of the mother, child, and household.

Results show that the increase in care seeking from public facilities between 2007 and 2011 in Liberia was significantly greater in EQUIP project areas compared with the increase in areas with no EQUIP presence, after adjusting for socio-demographic characteristics (the adjusted OR for the additional increase associated with project counties: $\mathrm{OR}=3.6, \mathrm{p}<0.05$, see Table 7). Conversely, the decline in care seeking from private facilities in EQUIP project areas was significantly more rapid than the decline in areas with no EQUIP presence (the adjusted OR for additional decline associated with project counties: $\mathrm{OR}=0.14, \mathrm{p}<0.001$). Overall, the slight decline in care seeking from any source in EQUIP project areas was significantly different from the slight increase in areas with no EQUIP presence (the adjusted OR for additional decline associated with project counties: $\mathrm{OR}=0.39, \mathrm{p}<0.05$).

Table 7. Odds ratios for care seeking for children with recent fever in EQUIP project districts vs. non-project districts after adjusting for maternal, child, and household characteristics, Liberia 2007 DHS and 2011 MIS

Outcome variable	Unadjusted OR		$95 \% \mathbf{C l}$	Adjusted OR	$\mathbf{9 5 \%} \mathbf{~ C I}$	
Any public care sought	4.16	$* *$	$1.43-12.15$	3.55	$*$	$1.27-10.14$
Any private care sought	0.18	$* *$	$0.06-0.58$	0.14	$* * *$	$0.04-0.44$
Any care sought	0.52		3,290	$0.26-1.03$		0.39
Observations				$*$	3,290	$0.19-0.81$

Note: * indicates $\mathrm{p}<.05$; ** indicates $\mathrm{p}<.01$; *** indicates $\mathrm{p}<.001$. The adjusted model controls for place of residence, household wealth quintile, maternal age, maternal education, child's age, and the sex of child, as well as main effects for survey year and intervention coverage.

Given the content of EQUIP's MCP program in two counties of Liberia, we would expect the program to have a positive effect on levels of care seeking. In particular, since EQUIP activities were heavily focused on the public sector, we would expect the program to raise levels of care seeking from public sourcesand this is what we found. While levels of care seeking from any source did not improve in EQUIP project districts between 2007 and 2011, there appears to have been a shift from the use of private providers to the use of public providers. The EQUIP program coverage was significantly associated with increased levels of care seeking from public sources between surveys. This shift is plausible, given that the gCHVs and other community health volunteers were trained to create awareness and to refer mothers and caregivers to public facilities where services were available and free of charge, in contrast to private facilities, which charged fees (Suomie 2015). While the observed patterns could be explained by external factors such as urbanization, health system expansion, or other programs implemented during the same period, the results provide some evidence that EQUIP's community-based malaria control program had a positive impact on care seeking from public sources in two counties in Liberia.

3.5. Appropriateness of Care

In this section we investigate the appropriateness of the care received by children when they were taken to a health provider for care.

3.5.1. Appropriateness of care for fever

Standard malaria case management protocols include universal testing of fever cases before treatment with recommended first-line antimalarials, which are typically ACT. Several indicators are necessary to measure implementation of these policies. First, the percentage of children under age 5 with fever who receive appropriate malaria diagnostic tests is a measure of the extent to which universal diagnosis is being implemented. Second, the proportion of children whose treatment correctly follows diagnostic test results (the percentage with positive malaria tests who receive appropriate antimalarial treatment, and the inverse, the percentage of children with negative malaria diagnostic test results who do not receive antimalarials) is necessary for monitoring the implementation of policies.

Due to the limitation of household surveys, these indicators cannot be measured directly with DHS data. Instead, three proxy measures are used. First, the percentage of children who had blood taken from a finger or heel among children under age 5 with fever in the last two weeks is used as a proxy for diagnostic testing for malaria, with the assumption that blood taken from young children with fever will be used for this purpose. The second household survey indicator measures the percentage of children under age 5 with recent fever who received ACT or first-line antimalarials among all children who received any antimalarials. This indicator assumes that a malaria diagnosis was made correctly and measures the extent to which treatment is occurring according to policy. Assuming that all of the reported fever cases that are reported and diagnosed as malaria are uncomplicated cases, this indicator would
ideally be 100 percent if treatment policies were being properly implemented. A similar, third indicator is necessary when using data from older surveys, i.e., before ACT was recommended or widely available, or in countries in which ACT is not the recommended first-line antimalarial treatment. In this case, the firstline antimalarial medication is used instead of ACT in the indicator. These household survey indicators do not permit monitoring and evaluation of all factors in the case management setting. It is not possible with current DHS/MIS data to assess the extent to which treatment is implemented according to a diagnostic result, since diagnostic results are not measured or recorded in the surveys.

The percentage of children with recent fever who had a finger or heel stick varied widely across the 12 MCH priority countries endemic for malaria and with data available (see Table 8a). In Pakistan, only 4 percent of children with recent fever were reported to have had a finger or heel stick. This proportion did not vary significantly depending on source of care, whether public, private, or any care. Among the 11 MCH priority countries in sub-Saharan Africa with data for this indicator, the percentage of children with recent fever for whom a finger/heel stick was reported among those who received care from any source ranged from 13 percent in Nigeria 2013 to 61 percent in Zambia 2013. Among children who received care from public sources, the range was from 17 percent in Tanzania 2010 to 66 percent in Liberia 2013. Among children who received care at private facilities, the percentage reporting finger/heel sticks ranged from 17 percent in Senegal 2010-11 to 79 percent in Rwanda 2010. It should be noted that sample sizes are quite small for some of the estimates of private care. In most surveys, the percentage of children with recent fever receiving finger/heel sticks is lower among those receiving care from any source compared with those who sought care from public facilities or private sources. This is likely because other sources of care included in the any care estimates, e.g., markets, shops, and traditional healers, are unlikely to have diagnostic capacity and are therefore unlikely to take blood samples from children.

In Uganda 2011, finger/heel sticks were more commonly done in children seeking care in public facilities than in private facilities. In contrast, in Malawi 2010, Tanzania 2010, Nigeria 2013, and Rwanda 2010, children seeking care at private facilities were more likely to have finger/heel sticks than those attending public facilities. This comparison could not be assessed in Mozambique 2011 or Mali 2012-13 due to the small number of children with fever seeking care at private facilities.

Table 8a. Among children under age 5 with recent fever, the percentage who had a finger or heel stick for malaria testing, by source of care, USAID MCH priority countries

	Public				Private				Any source			
	\%	LB	UB	N	\%	LB	UB	N	\%	LB	UB	N
Asia												
Pakistan 2012-13	4.4	2.4	8.1	370	4.6	3.6	5.7	2,940	4.4	3.5	5.4	3,404
Africa												
Uganda 2011	40.2	35.2	45.4	1,092	25.5	22.2	29.1	1,453	29.6	26.7	32.8	2,583
Liberia 2013	65.5	60.7	70.0	709	65.1	54.9	74.2	288	50.7	46.1	55.3	1,368
Malawi 2010	19.9	17.9	21.9	3,149	38.7	33.1	44.6	930	21.8	19.7	24.0	4,524
Tanzania 2010	17.0	13.5	21.1	921	45.7	32.6	59.3	119	16.6	13.3	20.4	1,382
Nigeria 2013	21.5	18.1	25.3	935	33.3	25.9	41.6	207	13.1	11.4	15.0	2,685
Zambia 2013-14	64.1	60.8	67.2	1,797	67.0	53.3	78.3	118	61.1	58.0	64.2	2,009
Mozambique 2011	46.3	42.1	50.6	850	*			6	43.8	39.2	48.5	912
DR Congo 2013-14	37.8	33.4	42.5	1,429	36.1	29.2	43.7	576	28.3	25.5	31.1	2,943
Senegal 2010-11	18.3	14.7	22.7	960	16.9	8.8	29.9	117	15.5	12.6	19.0	1,321
Mali 2012-13	26.9	20.9	33.9	214	*			21	17.7	13.9	22.2	407
Rwanda 2010	42.0	37.6	46.6	553	(78.7)	62.9	88.9	29	38.2	34.3	42.3	688

Note: This table includes all surveys with information regarding whether the child had a finger or heel stick. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. LB and UB refer to the lower and upper bounds of the 95\% confidence interval.

Table 8b shows the percentage of children who received ACT when care was sought for fever and an antimalarial was taken for treatment. Again, this is a proxy for appropriate treatment that assumes a diagnosis was properly done. Data to calculate this indicator were available in 24 surveys from 16 MCH priority countries. A large range in appropriate treatment was evident across these surveys. Among children seeking care from any source, less than 10 percent in six surveys received appropriate antimalarial treatment. In contrast, seven surveys showed appropriate antimalarial treatment in over half of children with fever, and in three surveys (Rwanda 2010, Zambia 2013-14, and Malawi 2010) coverage of appropriate antimalarial treatment was over 80 percent.

Appropriate antimalarial treatment with ACT was more commonly reported among children for whom care was sought from public facilities than private sources in Uganda (both the 2006 and 2011 surveys), Malawi 2010, and Tanzania 2010.

Table 8b. Among children under age 5 with recent fever, the percentage who received Artemisininbased Combination Therapy (ACT) among children who received any antimalarial, by source of care, USAID MCH priority countries

	Public				Private				Any source			
	\%	LB	UB	N	\%	LB	UB	N	\%	LB	UB	N
Asia												
Indonesia 2012	(34.9)	14.0	63.9	16	(42.5)	22.8	65.0	18	33.8	19.2	52.3	39
Pakistan 2012-13	(32.3)	13.9	58.5	13	18.2	11.0	28.7	116	18.8	11.7	28.7	130
Africa												
Uganda 2006	10.1	7.3	13.9	714	2.7	1.7	4.4	999	5.2	3.8	7.1	1,804
Uganda 2011	76.5	72.2	80.3	855	61.4	55.3	67.1	971	67.9	63.8	71.7	1,816
Liberia 2007	18.3	13.1	24.9	425	10.8	6.3	17.9	263	15.0	11.3	19.6	856
Liberia 2013	42.3	35.6	49.2	471	45.4	33.0	58.5	203	43.7	37.7	49.9	882
Malawi 2010	89.7	87.8	91.4	1,942	68.9	62.7	74.4	564	84.9	82.7	86.9	2,511
Tanzania 2010	74.3	69.6	78.5	660	33.7	21.8	48.2	92	63.9	58.1	69.2	931
Nigeria 2008	8.8	6.3	12.2	508	8.1	3.9	15.8	177	7.5	5.8	9.6	1,094
Nigeria 2013	20.6	16.5	25.4	464	15.7	9.2	25.5	105	19.1	16.3	22.3	1,060
Zambia 2007	30.7	24.1	38.3	317	(21.1)	10.4	38.1	41	29.2	23.0	36.2	375
Zambia 2013-14	91.4	88.7	93.5	886	87.1	76.0	93.5	72	91.2	88.7	93.2	975
Ghana 2008	55.0	44.1	65.5	120	(51.5)	33.7	68.9	38	54.0	45.3	62.5	206
Kenya 2008-9	39.4	31.1	48.5	190	(46.9)	27.4	67.4	41	38.0	30.5	46.1	254
Mozambique 2011	62.9	54.8	70.3	374	*			0	62.1	54.3	69.3	389
DR Congo 2007	3.2	1.4	7.0	280	2.5	1.1	5.6	208	2.4	1.3	4.3	607
DR Congo 2013-14	28.3	22.0	35.5	723	14.4	8.6	23.1	251	22.2	17.9	27.2	1,177
Senegal 2010-11	39.9	27.8	53.3	154	*			5	39.8	28.8	51.8	189
Mali 2006	0.8	0.2	3.3	347	(4.0)	0.7	21.1	39	0.8	0.2	2.5	536
Mali 2012-13	21.1	13.8	31.0	104	*			12	21.5	15.0	29.7	145
Rwanda 2010	96.8	91.7	98.8	136	*			5	96.3	91.4	98.4	143
Madagascar 2008-9	8.5	3.3	20.0	84	(1.1)	0.2	8.2	32	5.6	2.3	13.3	134
Ethiopia 2005	0.0			75	(0.1)	0.0	0.9	32	0.0	0.0	0.2	120
Ethiopia 2011	36.7	17.1	61.9	25	(14.3)	2.1	57.0	11	32.0	17.3	51.4	39

Note: This table includes all surveys with information regarding whether the child was treated with ACTs. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. LB and UB refer to the lower and upper bounds of the 95% confidence interval.

Table 8c shows the percentage of children who received first-line antimalarials when care was sought for fever and an antimalarial was taken for treatment. When interpreting trends in this indicator, it is important to note that the recommended first-line antimalarial changed in most countries over the time period included in this study. In some countries the recommended antimalarial was not yet widely available at the time of the survey. Data to calculate this indicator were available from 37 surveys from 18 countries. Among children with recent fever for whom care was sought outside the home, a large range in treatment with first-line antimalarials was observed. In five surveys-Uganda 2006, Nigeria 2008, DR Congo 2007, Madagascar 2008-9, and Ethiopia 2005-less than 10 percent of children who received antimalarials were treated with recommended first-line medications. More than 90 percent first-line
treatment was observed in Zambia 2013-14, Ghana 2003, Rwanda 2010, Madagascar 2004, and Haiti 2012.

In Uganda 2006 and 2011, Malawi 2005 and 2010, and Tanzania 2004-5 and 2010, appropriate antimalarial treatment was more commonly reported among children for whom care was sought from public facilities compared to private sources.

Table 8c. Among children under age 5 with recent fever, the percentage who received first-line antimalarial treatment among children who received any antimalarial, by source of care, USAID MCH priority countries

Note: This table includes all surveys with information on whether the child was treated with a first-line antimalarial drug, based on the country's national malaria policy at the time of the survey. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. LB and UB refer to the lower and upper bounds of the 95% confidence interval.

3.5.2. Appropriateness of care for diarrhea

Oral rehydration solution (ORS) has been a key component of treatment for children's diarrhea. Given the proven effectiveness of using ORS with zinc supplementation, the new WHO and UNICEF guidelines for diarrhea treatment recommend the use of a new ORS formula, along with zinc supplementation for 10-14 days, for the treatment of diarrhea among children under age 5 (WHO 2005). The guidelines also specify that antibiotics should be given only to children with bloody diarrhea. In this section, we examine the use of ORS and the use of both ORS and zinc, as well as the inappropriate use of antibiotics among children for whom care was sought for diarrhea.

Table 9a presents the percentage of children who received ORS when care was sought for diarrhea, by the source of care. In Asia, Bangladesh had the highest use of ORS-in the 2011 survey, 80 percent of children for whom any care was sought outside the home for diarrhea received ORS. The coverage in other Asian countries, in the most recent survey in each country, ranged from 45 percent to 55 percent, except in India, where the most recent survey in 2005-06 showed that one-third of children received ORS. Large variations in ORS coverage exist in Africa, from 37 percent in Malawi 2010 to 83 percent in Kenya 2008-09 and Zambia 2013. In 11 of 14 priority countries in Africa, ORS coverage was 50 percent or higher. The exceptions are Madagascar 2008-09 at 37 percent, Senegal 2010-11 at 38 percent, and Nigeria 2013 at 41 percent. Fairly high levels of use of ORS were reported in Kenya 2008-09, Malawi 2010, and Zambia 2013, at 80 percent or higher. Receipt of ORS significantly increased between the two most recent surveys in only four countries (Kenya, Mali, Nigeria, and Rwanda), from 17 percentage points in Kenya to 26 percentage points in Rwanda. While most countries observed an increasing trend in the use of ORS, Tanzania experienced a considerable decrease, from 72 percent in 2004-05 to 58 percent in 2010. In Haiti, about two-thirds of children with diarrhea for whom any care was sought received ORS.

Table 9a. Among children under age 5 with recent diarrhea for whom care was sought, the percentage who received ORS, by source of care, USAID MCH priority countries

	Pubic				Private				Any source			
	\%	LB	UB	N	\%	LB	UB	N	\%	LB	UB	N
Asia												
Indonesia 2007	62.9	56.2	69.2	443	46.7	41.1	52.4	725	42.2	38.4	46.1	1,614
Indonesia 2012	60.4	54.6	65.9	553	48.8	44.3	53.3	1,036	46.4	43.1	49.7	1,875
Pakistan 2006-7	65.7	55.3	74.8	92	53.1	47.7	58.4	615	52.5	47.9	57.0	759
Pakistan 2012-13	52.5	43.0	61.9	238	46.0	41.7	50.4	1,637	45.8	41.9	49.7	1,897
Bangladesh 2007	85.8	68.8	94.3	55	83.9	71.2	91.7	60	83.1	77.8	87.3	403
Bangladesh 2011	(84.1)	68.9	92.6	43	80.0	71.6	86.5	160	80.3	74.2	85.3	295
India 2005-6	44.8	39.9	49.8	667	33.8	31.1	36.6	2,181	32.6	30.3	34.9	3,285
Nepal 2006	60.9	51.5	69.6	129	(49.5)	30.9	68.2	40	44.7	37.5	52.0	316
Nepal 2011	64.7	54.5	73.8	171	57.8	43.8	70.6	106	54.7	48.2	61.0	441
Africa												
Uganda 2006	64.9	60.0	69.5	605	44.2	39.9	48.5	838	48.7	45.4	52.0	1,547
Uganda 2011	67.2	62.3	71.8	558	44.9	40.2	49.8	762	52.4	48.4	56.4	1,353
Liberia 2007	72.7	65.6	78.9	299	73.5	63.2	81.7	207	62.5	56.9	67.9	794
Liberia 2013	80.2	75.6	84.0	472	67.3	57.1	76.2	159	69.8	65.9	73.4	977
Malawi 205	87.3	84.3	89.8	629	87.1	80.1	91.9	165	77.6	74.6	80.4	1,252
Malawi 2010	83.6	81.3	85.7	1,623	79.2	73.3	84.0	384	80.0	77.6	82.2	2,257
Tanzania 2004-5	84.6	79.7	88.4	393	67.5	52.8	79.5	79	72.3	67.5	76.6	619
Tanzania 2010	63.3	63.3	63.3	491	(59.9)	38.8	77.8	49	57.5	52.3	62.5	708
Nigeria 2008	51.9	46.6	57.1	595	41.0	33.6	48.8	219	33.8	30.6	37.1	1,630
Nigeria 2013	61.6	57.1	65.9	715	57.2	46.2	67.5	132	41.2	38.0	44.4	2,104
Zambia 2007	85.6	81.6	88.8	480	88.4	79.1	93.9	62	79.7	75.3	83.4	595
Zambia 2013-14	85.1	82.7	87.2	1,268	83.1	70.5	91.6	69	82.6	80.1	84.9	1,394
Ghana 2003	67.5	57.9	75.8	112	*	n/a	n/a	18	51.8	45.1	58.4	255
Ghana 2008	69.9	62.0	76.8	193	(69.0)	48.7	83.9	32	56.9	51.6	62.1	344
Kenya 2003	65.5	56.2	73.8	179	51.0	40.4	61.5	85	53.3	46.8	59.7	334
Kenya 2008-9	88.2	83.2	91.9	351	80.1	66.8	89.0	95	83.3	79.0	86.9	547
Mozambique 2004	77.9	73.2	82.0	636	*	n/a	n/a	16	70.6	65.7	75.1	738
Mozambique 2011	77.3	72.9	81.3	693	${ }^{*}$	n/a	n/a	12	71.8	67.0	76.2	770
DR Congo 2007	54.7	46.1	63.1	368	23.5	13.7	37.3	75	47.9	40.7	55.2	497
DR Congo 2013-14	64.0	58.5	69.2	834	57.1	49.3	64.5	289	52.4	48.4	56.4	1,659
Senegal 2005	49.1	43.4	54.8	377	(54.2)	38.7	68.9	57	30.7	26.4	35.3	734
Senegal 2010-11	47.2	42.1	52.3	718	(37.9)	22.2	56.6	64	38.2	34.1	42.4	7,071
Mali 2006	49.7	39.5	59.9	271	(52.4)	31.6	72.5	27	30.2	23.7	37.7	509
Mali 2012-13	69.1	61.2	76.0	216	(64.3)	43.7	80.8	21	50.2	44.0	56.4	446
Rwanda 2005	43.5	34.8	52.5	133	+	n/a	n/a	23	24.1	19.2	29.7	323
Rwanda 2010	65.0	60.0	69.8	403	*	n/a	n/a	19	51.0	46.3	55.6	564
Madagascar 2004	32.5	22.4	44.6	119	19.4	9.4	35.9	63	23.7	16.8	32.3	218
Madagascar 2009	44.3	36.9	52.0	259	35.9	24.1	49.8	92	37.1	30.6	44.2	404
Ethiopia 2005	65.5	58.8	71.7	342	37.2	21.3	56.5	63	57.4	51.1	63.4	467
Ethiopia 2011	62.5	55.0	69.4	357	60.6	47.7	72.1	131	57.9	51.6	63.9	527
LAC												
Haiti 2005-6	78.5	70.0	85.1	164	73.7	65.5	80.5	224	69.2	63.4	74.5	505
Haiti 2012	81.7	74.5	87.2	209	73.6	66.8	79.4	276	72.4	67.7	76.8	583

Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. LB and UB refer to the lower and upper bounds of the 95% confidence interval. $\mathrm{n} / \mathrm{a}=$ data not available.

In comparisons of public and private providers, there were no significant differences in the provision of ORS in any of the priority countries except Indonesia 2012 and Uganda 2011. Both surveys showed that a significantly higher percentage of children with diarrhea were given ORS in the public sector than in the private sector.

Table 9b shows the percentage of children who received both ORS and zinc when care was sought for diarrhea. In 18 older surveys, data were not available for this indicator because these surveys did not collect information on the use of zinc. Globally, receipt of both zinc and ORS remained at very low levels. Among 18 MCH priority countries with data available, coverage was below 5 percent in 16 of the countries, and many had coverage below 1 percent. Notably, in Bangladesh a considerable percentage of
children for whom care was sought outside the home received both ORS and zinc, at 28 percent in the 2007 DHS survey and 40 percent in the 2011 survey. Nepal is the other country that had higher use of both ORS and zinc than other MCH priority countries. According to the 2011 DHS survey, 8 percent of children for whom care was sought in Nepal received both ORS and zinc.

Table 9b. Among children under age 5 with recent diarrhea for whom care was sought, the percentage who received ORS and zinc, by source of care, USAID MCH priority countries

	Pubic				Private				Any source			
	\%	LB	UB	N	\%	LB	UB	N	\%	LB	UB	N
Asia												
Indonesia 2012	1.5	0.5	4.1	553	0.3	0.1	0.7	1,036	0.6	0.3	1.3	1,875
Pakistan 2012-13	4.6	1.1	17.7	238	1.0	0.4	2.7	1,637	1.0	0.4	2.4	1,897
Bangladesh 2007	29.7	16.9	46.6	55	39.9	28.2	52.8	60	27.6	22.1	33.8	403
Bangladesh 2011	(41.5)	27.2	57.3	43	43.1	34.6	52.0	160	39.7	33.5	46.3	295
India 2005-6	0.6	0.2	2.0	667	0.3	0.1	0.8	2,181	0.3	0.1	0.7	3,285
Nepal 2011	10.2	6.1	16.6	171	13.1	5.6	27.6	106	7.8	5.0	11.9	441
Africa												
Uganda 2006	0.3	0.0	2.1	605	0.6	0.2	1.9	838	0.5	0.2	1.2	1,547
Uganda 2011	2.1	1.1	4.1	558	1.3	0.7	2.5	762	1.5	0.9	2.5	1,353
Liberia 2007	0.0	n/a	n/a	299	1.4	0.3	6.1	207	0.5	0.2	1.8	794
Liberia 2013	3.0	1.6	5.7	472	6.0	2.3	14.8	159	3.5	2.1	5.6	977
Malawi 2010	0.2	0.1	0.5	1,623	0.0	n/a	n/a	384	0.2	0.1	0.5	2,257
Tanzania 2010	5.3	3.1	9.1	491	(3.2)	0.4	19.7	49	4.4	2.7	7.2	708
Nigeria 2008	0.7	0.3	1.8	595	0.2	0.0	1.5	219	0.4	0.2	0.9	1,630
Nigeria 2013	4.2	2.4	7.2	715	2.5	0.7	8.2	132	1.8	1.1	2.9	2,104
Ghana 2008	1.7	0.5	5.7	193	(5.1)	0.7	28.8	32	1.5	0.5	4.1	344
Kenya 2008-9	0.1	0.0	0.8	351	1.2	0.2	8.5	95	0.3	0.1	1.3	547
Congo DR 2013-14	4.2	2.7	6.5	834	2.4	0.8	6.7	289	2.8	1.9	4.1	1,659
Senegal 2010-11	0.2	0.1	0.7	718	(1.1)	0.1	7.5	64	0.2	0.1	0.6	1,071
Mali 2012-13	2.9	1.3	6.4	216	(0.0)	n / a	n / a	21	2.0	1.0	3.9	446
Madagascar 2008-9	4.0	1.6	9.5	259	0.0	n / a	n/a	92	2.5	1.0	6.1	404
Ethiopia 2005	0.5	0.1	3.3	342	0.0	n/a	n/a	63	0.4	0.0	2.4	467
Ethiopia 2011	0.2	0.0	1.0	357	0.4	0.1	2.9	131	0.1	0.0	0.6	527
LAC												
Haiti 2012	0.0	n/a	n/a	209	0.5	0.1	2.1	276	0.2	0.1	1.0	583

Note: This table includes all surveys with complete information on whether the child was given ORS and or zinc for their diarrhea. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. LB and UB refer to the lower and upper bounds of the 95% confidence interval. LB and UB refer to the lower and upper bounds of the 95% confidence interval. n/a=data not available

Antibiotics should only be given to children with bloody diarrhea. We examined the use of antibiotics among children with non-bloody diarrhea to assess the extent to which inappropriate care was provided. The older surveys in 11 countries and both surveys in Bangladesh did not ask mothers about use of antibiotics for their children with diarrhea. Overall, a considerable proportion of children were given antibiotics although they did not have bloody diarrhea. Such inappropriate care was most commonly reported in Tanzania, where almost two-thirds of children for whom care was sought from any source for non-bloody diarrhea were given antibiotics, based on the Tanzania 2012-13 DHS survey. In a few other countries such as Pakistan, Nigeria, Ghana, Mozambique, Senegal, and DR Congo, over one-third of children were given such inappropriate treatment. In countries with data available from both surveys, the change between surveys in the use of antibiotics for children with non-bloody diarrhea was only significant in Zambia, where it increased from 25 percent in 2007 to 37 percent in 2013. The prevalence of inappropriate use of antibiotics was similar between private and public providers.

Table 9c. Among children under age 5 with recent non-bloody diarrhea for whom care was sought, the percentage who received antibiotics, by source of care, USAID MCH priority countries

	Pubic				Private				Any source			
	\%	LB	UB	N	\%	LB	UB	N	\%	LB	UB	N
Asia												
Indonesia 2012	15.5	11.6	20.3	546	18.2	15.1	21.8	1,025	15.0	12.9	17.4	1,857
Pakistan 2012-13	42.6	33.4	52.3	208	40.2	35.6	44.9	1,444	40.2	36.0	44.5	1,670
India 2005-6	21.5	17.6	26.1	598	22.3	19.4	25.4	1,959	20.8	18.4	23.5	2,933
Nepal 2006	11.8	6.2	21.4	99	(19.2)	7.4	41.4	30	14.3	9.4	21.0	247
Nepal 2011	14.6	8.5	23.8	144	23.1	13.2	37.2	86	18.9	14.2	24.7	369
Africa												
Uganda 2006	29.6	24.6	35.1	448	36.9	31.9	42.2	647	32.4	28.6	36.5	1,181
Uganda 2011	34.8	28.5	41.6	457	40.5	35.5	45.6	610	38.1	34.1	42.3	1,097
Liberia 2007	17.9	12.9	24.4	216	16.0	9.2	26.4	156	13.2	10.0	17.4	591
Liberia 2013	16.1	10.8	23.4	353	24.3	16.0	35.2	134	15.0	11.5	19.4	779
Malawi 2010	24.9	22.1	27.9	1,387	34.1	25.8	43.5	340	24.5	22.0	27.3	1,936
Tanzania 2010	66.0	60.0	71.5	416	(66.1)	48.0	80.4	42	65.3	60.3	70.0	594
Nigeria 2008	51.4	45.8	56.8	471	48.6	40.0	57.3	167	43.5	39.8	47.3	1,275
Nigeria 2013	51.1	45.9	56.3	578	61.4	49.4	72.2	99	42.7	39.5	45.9	1,708
Zambia 2007	25.8	21.4	30.8	417	30.9	18.8	46.3	54	24.9	21.0	29.3	509
Zambia 2013-14	37.5	33.8	41.3	1,041	38.6	24.8	54.5	61	37.2	33.8	40.7	1,149
Ghana 2008	40.3	31.8	49.4	151	*	n/a	n/a	23	41.6	35.5	47.9	277
Kenya 2008-9	25.2	19.1	32.4	269	21.3	11.0	37.0	83	21.1	16.4	26.7	440
Mozambique 2011	42.2	37.0	47.6	586	*	n/a	n/a	12	39.4	34.6	44.4	652
DR Congo 2007	44.3	35.6	53.4	368	6.8	2.0	20.1	75	40.7	32.9	49.0	497
DR Congo 2013-14	33.7	27.2	40.9	649	41.5	33.2	50.3	229	36.1	32.5	39.9	1,315
Senegal 2010-11	45.6	39.5	51.9	628	(35.6)	20.9	53.5	56	37.4	33.0	42.0	933
Mali 2012-13	31.6	23.8	40.7	155	*	n/a	n/a	17	19.4	14.9	24.9	335
Rwanda 2010	20.4	16.0	25.6	317	*	n/a	n/a	15.0	16.7	13.3	20.7	448
Madagascar 2009	35.2	28.5	42.6	222	32.1	20.5	46.5	79	32.0	26.4	38.1	347
Ethiopia 2005	30.1	21.0	41.1	201	(24.7)	11.3	45.7	39	29.1	21.7	37.9	272
Ethiopia 2011	22.6	16.2	30.6	260	26.9	15.7	41.9	104	24.4	18.6	31.3	396
LAC												
Haiti 2005-6	30.2	20.5	42.1	122	19.4	12.5	29.0	170	22.4	16.7	29.4	391
Haiti 2012	18.2	12.1	26.4	186	17.9	12.5	24.8	250	16.1	12.6	20.5	522

[^9]
4. Discussion and Conclusions

This follow-up study to Hodgins, Pullum, and Dougherty (2013) examined levels and trends in care seeking for children who have experienced recent fever, symptoms of ARI, or diarrhea across MCH priority countries. Key findings and interpretation of current levels of care seeking, recent trends in care seeking and equity of care seeking, and appropriateness of care are summarized below.

4.1. Levels of Care Seeking

Overall, current levels of care seeking among children with recent illness vary widely across the 21 priority countries, from nearly 90 percent in the Indonesia 2012 survey to 33 percent in Ethiopia 2011. In three countries-Ethiopia, Madagascar, and Haiti-less than half of children under age 5 with recent illness received care from any source.

Consistent with Hodgins, Pullum, and Dougherty (2013), our results show that care seeking from public sources is predominant in African MCH priority countries while care seeking from private sources is predominant in Asian MCH priority countries. This pattern is similar across the three types of illness. The regional differential is likely due in part to differences in history, development trajectories, and economy. In South Asia, global recessions in the 1970s and 1980s constrained government spending in health care, and fostered the growth of the private sector (Baru 2003). Private sector growth in South Asia, particularly in the 1970s and 1980s, was driven largely by multilateral donor organizations, which were influenced by the World Bank and IMF's structural adjustment policies that encouraged privatization, and by the pharmaceutical industry (Baru 2003). The observed difference in use of the private health sector in Asia and Africa could also be related to the relatively larger size of the middle class in Asian MCH priority countries compared with African MCH priority countries. The middle class typically supplies both the private sector workforce and the clientele, which enable private health sector growth (Baru 2003).

A few countries are worth highlighting for their mix of care sources. Uganda is the only sub-Saharan African country in our study with a heavy reliance on private sources of care to treat children's illness. Use of private sources of care in Uganda is highest among children in wealthiest-quintile households, although the private sector is an important source of care among children in all wealth quintiles and in both urban and rural areas. In Uganda's public health sector, mismanagement of funds, lack of resources and commodities, low salaries for healthcare workers, poorly maintained infrastructure, and overall poor service delivery have driven the need for and growth of private health care (Soderlund, Mendoza-Arana, and Goudge 2003). In a study of three rural districts in Uganda, Konde-Lule and colleagues found that private providers far outnumbered public providers, and that a majority of individuals in the community chose to see private providers when seeking care (Konde-Lule et al. 2010). Proximity to the source of care was the most common reason for choosing a private provider, while the perceived skill of the provider and cost were other important factors. It is important to note that while public services are officially free, many health workers in Ugandan public facilities charge informal fees (Konde-Lule et al. 2010).

Nigeria is unique among MCH priority countries for its high reliance on pharmacies as the sole source of care for children's fever, symptoms of ARI, and diarrhea. Care was sought from a pharmacy for over onethird of children with fever and for nearly one-third of children with symptoms of ARI and diarrhea (35 percent, 32 percent, and 32 percent, respectively). In Nigeria, according to current Ministry of Health policy, for-profit drug retailers and patent and proprietary medicine vendors are eligible to become community-based resource persons who can be trained and certified to deliver iCCM. However, current regulations also prohibit these vendors from selling antibiotics. A recent census of patent and proprietary
medicine vendors conducted in two Nigerian states (Kogi and Kwara) found that levels of knowledge of the most effective treatment for malaria, pneumonia, and diarrhea among vendors are low (Treleaven et al. 2015). More than two-thirds of vendors correctly named the most effective treatment for malaria, less than one-third named the most effective treatment for diarrhea, and virtually no vendors named the most effective treatment for pneumonia (Treleaven et al. 2015). Given the importance of for-profit drug retailers, patent medicine vendors, and propriety medicine vendors as sources of care for fever, symptoms of ARI, and diarrhea, additional training on treating childhood illnesses could have a substantial impact on child survival and health in Nigeria and in other settings where reliance on pharmacies and shops is high.

Mali's use of other sources of care for childhood illnesses is noteworthy. As Appendix Tables A1-6 illustrate, the most common other sources of care in Mali are markets or informal shops and nonallopathic sources. The importance of informal shops and traditional healers in Mali is well documented (Ellis et al. 2007). In a qualitative study of household management of diarrhea, Ellis et al. (2007) conducted in-depth, semi-structured interviews with parents, community health workers, and traditional healers in the Sikasso region. Ellis et al. found that treatment of an episode of diarrhea typically began in the home with traditional medicines and/or antibiotics, which could be purchased from vendors in the village or market. If initial treatments did not help the child, parents would often seek care from a community health worker, community health center, or traditional healer. Traditional healers were often consulted for their knowledge of preparing more powerful or complicated traditional medicines, the ingredients for which could often be collected around the village or purchased inexpensively at the market.

Despite major emphasis in recent years on community case management and care provision by community health workers, only a small percentage of care- 3 percent or less for each illness in all countries except Rwanda and Indonesia-is being sought from this source, according to the most recent DHS data (see Appendix Tables A1-6 for detailed results). This finding is consistent with other recent studies that report low use of community health workers (Geldsetzer et al. 2014; Hodgins, Pullum, and Dougherty 2013). In a systematic literature review of studies on care seeking across low- and middleincome countries, Geldsetzer and colleagues (2014) report that a median of only 1.3 percent of caregivers use community health workers for malaria, 4.2 percent for pneumonia, and 5.4 percent for diarrhea. Caregivers have identified the perceived low status of community health workers within the community and a lack of supplies and medications as the reasons families do not use their services (Geldsetzer et al. 2014). While community case management continues to be adopted, rolled out and scaled up as a major child survival strategy, particularly in Africa, this finding suggests that to have widespread impact, program efforts may need to strengthen linkages between community health workers, communities, and health facilities, and consider new or additional ways to reach the most remote children.

When interpreting these findings, it is also important to recall that integrated community case management is an extension of the health system service delivery strategy. It is also a foray into treatment of community-based and sometimes community-owned health promotion strategies. It fundamentally remains a medium-term strategy for reaching the hardest-to-reach children, strengthening community health, and providing a two-way linkage of treatment and referral with the rest of the health system, while strengthening the larger health system and more equitably extending access to services. The iCCM algorithms require referrals to health facilities for newborns ${ }^{7}$ and complicated cases. A child may still die when a referral is not completed. Integrated community case management is essential to save lives of the hardest-to-reach children, but is only part of the continuum of care. Overall health system strengthening should remain a priority as iCCM is strengthened and expanded as the lowest level of care.

[^10]
4.2. Recent Trends in Care Seeking

The majority of countries studied did not show significant improvements between the two most recent DHS surveys in the level of care seeking for fever or for symptoms of ARI from any source, private sources, or public sources. Care seeking for diarrhea, however, showed more widespread improvement; 13 of 20 countries showed a statistically significant increase in care seeking from any source for diarrhea, while no country showed a decrease in coverage. These findings are consistent with Bennett and colleagues (2015), who reported a significant increase in care seeking for diarrhea between 2000 and 2013 in Western Africa, Eastern Africa, Southeast Asia, and Western Asia in an analysis of 248 DHS surveys. The researchers found significant ($\mathrm{p}<.05$) regional increases in care seeking for fever only in Western Africa, and no significant regional increases in care seeking for symptoms of ARI.

The greater gains in care seeking for children's diarrhea could be driven in part by the fact that levels of care seeking were initially lower for diarrhea than the other childhood illnesses. Other studies have found that lower baseline levels of child health intervention coverage were associated with greater annual improvements (Boschi-Pinto, Bahl, and Martines 2009). However, the greater gains in care seeking for diarrhea could also be driven in part by the initiation and scale-up of programs that introduced zinc into diarrhea case management during the study period. These programs (such as SHOPS in Ghana, Nigeria, Uganda, and Kenya, and POUZN in Nepal) were often accompanied by behavioral change campaigns focused on the care and treatment for children's diarrhea. Our Nepal case study did not find ecological evidence of an effect of POUZN on care seeking in project districts, but we offered several explanations that could account for our inability to detect a true program effect (see Section 3.3.1).

The lack of increase in care seeking for fever over the study period could have several explanations. Fever in children is a symptom of illness known to instill fear in caregivers and prompt action (Sakai et al. 2012). Thus, constant rates of care seeking for fever are not surprising. Because the decision to seek care is based on perception of risk, it is also possible that care seeking for fever would be seen as less urgent because malaria prevalence has declined drastically in some of the MCH priority countries included in this analysis. If care seeking for fever expanded to previously marginalized populations, overall increases might not occur because care seeking declined among non-marginalized groups. Patterns of care seeking for fever also depend on the source of care. Focusing on care seeking from any source can obscure important shifts in use of public versus private sources of care, as in the Liberia case study. Similarly, sources of care could include pharmacies, markets, shops, and traditional healers. All sources of care may not provide equal quality of care or have accessibility to the necessary resources for appropriate case management. Thus, overall increases in care seeking for fever do not necessarily translate into improved access to appropriate care.

The study identified distinct patterns in recent trends between the two survey periods in care seeking from public versus private sources. For all three illnesses, the use of public sources of care either remained the same or increased between the two periods; there were no decreases. The trend in use of private sources of care was mixed. For fever and diarrhea, some countries, primarily in Asia, experienced an increase in the level of care seeking from private sources, while others, all in sub-Saharan Africa, experienced a decrease in the level of care seeking from private sources. Given the focus on IMCI, iCCM, and community-based programs in recent years, and the reality that public sources of care are often free, it may not be surprising that the expansion of care seeking in African countries has been concentrated in the public sector. Ideally, growth in these programs would lead to an overall increase in care seeking rather than a transfer of care seeking from private to public sources, as observed in the Liberia case study. Additional research should identify factors that contribute to decreases in use of the private sector in African MCH priority countries and investigate reasons why, in the study countries within Africa, increased care seeking has been predominantly in the public sector.

There is wide agreement that in order to make gains in child survival, child health programs must reach children who are hardest to reach, i.e., those who are poor and live in remote areas. With this in mind, we examined trends within two vulnerable populations: children in poorest-wealth quintile households and children in rural households. The patterns within these populations roughly followed the national patterns. In most cases, the change in coverage of care seeking between surveys was not significantly different between children in the poorest and the wealthiest households, or between rural and urban children. Thus, despite general agreement that child health programs should focus specifically on these vulnerable children in order to make gains in child survival, we found only limited evidence that increases in care seeking were concentrated in these vulnerable populations. Noteworthy exceptions include the rapid expansion of care seeking from private sources for children's fever in Bangladesh, which was disproportionately concentrated in poorest-quintile households, and which narrowed the equity gap; and the disproportionate concentration of the expansion of care seeking from private sources for diarrhea among poorest-quintile households in Indonesia.

With case studies in Nepal and Liberia, we attempted to identify ecological evidence of the impact of programs by examining temporal trends in care seeking separately for areas covered and not covered by two USAID health initiatives. In Liberia our results show that the increase in care seeking from public facilities between 2007 and 2011 was significantly greater in Liberian counties covered by the PMIfunded EQUIP project compared with the increase in areas with no EQUIP presence, after adjusting for socio-demographic characteristics. However, overall levels of care seeking from any source did not improve in EQUIP project districts between 2007 and 2011; rather, there appears to have been a shift from the use of private providers to the use of public providers. In Nepal, despite countrywide improvements in levels of care seeking for diarrhea between the 2006 and 2011 DHS surveys, we did not find evidence that increases in districts covered by the POUZN project were greater than those in nonproject districts. We discussed potential reasons for this null finding in the case study.

4.3. Appropriateness of Care

Levels and trends in coverage of care seeking are meaningful only if the sources of care consistently provide children and caregivers with appropriate diagnoses, advice, and treatment. Despite the widespread increase in coverage of care seeking for diarrhea, there has not been a parallel increase in coverage of appropriate treatment. Treatment with ORS increased significantly in just four of the 20 countries, coverage of treatment with both ORS and zinc remains under 5 percent in 16 of the 18 countries with data available, and no country showed an improvement (reduction) in inappropriate use of antibiotics to treat non-bloody diarrhea. Other studies have also observed the limited improvement in diarrhea case management over time (Boschi-Pinto, Bahl, and Martines 2009; Geldsetzer et al. 2014; UNICEF and WHO 2009). Geldsetzer and colleagues (2014) report that studies on trends in the use of oral rehydration therapy showed a constant level of ORS use over time, with a median of 31 percent before 1990, 35 percent from 1990 to 1999, and 36 percent from 2000 to 2010. Similarly, Boschi-Pinto and colleagues (2009) found that 17 of 29 African and Asian countries showed no significant annual improvement in ORS use for diarrhea between roughly 1990 and 2006 (Boschi-Pinto, Bahl, and Martines 2009).

Major barriers to the provision of zinc include its scarcity in health facilities and in some countries, the absence of national policies that support the use of zinc for routine diarrhea case management (Gill et al. 2013). For example, while 75 percent of patent and proprietary medicine vendors (PPMVs) in two Nigerian states (Kogi and Kwara) were stocked with ORS, according to a recent census, less than 3 percent were stocked with zinc (Treleaven et al. 2015). Other barriers to ORS and zinc treatment include counterproductive incentives for health workers to offer antibiotics over zinc or ORS for children's diarrhea; inefficiencies in procurement, production, and distribution of ORS and zinc; lack of government policies or incentives for private sector investment in supply chain management systems; lack of support
for locally produced zinc or oral rehydration solution; and low demand for these treatments (Gill et al. 2013).

Turning to indicators of appropriate care for fever, we find that in most surveys the percentage of children with recent fever receiving finger/heel sticks is lower among those receiving care from any source than those seeking care from public or private sources. This is likely because the other sources of care included in the estimates, e.g., markets, shops, and traditional healers, are unlikely to have diagnostic capacity and therefore are unlikely to take blood samples from children. The range in coverage of finger/heel sticks among children with fever in the MCH priority countries with available data is not surprising because universal test and treatment policies have been adopted and implemented at different rates across these countries. Access to commodities necessary for implementation of these policies such as microscopy or RDT is not equal across countries. In Uganda, the one African MCH priority country with high levels of care seeking from private sources for childhood illness, children with fever seeking care at private facilities were significantly less likely to receive a finger/heel stick than children for whom care was sought at public facilities. The inverse was true in several other African countries. Public facilities had higher rates of providing finger/heel sticks than did private facilities. Interpretation of these results is challenging without additional information. It is possible that the necessary diagnostic capacity is lacking in public facilities in these countries.

Appropriateness of antimalarial treatment, either with ACT in more recent surveys or with the first-line antimalarial in older surveys, also revealed a large range of values across MCH priority countries. These results indicate varied levels of access to essential medications but do not provide reasons for successes or failures in provision of appropriate antimalarial treatment. Surveys in several countries showed very high use of appropriate antimalarials among those who received any antimalarial- 85 percent in Malawi (2010), 91 percentin Zambia (2013-14), and 96 percent in Rwanda (2010). These countries could be studied in order to identify the predictors of appropriate care. Are ACTs more available and affordable in these countries than elsewhere? Are behavior change and communications (BCC) programs superior? Are drug supplies better regulated?

In three countries (Malawi, Uganda, and Tanzania), appropriate treatment with ACT or other first-line antimalarials was significantly higher when care was sought from public than private sources. Many malaria-endemic countries have implemented subsidies to encourage appropriate use of ACT, which may only be available at public health facilities. Uganda and Tanzania were both a focus of the Affordable Medicines Facility-Malaria Program implemented from 2010-12. This program aimed to improve access to ACT by increasing availability, particularly through private outlets, and decreasing the price of ACT through subsidies. In these two countries, public sources of care seem to be linked to more appropriate use of antimalarials when compared with private sources.

Another important consideration when interpreting these results is that the national scale is not always the most relevant level at which to assess malaria indicators. In some settings, risk of malaria transmission varies substantially throughout the country or by season, and this range in risk is difficult to account for with household survey data. Patterns of care seeking for fever may be influenced by different factors in settings that have high malaria transmission risk than in those with lower risk, where fevers are likely to have causes other than malaria.

We know that in order to save lives, children need to receive ACT for malaria, antibiotics for pneumonia, and ORS and zinc for diarrhea. Yet coverage of these proven interventions remains far too low. In order to receive the correct treatment, children first must receive appropriate diagnosis, care, and counseling from a qualified provider. Our results show that the percentage of children with diarrhea, fever, and symptoms of ARI who reach the health system remains low in many high-mortality settings. Our results also provide information about where caregivers are taking their sick children. At the country level, we
hope these results will inform strategies for improving case management for childhood illness and directing resources and attention towards preferred sources of care. The results would most useful when interpreted within the landscape of child health interventions and programming, and with national childhood illness management goals in mind. Complementary studies with other data sources such as health management information system (HMIS) data, health facility data such as Service Provision Assessments (SPA), and qualitative research are needed to fill in critical gaps in knowledge about the health system, household context, and caregivers' motivations for seeking care and selecting particular sources of care.

References

Abt. Associates. n.d. Strengthening health outcomes through the private sector (shops). Abt. Associates. Available at http://abtassociates.com/projects/2011/strengthening-health-outcomes-through-the-private.aspx.
Baru, R.V. 2003. "Privatisation of health services: A South Asian perspective." Economic and Political Weekly 38 (42):4433-4437.
Bennett, A., T. Eisele, J. Keating, and J. Yukich. 2015. Global trends in care seeking and access to diagnosis and reatment of childhood illnesses. DHS Working Papers. Rockville, MD: ICF International. Available at https://www.dhsprogram.com/pubs/pdf/WP116/WP116.pdf.
Boschi-Pinto, C., R. Bahl, and J. Martines. 2009. "Limited progress in increasing coverage of neonatal and childhealth interventions in Africa and Asia." J Health Popul Nutr 27 (6):755-62.
Cellule de Planification et de Statistique (CPS/SSDSPF), Institut National de la Statistique (INSTAT/MPATP), INFO-STAT, and ICF International. 2014. Enquête démographique et de santé au Mali 2012-2013. Rockville, Maryland, USA: CPS, INSTAT, INFO-STAT, and ICF International.
Cellule de Planification et de Statistique du Ministère de la Santé (CPS/MS), d.l.I.e.d.C.D.M. Direction Nationale de la Statistique et de l'Informatique du Ministère de l'Économie, and Macro International Inc. 2007. Enquête démographique et de santé du Mali 2006. Calverton, Maryland, USA: CPS/DNSI et Macro International Inc.
Ellis, A.A., P. Winch, Z. Daou, K.E. Gilroy, and E. Swedberg. 2007. "Home management of childhood diarrhoea in southern Mali-implications for the introduction of zinc treatment." Social Science \& Medicine 64 (3):701-712.

Fernandez, A., J. Mondkar, and S. Mathai. 2003. "Urban slum-specific issues in neonatal survival." Indian Pediatr 40 (12):1161-6.
Geldsetzer, P., T.C. Williams, A. Kirolos, S. Mitchell, L.A. Ratcliffe, M.K. Kohli-Lynch, E.J.L. Bischoff, S. Cameron, and H. Campbell. 2014. "The recognition of and care seeking behaviour for childhood illness in developing countries: A systematic review." PLoS ONE 9 (4):e93427.

Gill, C.J., M. Young, K. Schroder, L. Carvajal-Velez, M. McNabb, S. Aboubaker, S. Qazi, and Z.A. Bhutta. 2013. "Bottlenecks, barriers, and solutions: Results from multicountry consultations focused on reduction of childhood pneumonia and diarrhoea deaths." The Lancet 381 (9876):1487-1498.

Hanson, K., L. Gilson, C. Goodman, A. Mills, R. Smith, R. Feachem, N.S. Feachem, T.P. Koehlmoos, and H. Kinlaw. 2008. "Is private health care the answer to the health problems of the world's poor?" PLoS Med 5 (11):e233.

Hazir, T., K. Begum, S. el Arifeen, A.M. Khan, M.H. Huque, N. Kazmi, S. Roy, S. Abbasi, Q.S.-u. Rahman, E. Theodoratou, M.S. Khorshed, K.M. Rahman, S. Bari, M.M.I. Kaiser, S.K. Saha, A.S.M.N.U. Ahmed, I. Rudan, J. Bryce, S.A. Qazi, and H. Campbell. 2013. "Measuring coverage in mnch: A prospective validation study in Pakistan and Bangladesh on measuring correct treatment of childhood pneumonia." PLoS Med 10 (5):e1001422.

Hodgins, S., T. Pullum, and L. Dougherty. 2013. "Understanding where parents take their sick children and why it matters: A multi-country analysis." Global Health: Science and Practice 1 (3):328-356.

International Finance Corporation, World Bank Group. 2008. "The business of health in Africa: Partnering with the private sector to improve people's lives."

Konde-Lule, J., S.N. Gitta, A. Lindfors, S. Okuonzi, V.O. Onama, and B.C. Forsberg. 2010. "Private and public health care in rural areas of Uganda." BMC Int Health Hum Rights 10:29.

Lagomarsino, G., S. Nachuk, and S.S. Kundra. 2009. Public stewardship of private providers in mixed health systems: Synthesis report from the Rockefeller Foundation-sponsored initiative on the role of the private sector in health systems. Washington DC: Results for Development Institute.

Liu, L., S. Oza, D. Hogan, J. Perin, I. Rudan, J.E. Lawn, S. Cousens, C. Mathers, and R.E. Black. 2015. "Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: An updated systematic analysis." The Lancet 385 (9966):430-440.

MacDonald, V. 2015. Personal communication.
MEASURE Evaluation, MEASURE DHS, President's Malaria Initiative, Roll Back Malaria Partnership, UNICEF, and WHO. 2013. Household survey indicators for malaria control.

Mutisya, M., B. Orindi, J. Emina, E. Zulu, and Y. Ye. 2010. "Is mortality among under-five children in Nairobi slums seasonal?" Trop Med Int Health 15 (1):132-9.

Prosnitz, D. 2015. Personal communication.
Sakai, R., A. Okumura, E. Marui, S. Niijima, and T. Shimizu. 2012. "Does fever phobia cross borders? The case of Japan." Pediatrics International 54 (1):39-44.

Soderlund, N., P. Mendoza-Arana, and J. Goudge. 2003. The new public/private mix in health: Exploring the changing landscape. Geneva: Global Forum for Helath Research.

Suomie, R.T. 2015. "Personal communication."
Treleaven, E., J. Liu, L.M. Prach, and C. Isiguzo. 2015. "Management of paediatric illnesses by patent and proprietary medicine vendors in nigeria." Malar J 14:232.

UNICEF. 2012. Pneumonia and diarrhoea: Tackling the deadliest diseases for the world's poorest children. New York, New York: UNICEF. Available at http://www.unicef.org/eapro/Pneumonia_and_Diarrhoea_ Report_2012.pdf.

UNICEF. 2013. Committing to child survival: A promise renewed progress report. Available at http://www.unicef.org/lac/Committing_to_Child_Survival_APR_9_Sept_2013.pdf.

UNICEF, and WHO. 2009. Diarrhoea: Why children are still dying and what can be done. Available at http://www.unicef.org/media/files/Final_Diarrhoea_Report_October_2009_final.pdf.

UNICEF, WHO, World Bank, and UN-DESA Population Division. 2014. Levels and trends in child mortality 2014. New York: United Nations Children’s Fund.

USAID. Malaria communities program. Available at http://www.mchip.net/node/48.
USAID. 2009. Usaid awards five-year grant strengthening health outcomes through private sector (shops) Available at http://www.usaid.gov/content/usaid-awards-five-year-grant-strengthening-health-outcomes-through-private-sector-shops.

USAID. 2013. Global health programs progress report to congress fy 2012. Available at http://pdf.usaid.gov/pdf_docs/pdacx520.pdf.

Wang, W., and V. MacDonald. 2009. Introducing zinc through the private sector for the treatment of childhood diarrhea: Results from a population-based survey in Nepal. Bethesda, MD: The Social Marketing Plus for Diarrheal Disease Control: Point-of-Use Water Disinfection and Zinc Treatment (POUZN) Project, Abt Associates Inc. Available at http://www.shopsproject.org/sites/default/files/resources/5375_file_ POUZN_Research_Report_FINAL_Jan2010.pdf.

White, P., and L. Levin. 2006. The potential of private sector midwives in reaching millennium development goals. Bethesda, MD: Abt Associates Inc.

WHO. 2005. Diarrhea treatment guidelines- including new recommendations for the use of ORS and zinc supplementation for clinic-based healthcare workers: Who/Unicef joint statement. Geneva: WHO.
WHO. 2014. Integrated management of childhood illness chart booklet. Available at http://apps.who.int/iris/bitstream/10665/104772/16/9789241506823_Chartbook_eng.pdf.
WHO. 2015. Guidelines for the treatment of malaria: Third edition. WHO. Available at http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_eng.pdf?ua=1.
WHO, and UNICEF. 2004. Joint statement on the clinical management of acute diarrhoea. Available at http://www.unicef.org/publications/files/ENAcute_Diarrhoea_reprint.pdf.

WHO, and UNICEF. 2012. Who/unicef joint statement on integrated community case management (ICCM) -- an equity-focused strategy to improve access to essential treatment services for children. Available at http://www.unicef.org/health/files/iCCM_Joint_Statement_2012.pdf.

WHO, and UNICEF. 2013. Ending preventable child deaths from pneumonia and diarrhoea by 2025: The integrated global action plan for pneumonia and diarrhoea (GAPPD).

Appendix

Figure A1. Comparison of care seeking from public versus private facilities for fever, USAID MCH priority countries

Figure A2. Comparison of care seeking from public versus private facilities for symptoms of ARI, USAID MCH priority countries

Figure A3. Comparison of care seeking from public versus private facilities for diarrhea, USAID MCH priority countries

Table A1. Sources of care for fever by place of residence, USAID MCH priority countries

Survey	Place of residence	Disaggregated Sources of Care ${ }^{1}$														Summary Categories used throughout Report ${ }^{2}$				$\begin{gathered} \text { Any } \\ \text { Care }^{3} \end{gathered}$
		N	Public Hospital	Public Periph HF	$\begin{aligned} & \text { Private } \\ & \text { Clinic(ian) } \end{aligned}$	$\begin{aligned} & \text { CHW- } \\ & \text { Public } \end{aligned}$	CHW. Private	Reli-giousNGO	$\begin{aligned} & \text { Phar- } \\ & \text { macy } \end{aligned}$	Shop	Market Informal Shop	$\begin{aligned} & \text { Non- } \\ & \text { allo- } \\ & \text { pathic } \end{aligned}$	Other	Phar- macy Only	$\begin{aligned} & \text { Shop } \\ & \text { Only } \\ & \hline \end{aligned}$	Public	Private	Pharmacy Only	Other	
Bangladesh 2007	Urban	434	4.1	7.9	24.0	0.0	0.0	1.3	24.9	0.0	0.0	9.9	5.5	23.9	0.0	12.0	25.2	23.9	15.3	74.8
Bangladesh 2007	Rural	1751	1.5	6.8	12.1	0.0	0.0	0.5	23.1	1.0	0.0	23.6	4.9	22.8	1.0	8.3	12.6	22.8	29.4	71.4
Bangladesh 2007	All	2185	2.0	7.0	14.5	0.0	0.0	0.7	23.4	0.8	0.0	20.9	5.0	23.0	0.8	9.0	15.1	23.0	26.6	72.0
Bangladesh 2011	Urban	595	3.3	7.7	44.5	0.0	0.3	0.5	19.8	0.0	0.0	2.7	0.5	18.5	0.0	10.9	45.3	18.5	3.1	76.3
Bangladesh 2011	Rural	2469	1.5	6.9	42.6	0.0	0.1	0.5	21.1	0.0	0.0	4.5	0.5	19.1	0.0	8.3	43.1	19.1	5.1	74.3
Bangladesh 2011	All	3064	1.9	7.0	42.9	0.0	0.2	0.5	20.8	0.0	0.0	4.2	0.5	19.0	0.0	8.8	43.5	19.0	4.7	74.7
Congo DR 2007	Urban	950	7.4	14.7	23.2	0.0	3.8	0.0	19.5	0.7	0.0	1.3	2.4	17.6	0.7	21.4	27.0	17.6	4.5	67.8
Congo DR 2007	Rural	1519	2.7	24.8	7.1	0.0	9.9	0.0	9.9	0.9	0.0	4.1	2.2	9.2	0.9	27.3	16.9	9.2	7.1	57.6
Congo DR 2007	All	2469	4.5	20.9	13.3	0.0	7.6	0.0	13.6	0.9	0.0	3.0	2.3	12.4	0.8	25.0	20.8	12.4	6.1	61.5
Congo DR 2013-14	Urban	1579	3.9	16.5	17.9	0.0	0.0	0.0	21.1	0.0	0.1	1.2	2.1	19.2	0.0	20.0	17.9	19.2	3.4	59.2
Congo DR 2013-14	Rural	3434	1.9	30.5	8.6	0.1	0.0	0.0	14.5	0.3	0.5	3.4	0.9	13.4	0.3	32.4	8.6	13.4	5.1	58.5
Congo DR 2013-14	All	5013	2.6	26.1	11.5	0.1	0.0	0.0	16.6	0.2	0.4	2.7	1.3	15.2	0.2	28.5	11.5	15.2	4.6	58.7
Ethiopia 2005	Urban	121	10.6	19.1	13.2	0.6	0.0	2.5	3.3	0.0	0.3	0.0	0.1	0.8	0.0	30.3	15.7	0.8	0.3	46.4
Ethiopia 2005	Rural	1765	3.9	8.7	2.2	0.4	0.0	0.5	1.5	0.0	0.3	0.4	0.0	1.0	0.0	13.1	2.7	1.0	0.7	17.2
Ethiopia 2005	All	1886	4.4	9.4	2.9	0.4	0.0	0.6	1.6	0.0	0.3	0.4	0.0	1.0	0.0	14.2	3.5	1.0	0.7	19.1
Ethiopia 2011	Urban	226	4.3	19.1	16.0	0.0	0.0	1.0	3.8	0.0	0.0	0.0	0.0	3.4	0.0	22.2	16.4	3.4	0.0	41.2
Ethiopia 2011	Rural	1659	0.7	15.6	6.2	0.0	0.0	0.7	0.9	0.7	0.0	0.5	0.0	0.6	0.7	16.0	6.7	0.6	1.2	24.2
Ethiopia 2011	All	1885	1.1	16.1	7.4	0.0	0.0	0.7	1.2	0.6	0.0	0.4	0.0	0.9	0.6	16.8	7.9	0.9	1.1	26.2
Ghana 2003	Urban	250	34.4	10.4	10.9	0.6	0.0	0.0	17.7	0.5	0.0	0.5	1.0	16.2	0.0	45.4	10.9	16.2	2.0	73.6
Ghana 2003	Rural	460	20.8	17.0	4.9	0.1	0.0	0.0	26.5	0.5	0.0	1.5	4.0	25.6	0.5	36.9	4.9	25.6	6.0	72.6
Ghana 2003	All	710	25.6	14.7	7.0	0.3	0.0	0.0	23.4	0.5	0.0	1.2	3.0	22.3	0.3	39.9	7.0	22.3	4.6	73.0
Ghana 2008	Urban	197	33.8	8.1	18.5	0.0	0.0	0.0	21.4	0.0	1.5	0.4	0.5	19.6	0.0	41.6	18.5	19.6	2.3	81.5
Ghana 2008	Rural	347	16.1	24.5	4.9	0.0	0.0	0.3	10.5	1.4	2.9	0.3	3.4	10.0	1.4	40.5	5.2	10.0	8.1	63.7
Ghana 2008	All	544	22.5	18.6	9.8	0.0	0.0	0.2	14.5	0.9	2.4	0.4	2.3	13.5	0.9	40.9	10.0	13.5	6.0	70.1
Haiti 2005-6	Urban	466	7.7	9.6	18.4	0.0	0.0	5.1	3.9	2.1	1.9	2.5	5.9	3.9	2.1	17.3	23.4	3.9	10.4	49.8
Haiti 2005-6	Rural	1020	1.1	11.9	13.8	0.0	0.0	8.6	1.2	1.5	0.4	2.4	3.2	1.1	1.4	12.9	22.4	1.1	6.8	41.4
Haiti 2005-6	All	1486	3.1	11.2	15.3	0.0	0.0	7.5	2.1	1.7	0.9	2.4	4.1	2.0	1.6	14.3	22.7	2.0	7.9	44.0
Hatiti 2012	Urban	611	8.9	6.7	23.7	0.0	0.2	8.5	2.0	0.7	0.6	0.1	3.9	1.2	0.6	15.4	31.7	1.2	5.3	51.5
Haiti 2012	Rural	1124	3.9	10.1	15.0	0.0	0.3	9.9	0.4	1.5	1.7	0.9	5.8	0.2	1.5	13.9	25.1	0.2	8.7	45.8
Haiti 2012	All	1735	5.6	8.9	18.0	0.0	0.3	9.4	0.9	1.2	1.3	0.6	5.1	0.5	1.1	14.4	27.4	0.5	7.5	47.8
India 2005-6	Urban	1918	8.1	4.5	65.3	0.0	0.0	0.3	3.2	0.5	0.0	3.1	1.2	2.8	0.5	12.5	65.7	2.8	4.6	83.0
India 2005-6	Rural	5934	3.8	9.8	53.0	0.0	0.0	0.4	6.4	1.0	0.0	3.4	1.8	6.0	0.9	13.5	53.4	6.0	6.1	76.6
India 2005-6	All	7852	4.9	8.5	56.0	0.0	0.0	0.3	5.6	0.9	0.0	3.3	1.6	5.2	0.8	13.2	56.4	5.2	5.7	78.1
Indonesia 2007	Urban	1937	2.5	25.0	41.3	0.0	5.7	1.0	12.1	9.6	0.0	0.4	1.0	11.0	8.5	27.1	47.9	11.0	11.1	92.8
Indonesia 2007	Rural	3096	1.8	23.5	26.3	0.0	15.1	1.4	7.6	15.5	0.0	2.1	2.6	7.1	14.7	25.0	42.3	7.1	19.6	89.6
Indonesia 2007	All	5033	2.1	24.1	32.1	0.0	11.5	1.2	9.4	13.2	0.0	1.5	2.0	8.6	12.3	25.8	44.5	8.6	16.3	90.8
Indonesia 2012	Urban	2400	2.2	25.7	46.3	0.0	6.0	0.0	15.0	3.7	0.0	1.2	1.8	12.4	3.0	27.7	52.1	12.4	6.7	90.4
Indonesia 2012	Rural	2686	1.5	21.8	33.5	0.0	20.0	0.0	7.7	9.9	0.0	2.7	2.0	6.9	8.6	23.0	52.3	6.9	14.3	88.8
Indonesia 2012	All	5086	1.8	23.6	39.6	0.0	13.4	0.0	11.1	7.0	0.0	2.0	1.9	9.5	5.9	25.2	52.2	9.5	10.7	89.6
Kenya 2003	Urban	423	13.3	15.9	21.2	0.0	0.2	3.3	17.1	5.1	0.0	0.7	1.3	15.5	4.9	29.2	24.7	15.5	7.1	75.2
Kenya 2003	Rural	1833	5.1	24.3	13.2	0.0	0.7	2.8	14.2	7.8	0.0	0.9	1.5	13.0	7.4	29.0	16.6	13.0	10.3	66.9
Kenya 2003	All	2255	6.6	22.7	14.7	0.0	0.6	2.9	14.7	7.3	0.0	0.9	1.5	13.5	6.9	29.0	18.1	13.5	9.7	68.4
Kenya 2008-9	Urban	223	23.8	17.7	9.0	0.0	0.1	3.6	8.4	2.5	0.0	0.3	0.0	8.4	2.4	40.6	12.2	8.4	2.8	63.0
Kenya 2008-9	Rural	1079	9.7	29.4	7.6	0.0	0.1	2.0	7.7	6.7	0.0	0.2	0.8	7.7	5.9	38.7	9.8	7.7	7.6	62.2
Kenya 2008-9	All	1302	12.1	27.4	7.9	0.0	0.1	2.3	7.8	6.0	0.0	0.2	0.7	7.8	5.3	39.0	10.2	7.8	6.8	62.3
Liberia 2007	Urban	450	16.6	29.5	22.7	0.0	0.0	0.0	14.2	2.4	0.0	2.0	2.3	10.4	2.3	46.0	22.7	10.4	6.3	80.9
Liberia 2007	Rural	1127	5.7	26.2	21.2	0.0	0.0	0.0	7.9	7.1	0.0	8.8	6.8	7.4	6.8	31.8	21.2	7.4	20.6	74.4

Table A1. - Continued

Summary Categories used throughout
Report ${ }^{2}$

		Phar- macy Only	Other	Any Care 3

Disaggregated Sources of Care ${ }^{1}$													
Survey	Place of residence	N	Public Hospital	Public Periph HF	Private Clinic(ian)	CHW- Public	CHWPrivate	Reli-giousNGO	Pharmacy	Shop	Market/ Informal Shop	Non-allopathic	Other
Liberia 2007	All	1577	8.8	27.1	21.6	0.0	0.0	0.0	9.7	5.7	0.0	6.9	5.5
Liberia 2013	Urban	793	14.3	22.4	25.3	0.0	0.0	0.0	16.5	2.1	2.3	0.9	0.1
Liberia 2013	Rural	935	9.1	35.5	9.4	0.2	0.0	0.0	9.0	2.3	11.7	2.3	0.7
Liberia 2013	All	1728	11.5	29.5	16.7	0.1	0.0	0.0	12.5	2.2	7.4	1.7	0.4
Madagascar 2003-4	Urban	214	12.3	17.9	29.6	0.0	0.0	0.0	1.0	1.6	0.0	0.3	0.3
Madagascar 2003-4	Rural	986	1.1	24.4	8.3	0.0	0.0	0.0	0.9	2.9	0.0	1.5	1.2
Madagascar 2003-4	All	1201	3.1	23.2	12.1	0.0	0.0	0.0	0.9	2.7	0.0	1.3	1.1
Madagascar 2008-9	Urban	164	7.7	15.9	39.3	0.0	0.4	0.0	1.4	0.3	0.0	0.0	0.0
Madagascar 2008-9	Rural	952	2.5	27.8	8.2	0.0	0.9	0.0	0.5	4.2	0.0	1.6	0.1
Madagascar 2008-9	All	1116	3.3	26.0	12.7	0.0	0.8	0.0	0.6	3.7	0.0	1.4	0.0
Malawi 2010	Urban	786	29.6	23.5	12.6	0.0	0.0	4.5	0.0	3.3	0.0	0.0	0.7
Malami 2010	Rural	5428	10.9	38.6	4.8	1.9	0.1	9.9	0.0	8.3	0.0	0.6	0.9
Malami 2010 ${ }^{4}$	All	6214	13.3	36.7	5.8	1.6	0.1	9.2	0.0	7.7	0.0	0.5	0.9
Mali 2006	Urban	558	4.1	36.6	4.8	0.0	1.3	0.0	11.3	0.0	2.6	12.4	0.9
Mali 2006	Rural	1680	0.6	24.9	0.6	0.0	2.2	0.0	0.9	2.4	8.5	12.4	2.2
Mali 2006	All	2238	1.5	27.8	1.7	0.0	2.0	0.0	3.5	1.8	7.0	12.4	1.9
Mali 2012-13	Urban	154	2.4	39.8	7.1	0.0	0.3	0.0	10.7	0.0	6.3	5.4	1.8
Mali 2012-13	Rural	676	0.0	22.2	0.5	0.0	1.0	0.0	2.4	0.9	8.3	9.5	2.6
Mali 2012-13	All	830	0.5	25.4	1.7	0.0	0.9	0.0	3.9	0.8	8.0	8.7	2.5
Mozambique 2003	Urban	731	12.7	51.2	1.6	0.0	0.0	0.3	1.4	0.0	0.8	1.4	2.5
Mozambique 2003	Rural	1778	2.8	41.9	0.9	0.3	0.0	1.1	0.2	0.0	2.7	3.3	3.4
Mozambique 2003	All	2509	5.7	44.6	1.1	0.2	0.0	0.9	0.6	0.0	2.1	2.7	3.1
Mozambique 2011	Urban	388	69.9	0.2	1.5	1.2	0.0	0.0	2.0	0.0	0.0	1.0	0.5
Mozambique 2011	Rural	1069	49.1	1.1	0.0	4.0	0.0	0.0	0.2	0.0	2.0	3.0	0.7
Mozambique 2011	All	1457	54.6	0.8	0.4	3.3	0.0	0.0	0.7	0.0	1.4	2.5	0.6
Nepal 2006	Urban	145	15.8	4.1	20.3	0.1	0.0	1.3	27.3	0.2	0.0	2.6	0.2
Nepal 2006	Rural	745	3.9	18.1	7.7	3.2	0.0	1.5	26.0	0.6	0.0	1.4	0.0
Nepal 2006	All	890	5.9	15.8	9.8	2.7	0.0	1.5	26.2	0.5	0.0	1.6	0.0
Nepal 2011	Urban	91	12.8	5.7	36.0	0.5	0.0	0.6	27.3	0.0	0.0	0.5	1.4
Nepal 2011	Rural	869	2.1	14.9	21.7	2.1	0.0	0.6	29.9	0.1	0.0	0.7	1.1
Nepal 2011	All	960	3.2	14.1	23.0	1.9	0.0	0.6	29.6	0.1	0.0	0.7	1.1
Nigeria 2008	Urban	987	18.6	9.7	12.1	0.8	0.6	0.0	30.0	2.8	0.0	0.9	0.9
Nigeria 2008	Rural	2981	9.4	15.6	7.8	0.6	0.9	0.0	27.7	6.5	0.0	1.3	0.9
Nigeria 2008	All	3968	11.7	14.1	8.8	0.6	0.8	0.0	28.3	5.6	0.0	1.2	0.9
Nigeria 2013	Urban	1262	16.2	10.8	9.0	0.7	0.0	0.0	37.1	0.0	0.4	1.9	1.0
Nigeria 2013	Rural	2370	9.7	14.7	3.9	0.4	0.0	0.0	35.9	3.6	1.6	4.6	0.5
Nigeria 2013	All	3632	12.0	13.3	5.7	0.5	0.0	0.0	36.4	2.4	1.2	3.7	0.6
Pakistan 2006-7	Urban	791	7.7	0.7	70.0	0.7	0.0	0.0	0.5	1.3	0.0	3.6	0.5
Pakistan 2006-7	Rural	1777	8.7	1.9	64.9	0.3	0.0	0.0	0.8	2.7	0.0	2.0	0.2
Pakistan 2006-7	All	2569	8.4	1.5	66.5	0.4	0.0	0.0	0.7	2.3	0.0	2.5	0.3
Pakistan 2012-13	Urban	1198	9.8	0.6	72.8	0.0	0.0	0.0	0.6	1.4	0.0	0.2	0.4
Pakistan 2012-13	Rural	2954	6.9	1.2	70.0	0.2	0.0	0.0	0.5	1.7	0.0	0.9	0.3
Pakistan 2012-13	All	4153	7.7	1.0	70.8	0.2	0.0	0.0	0.5	1.6	0.0	0.7	0.3
Rwanda 2005	Urban	289	7.8	23.5	13.8	0.2	0.0	0.0	18.9	1.2	0.0	4.9	9.4
Rwanda 2005	Rural	1757	1.5	21.5	2.2	0.7	0.0	0.0	15.7	1.9	0.0	6.5	9.5

Table A1. - Continued

			Disaggregated Sources of Care ${ }^{1}$													Summary Categories used throughout Report ${ }^{2}$				
Survey	Place of residence	N	Public Hospital	Public Periph HF	Private Clinic(ian)	CHW- Public	CHW- Private	Reli-giousNGO	Pharmacy	Shop	Market/ Informal Shop	Non-allopathic	Other	Pharmacy Only	Shop Only	Public	Private	Pharmacy Only	Other	Any Care ${ }^{3}$
Rwanda 2005	All	2046	2.4	21.7	3.8	0.6	0.0	0.0	16.1	1.8	0.0	6.3	9.5	16.0	1.8	24.7	3.8	16.0	17.2	60.8
Rwanda 2010	Urban	172	2.6	27.9	12.7	13.5	0.0	0.0	8.1	0.0	0.0	0.9	1.2	7.3	0.0	44.0	12.7	7.3	2.1	65.3
Rwanda 2010	Rural	1183	1.5	24.9	0.5	15.9	0.0	0.1	2.8	0.0	0.0	1.4	4.0	2.6	0.0	40.3	0.6	2.6	5.3	48.7
Rwanda 2010	All	1355	1.6	25.3	2.1	15.6	0.0	0.1	3.4	0.0	0.0	1.3	3.6	3.2	0.0	40.8	2.1	3.2	4.9	50.8
Senegal 2005	Urban	1097	5.3	33.9	13.2	0.8	0.0	2.9	10.6	2.5	0.0	1.9	0.1	9.8	1.9	39.4	16.2	9.8	4.2	67.3
Senegal 2005	Rural	1794	1.0	31.1	7.1	0.4	0.3	0.9	2.0	6.8	0.0	2.7	0.3	2.0	6.7	32.5	8.3	2.0	9.9	51.0
Senegal 2005	All	2891	2.7	32.2	9.4	0.6	0.2	1.7	5.3	5.2	0.0	2.4	0.2	5.0	4.8	35.2	11.3	5.0	7.7	57.2
Senegal 2010-11	Urban	1211	12.1	30.4	6.6	1.1	0.5	0.0	8.9	0.2	0.4	1.3	3.1	8.3	0.2	43.6	7.1	8.3	5.0	62.1
Senegal 2010-11	Rural	1252	3.0	30.6	1.3	0.9	1.1	0.0	2.8	1.7	0.5	3.1	1.5	2.7	1.7	34.5	2.5	2.7	6.5	45.5
Senegal 2010-11	All	2463	7.5	30.5	3.9	1.0	0.8	0.0	5.8	1.0	0.4	2.2	2.3	5.5	1.0	39.0	4.7	5.5	5.8	53.7
Tanzania 2004-5	Urban	351	22.5	33.8	18.3	0.0	0.0	4.6	15.1	0.0	0.0	0.0	0.0	15.1	0.0	55.9	23.0	15.1	0.0	92.8
Tanzania 20045	Rural	1598	4.7	42.8	5.7	0.2	0.0	5.4	23.7	0.0	0.0	0.0	2.1	22.2	0.0	47.4	11.0	22.2	2.1	82.0
Tanzania 2004-5	All	1949	7.9	41.2	8.0	0.1	0.0	5.2	22.1	0.0	0.0	0.0	1.7	20.9	0.0	48.9	13.2	20.9	1.7	83.9
Tanzania 2010	Urban	454	18.6	32.0	16.6	0.0	0.0	0.0	14.6	0.0	0.0	0.0	1.5	12.2	0.0	50.2	16.6	12.2	1.5	79.8
Tanzania 2010	Rural	1300	2.4	51.6	3.1	0.0	0.0	0.3	23.0	0.0	0.0	0.0	0.7	21.4	0.0	53.3	3.4	21.4	0.7	78.4
Tanzania 2010	All	1754	6.6	46.6	6.6	0.0	0.0	0.2	20.8	0.0	0.0	0.0	0.9	19.0	0.0	52.5	6.8	19.0	0.9	78.8
Uganda 2006	Urban	218	21.3	10.7	44.5	2.5	0.0	0.0	8.6	0.0	0.0	0.0	0.0	8.3	0.0	34.5	44.5	8.3	0.0	85.1
Uganda 2006	Rural	2919	4.5	23.7	45.0	2.9	2.0	0.0	6.8	1.4	0.0	0.7	0.8	6.3	1.2	30.7	46.8	6.3	3.0	83.0
Uganda 2006	All	3138	5.6	22.8	44.9	2.9	1.9	0.0	6.9	1.3	0.0	0.7	0.8	6.4	1.1	30.9	46.6	6.4	2.8	83.2
Uganda 2011	Urban	330	12.1	16.0	62.2	0.2	1.7	0.0	3.5	0.9	0.2	0.0	1.8	3.3	0.9	28.3	63.6	3.3	2.9	92.7
Uganda 2011	Rural	2712	4.8	31.5	45.1	0.9	0.7	0.0	1.6	2.8	0.1	0.3	0.7	1.3	2.5	36.8	45.8	1.3	4.0	84.0
Uganda 2011	All	3042	5.6	29.8	47.0	0.8	0.8	0.0	1.8	2.6	0.1	0.3	0.8	1.5	2.3	35.9	47.8	1.5	3.9	84.9
Zambia 2007	Urban	276	8.9	54.4	1.7	0.0	0.4	0.6	3.1	4.4	0.0	0.0	0.3	1.3	4.0	63.1	2.7	1.3	4.6	71.1
Zambia 2007	Rural	768	3.0	49.9	1.0	0.0	1.9	6.8	1.4	5.4	0.0	1.6	1.5	1.3	4.9	52.5	9.7	1.3	8.5	70.6
Zambia 2007	All	1044	4.6	51.1	1.2	0.0	1.5	5.2	1.9	5.1	0.0	1.1	1.2	1.3	4.7	55.3	7.8	1.3	7.5	70.7
Zambia 2013	Urban	802	8.6	62.1	5.0	0.4	0.0	1.1	1.5	2.2	0.3	0.0	0.4	1.3	1.9	70.6	6.1	1.3	2.9	79.4
Zambia 2013	Rural	1853	2.9	59.9	0.1	4.0	0.3	3.3	0.7	3.0	0.0	1.0	0.6	0.5	2.4	66.5	3.7	0.5	4.5	74.0
Zambia 2013	All	2655	4.6	60.5	1.6	2.9	0.2	2.6	0.9	2.7	0.1	0.7	0.5	0.7	2.2	67.7	4.4	0.7	4.0	75.7

 Alopathic, and Other disaggregated sources of care categories.
${ }^{3}$ Ary Care includes children who received care from any source outside the home (including all disaggregated source of care categories).

Table A2. Sources of care for symptoms of ARI by place of residence, USAID MCH priority countries

 \qquad

Table A2. - Continued

Survey	Place of residence	N	Disaggregated Sources of Care ${ }^{1}$													$\operatorname{Summary~Categories~used~throughout~}_{\text {Report }}$				$\begin{gathered} \text { Any } \\ \text { Care }^{3} \end{gathered}$
			Public Hospital	$\begin{aligned} & \hline \text { Public } \\ & \text { Periph } \end{aligned}$ HF	Private Clinic(ian)	CHWPublic	CHWPrivate	Reli-giousNGO	Pharmacy	Shop	Market/ Informal Shop	Non-allopathic	Other	$\begin{aligned} & \hline \text { Phar- } \\ & \text { macy } \\ & \text { Only } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Shop } \\ & \text { Only } \end{aligned}$	Public	Private	$\begin{aligned} & \hline \text { Phar- } \\ & \text { macy } \\ & \text { Only } \\ & \hline \end{aligned}$	Other	
Madagascar 2008-9	Unban	52	7.5	17.6	35.2	0.0	1.3	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	25.2	36.5	1.0	0.0	60.9
Madagascar 2008-9	Rural	292	1.9	28.7	10.0	0.0	0.8	0.0	0.8	5.7	0.0	1.8	0.2	0.8	5.3	30.1	10.8	0.8	7.7	47.2
Madagascar 2008-9	Al	345	28	27.0	13.9	0.0	0.9	0.0	0.9	4.8	0.0	1.5	0.1	0.9	4.5	29.4	14.7	0.9	6.5	49.3
Malani 2004	Unban	152	25.9	14.7	2.0	0.0	0.0	4.2	0.4	16.8	0.0	2.0	0.5	0.4	16.8	40.6	6.2	0.4	19.3	66.5
Malavi 2004	Rural	1688	5.1	22.3	3.0	0.6	0.1	4.9	0.0	30.3	0.0	3.2	1.0	0.0	29.8	27.9	8.0	0.0	34.0	69.1
Malavi 2004	Al	1840	6.8	21.6	2.9	0.5	0.1	4.8	0.0	29.2	0.0	3.1	0.9	0.0	28.7	29.0	7.8	0.0	32.8	68.9
Malani 2010	Unban	168	33.9	20.5	10.8	0.0	0.0	3.0	0.0	2.0	0.0	0.0	0.0	0.0	0.6	54.4	13.8	0.0	2.0	67.6
Malani 2010	Rural	1053	14.1	40.2	8.1	1.6	0.1	10.5	0.1	6.1	0.0	1.0	0.8	0.0	5.5	54.5	18.2	0.0	8.0	7.5
Malani 2010	Al	1221	16.8	37.5	8.5	1.4	0.1	9.5	0.0	5.5	0.0	0.9	0.7	0.0	4.8	54.5	17.6	0.0	7.2	76.1
Mali 2006	Unban	188	4.7	38.6	7.2	0.0	0.8	0.0	10.9	0.0	25	5.5	1.0	9.6	0.0	43.0	8.0	9.6	9.0	69.1
Mali 2006	Rural	518	0.8	31.6	0.7	0.0	0.4	0.0	0.6	1.3	8.1	11.3	2.0	0.4	1.3	32.4	1.2	0.4	22.1	55.5
Mali 2006	Al	706	19	33.4	2.4	0.0	0.5	0.0	3.4	1.0	6.6	9.8	1.7	29	1.0	35.2	3.0	2.9	18.6	59.1
Mali 2012-13	Unban	20	(3.9)	(27.9)	(10.5)	(0.0)	(0.0)	(0.0)	(13.0)	(0.0)	(0.0)	(9.2)	(3.3)	(13.0)	(0.0)	(27.9)	(10.5)	(13.0)	(9.2)	(60.7)
Mali 2012-13	Rural	138	0.0	24.6	0.4	0.0	0.0	0.0	3.7	1.1	18.6	9.5	3.8	3.2	1.1	24.6	0.4	3.2	30.3	56.9
mali 2012-13	Al	158	0.5	25.0	1.7	0.0	0.0	0.0	4.8	0.9	16.2	9.4	3.8	4.5	0.9	25.0	1.7	4.5	27.6	57.4
Mbzambique 2003	Unban	335	17.3	41.3	1.8	0.0	0.0	0.2	1.7	0.0	0.6	2.5	1.7	1.6	0.0	58.0	2.0	1.6	4.8	65.9
Mozambique 2003	Rural	583	4.2	47.7	0.5	0.5	0.0	1.3	0.3	0.0	3.0	2.7	2.6	0.3	0.0	52.3	1.8	0.3	8.3	62.3
Mozambique 2003	Al	919	9.0	45.4	1.0	0.3	0.0	0.9	0.8	0.0	2.1	2.6	2.3	0.8	0.0	54.4	1.8	0.8	7.0	63.6
Mbzambique 2011	Unban	50	64.4	0.0	0.0	1.8	0.0	0.0	1.4	0.0	0.0	1.8	2.2	1.4	0.0	64.4	0.0	1.4	3.9	68.0
Mbzambique 2011	Rural	115	44.0	0.4	0.0	3.0	0.0	0.0	0.0	0.0	0.4	4.0	0.8	0.0	0.0	47.0	0.0	0.0	4.8	49.6
Mbzambique 2011	All	166	50.2	0.3	0.0	2.6	0.0	0.0	0.4	0.0	0.3	3.3	1.2	0.4	0.0	52.3	0.0	0.4	4.5	55.1
Nepal 2006	Unban	33	10.9	5.0	37.9	0.0	0.0	1.3	20.6	0.3	0.0	0.0	0.0	17.9	0.3	15.8	39.3	17.9	0.3	71.9
Nepal 2006	Rural	244	7.9	22.1	11.3	1.9	0.0	3.3	25.6	0.6	0.0	1.5	0.0	22.9	0.0	28.2	14.5	22.9	2.0	65.2
Nepal 2006	All	277	8.3	20.1	14.4	1.7	0.0	3.1	25.0	0.5	0.0	1.3	0.0	22.3	0.0	26.7	17.4	22.3	1.8	66.0
Nepal 2011	Unban	24	28.2	4.5	35.5	0.9	0.0	0.0	26.2	0.0	0.0	0.0	0.0	20.3	0.0	33.5	35.5	20.3	0.0	89.3
Nepal 2011	Rural	215	2.3	20.1	23.6	2.6	0.0	1.4	30.9	0.0	0.0	1.7	1.3	28.1	0.0	24.1	25.1	28.1	3.0	76.7
Nepal 2011	All	238	4.9	18.6	24.8	2.4	0.0	1.3	30.4	0.0	0.0	1.5	1.2	27.3	0.0	25.1	26.1	27.3	2.7	78.0
Nigeria 2008	Unban	172	18.0	6.4	9.1	0.0	0.0	0.0	38.8	3.9	0.0	2.8	0.5	37.7	3.9	24.4	9.1	37.7	7.1	76.8
Nigeria 2008	Rural	519	8.6	13.3	8.2	1.2	0.4	0.0	27.2	8.7	0.0	1.9	0.1	26.3	7.9	22.8	8.6	26.3	10.6	66.2
Nigeria 2008	All	690	10.9	11.6	8.5	0.9	0.3	0.0	30.1	7.5	0.0	2.1	0.2	29.2	6.9	23.2	8.7	29.2	9.8	68.8
Nigeria 2013	Unban	154	24.2	10.9	12.6	0.0	0.0	0.0	33.8	0.0	0.0	2.0	1.7	31.9	0.0	35.1	12.6	31.9	3.7	79.5
Nigeria 2013	Rural	411	10.8	15.8	3.2	0.2	0.0	0.0	32.5	6.2	3.2	5.8	0.5	31.9	6.0	26.7	3.2	31.9	14.9	75.8
Nigeria 2013	All	565	14.5	14.4	5.8	0.1	0.0	0.0	32.8	4.5	2.3	4.8	0.8	31.9	4.3	29.0	5.8	31.9	11.8	76.8
Pakistan 2006-7	Unban	323	8.0	1.2	76.3	0.7	0.0	0.0	0.0	1.2	0.0	3.4	0.3	0.0	1.2	9.9	76.3	0.0	4.9	88.5
Pakistan 2006-7	Rural	854	8.0	1.7	67.4	0.0	0.0	0.0	0.5	2.2	0.0	2.1	0.2	0.5	2.2	9.7	67.4	0.5	4.5	81.3
Pakistan 2006-7	All	1178	8.0	1.5	69.9	0.2	0.0	0.0	0.4	1.9	0.0	2.5	0.2	0.4	1.9	9.7	69.9	0.4	4.6	83.3
Pakistan 2012-13	Unban	478	9.3	0.0	77.6	0.0	0.0	0.0	0.3	0.1	0.0	0.0	0.1	0.3	0.1	9.4	77.6	0.3	0.2	86.7
Pakistan 2012-13	Rural	1273	8.1	1.0	71.4	0.4	0.0	0.0	0.8	1.7	0.0	0.2	0.1	0.6	1.7	9.4	71.4	0.6	2.0	82.2
Pakistan 2012-13	All	1751	8.4	0.7	73.1	0.3	0.0	0.0	0.7	1.3	0.0	0.1	0.1	0.5	1.2	9.4	73.1	0.5	1.5	83.5
Rwanda 2005	Unban	211	5.4	20.8	14.6	0.5	0.0	0.0	18.5	1.2	0.0	3.7	13.2	18.3	0.9	26.7	14.6	18.3	17.5	75.5
Rwanda 2005	Rural	1121	19	21.2	1.9	0.5	0.0	0.0	15.6	2.6	0.0	8.2	11.8	15.5	2.6	23.6	1.9	15.5	22.3	61.9
Rwanda 2005	All	1332	2.5	21.2	3.9	0.5	0.0	0.0	16.1	2.4	0.0	7.5	12.0	15.9	2.3	24.1	3.9	15.9	21.5	64.1
Rwanda 2010	Unban	54	3.2	41.8	21.0	9.8	0.0	0.0	5.8	0.0	0.0	0.0	1.9	5.8	0.0	54.8	21.0	5.8	1.9	83.5
Rwanda 2010	Rural	269	1.1	33.9	0.0	13.6	0.0	0.0	3.2	0.0	0.0	1.2	8.7	3.2	0.0	45.1	0.0	3.2	9.5	57.8
Rwanda 2010	All	322	1.5	35.2	3.5	13.0	0.0	0.0	3.6	0.0	0.0	1.0	7.5	3.6	0.0	46.7	3.5	3.6	8.2	62.1
Senegal 2005	Unban	589	5.7	33.9	15.2	1.9	0.0	2.6	9.8	2.2	0.0	2.6	0.1	7.7	1.7	41.1	17.8	7.7	4.9	68.7
Senegal 2005	Rural	690	1.9	36.5	5.2	0.5	0.5	1.2	3.6	3.8	0.0	1.9	1.1	3.5	3.8	38.9	6.9	3.5	6.7	54.6
Senegal 2005	All	1279	3.6	35.3	9.8	1.2	0.3	1.8	6.4	3.0	0.0	2.2	0.6	5.5	28	39.9	11.9	5.5	5.9	61.1
Senegal 2010-11	Unban	310	13.5	36.9	8.5	2.1	0.3	0.0	7.6	0.0	0.0	0.8	0.5	7.2	0.0	51.7	8.9	7.2	1.3	69.0
Senegal 2010-11	Rural	278	3.0	31.9	1.1	0.9	1.3	0.0	2.0	1.5	0.8	6.1	3.0	2.0	1.5	35.8	23	2.0	10.9	49.8
Senegal 2010-11	All	589	8.5	34.5	5.0	1.6	0.8	0.0	5.0	0.7	0.4	3.3	1.7	4.7	0.7	44.2	5.8	4.7	5.8	59.9
Tarzania 20045	Unban	108	24.7	31.3	13.4	0.0	0.0	4.6	14.4	0.0	0.0	0.0	0.3	13.6	0.0	56.0	18.1	13.6	0.3	86.5
Tarzania 2004-5	Rural	540	5.2	46.8	4.7	0.0	0.0	6.3	23.3	0.0	0.0	0.0	2.3	22.4	0.0	51.4	10.8	22.4	2.3	86.1
Tarzania 20045	All	648	8.4	44.2	6.1	0.0	0.0	6.0	21.8	0.0	0.0	0.0	2.0	21.0	0.0	52.1	12.0	21.0	2.0	86.2

Table A2. - Continued

Survey	Place of residence	N	Disaggregated Sources of Care ${ }^{1}$													Summary Categories used throughoutReport				$\begin{gathered} \text { Any } \\ \text { Care }^{3} \end{gathered}$			
			Public Hospital	$\begin{gathered} \hline \text { Public } \\ \text { Periph } \\ \mathrm{HF} \\ \hline \end{gathered}$	Private Clinic(ian)	$\begin{aligned} & \text { CHW- } \\ & \text { Public } \end{aligned}$	CHWPrivate	$\begin{gathered} \text { Reli- } \\ \text { gious- } \\ \text { NGO } \end{gathered}$	Pharmacy	Shop	Market/ Informal Shop	Non-allopathic	Other	$\begin{aligned} & \hline \text { Phar- } \\ & \text { macy } \\ & \text { Only } \\ & \hline \end{aligned}$	Shop Only	Public	Private	$\begin{aligned} & \hline \text { Phar- } \\ & \text { macy } \\ & \text { Only } \\ & \hline \end{aligned}$	Other				
Tarzania 2010	Unban	85	24.6	46.5	11.3	0.0	0.0	0.0	10.0	0.0	0.0	0.0	2.5	4.3	0.0	70.0	11.3	4.3	2.5	85.1			
Tarzania 2010	Rural	247	6.1	51.4	4.3	0.0	0.0	0.0	17.8	0.0	0.0	0.0	1.4	16.2	0.0	56.5	4.3	16.2	1.4	77.9			
Tarzania 2010	All	332	10.8	50.1	6.1	0.0	0.0	0.0	15.8	0.0	0.0	0.0	1.6	13.1	0.0	60.0	6.1	13.1	1.6	79.7			
Uganda 2006	Unban	93	18.3	5.6	45.1	1.5	0.0	0.0	9.8	0.0	0.0	0.2	0.0	9.0	0.0	25.4	45.1	9.0	0.2	7.5			
Uganda 2006	Rural	1016	5.3	26.7	42.0	1.9	1.6	0.0	8.1	1.4	0.0	1.2	1.2	7.1	1.0	33.6	43.3	7.1	3.8	83.4			
Uganda 2006	All	1109	6.3	24.9	42.2	1.9	1.5	0.0	8.3	1.2	0.0	1.1	1.1	7.2	0.9	32.9	43.4	7.2	3.5	82.9			
Uganda 2011	Untan	141	12.5	16.3	54.6	0.0	3.0	0.0	3.7	3.4	0.0	0.3	3.4	3.3	3.4	28.3	57.0	3.3	6.8	89.9			
Uganda 2011	Rural	97	4.2	28.6	49.2	0.7	0.7	0.0	1.5	1.5	0.1	0.6	1.0	1.5	1.1	32.9	49.9	1.5	3.2	82.4			
Uganda 2011	All	1118	5.2	27.0	49.9	0.6	1.0	0.0	1.7	1.8	0.1	0.6	1.3	1.7	1.4	32.3	50.8	1.7	3.7	83.4			
Zambia 2007	Unban	95	9.6	57.1	0.7	0.0	0.0	0.0	7.7	2.1	0.0	0.4	0.0	3.3	1.9	66.2	0.7	3.3	2.5	72.5			
Zambia 2007	Rural	209	5.4	54.3	1.4	0.0	1.1	8.0	2.1	25	0.0	3.4	0.9	1.9	1.9	58.6	10.5	1.9	6.9	74.9			
Zambia 2007	Al	304	6.7	55.1	1.2	0.0	0.8	5.5	3.9	2.4	0.0	2.5	0.6	23	1.9	61.0	7.5	2.3	5.5	74.2			
Zambia 2013	Unban	136	10.6	64.3	4.7	0.0	0.0	2.5	0.9	4.0	1.7	0.0	0.0	0.9	4.0	74.3	7.2	0.9	5.7	84.8			
Zambia 2013	Rural	333	3.1	59.1	0.3	2.2	0.2	1.7	0.3	1.4	0.5	0.8	1.1	0.0	1.4	63.7	2.3	0.0	3.7	69.3			
Zambia 2013	Al	469	5.3	60.6	1.6	1.6	0.2	2.0	0.4	2.1	0.8	0.6	0.8	0.2	2.1	66.8	3.7	0.2	4.3	73.8			
Figures in parentheses are based on $25-49$ urweighted cases. An asterisk indicates that a figure is based on fewer than 25 urmeighted cases and has been suppressed. Children for whom care was sought from multiple sourres contribute to																							
${ }^{1}$ The following Disaggregated Sources of Care categories include multiple standard response options: Public Peripheral Health Fadility (HF) includes: heath center, health post, mobile clinic, or other public sector care; Private Clinic or hospital, doctor, nurse, mobile clinic, other private sector; and Other indludes any other source of care sought outside the home, including a friend, relative, or other.																							
Allopathic, and Other disaggregated sources of care categories.																							
${ }^{3}$ Ary Care incluc	received		source out																				

Table A3．Sources of care for diarrhea by place of residence，USAID MCH priority countries

童 咅

 す。

立
 10 上 10 －hiopia 2005 Ethiopia 2005荅 Ethiopia 2011 Ghana 2003 Ghana 2003
Ghana 2003 Ghana 2008 0
0
0
0
0
0
0
0

 Haiti 2012 뭄

5
0
N
तo
0
0
0

 Indonesia 2012 Kenya 2003 8
8
0
0
0
0 o

윾 층	
产京츷	

 N

 Survey Madagascar 2000－9 Madagascar 2008－9

 Malavi 2010 Malani 2010 ＝
 ， Mozambique 2003 Mozambique 2003 Mozambique 2003
Mbzambique 2011 Mozambique 2011 Mozambique 2011
 III Nepal 2011
Nigeria 2008 Nigeria 2008

 Nigeria 2013气㐅 Pakistan 2006－7葛
 Pakistan 2012－13 Rwanda 2005 Rwanda 2005

Table A3. - Continued

Survey	Place of residence	N	Disaggregated Sources of Care ${ }^{1}$													Summary Categories used throughout Report ${ }^{2}$				
			Public Hospital	Public Periph HF	Private Clinic(ian)	CHW- Public	CHW- Private	Reli-giousNGO	Pharmacy	Shop	Market/ Informal Shop	Non-allopathic	Other	Pharmacy Only	Shop Only	Public	Private	Pharmacy Only	Other	Any Care ${ }^{3}$
Tanzania 2004-5	Urban	156	16.4	18.0	9.2	0.0	0.0	3.1	12.9	0.0	0.0	0.0	0.0	11.4	0.0	34.3	12.2	11.4	0.0	57.9
Tanzania 2004-5	Rural	848	3.4	36.3	3.8	0.4	0.0	3.3	14.3	0.0	0.0	0.0	2.1	13.4	0.0	40.1	7.1	13.4	2.1	62.3
Tanzania 2004-5	All	1004	5.4	33.5	4.6	0.3	0.0	3.2	14.1	0.0	0.0	0.0	1.7	13.1	0.0	39.2	7.9	13.1	1.7	61.6
Tanzania 2010	Urban	276	10.3	29.7	12.3	0.0	0.0	0.0	14.0	0.0	0.0	0.0	0.2	12.3	0.0	39.1	12.3	12.3	0.2	63.5
Tanzania 2010	Rural	833	1.9	44.3	1.8	0.0	0.0	0.0	15.5	0.0	0.0	0.0	2.0	14.8	0.0	46.0	1.8	14.8	2.0	63.9
Tanzania 2010	All	1109	4.0	40.6	4.4	0.0	0.0	0.0	15.1	0.0	0.0	0.0	1.6	14.2	0.0	44.3	4.4	14.2	1.6	63.8
Uganda 2006	Urban	172	16.8	11.9	41.0	0.0	0.0	0.0	5.4	0.0	0.0	2.7	0.6	5.4	0.0	28.7	41.0	5.4	3.3	75.8
Uganda 2006	Rural	1802	4.5	25.9	41.9	0.7	0.7	0.0	4.5	0.7	0.0	4.1	0.8	4.3	0.7	30.9	42.6	4.3	5.6	78.6
Uganda 2006	All	1974	5.6	24.7	41.9	0.7	0.7	0.0	4.5	0.7	0.0	4.0	0.8	4.4	0.7	30.7	42.4	4.4	5.4	78.4
Uganda 2011	Urban	237	10.9	14.1	46.5	0.1	1.7	0.0	3.4	0.6	0.0	0.1	0.4	2.9	0.6	25.1	48.2	2.9	1.2	74.3
Uganda 2011	Rural	1528	4.4	28.0	41.7	0.7	0.7	0.0	1.3	1.7	0.1	1.0	1.1	1.0	1.5	32.6	42.3	1.0	3.9	77.0
Uganda 2011	All	1766	5.2	26.1	42.3	0.7	0.8	0.0	1.6	1.6	0.1	0.9	1.0	1.3	1.4	31.6	43.1	1.3	3.6	76.6
Zambia 2007	Urban	291	6.8	46.9	3.3	0.0	0.1	0.0	2.4	1.7	0.0	0.3	0.6	2.1	1.7	53.7	3.4	2.1	2.6	59.7
Zambia 2007	Rural	619	1.5	50.8	1.2	0.0	2.1	5.1	0.5	2.1	0.0	6.5	2.4	0.1	2.1	52.3	8.4	0.1	10.3	68.0
Zambia 2007	All	911	3.2	49.5	1.8	0.0	1.5	3.5	1.1	1.9	0.0	4.5	1.8	0.7	1.9	52.7	6.8	0.7	7.8	65.3
Zambia 2013-14	Urban	772	6.9	53.0	3.9	0.1	0.0	0.7	1.1	1.5	0.0	0.2	0.3	1.1	0.9	59.8	4.6	1.1	2.0	66.5
Zambia 2013-14	Rural	1258	2.6	59.3	0.3	2.4	0.4	1.9	0.4	1.3	0.0	2.8	1.4	0.4	0.9	64.0	2.7	0.4	5.4	70.0
Zambia 2013-14	All	2030	4.2	56.9	1.7	1.5	0.3	1.5	0.7	1.4	0.0	1.8	1.0	0.7	0.9	62.4	3.4	0.7	4.1	68.7

Figures in parentheses are based on 25 -49 urmeighted cases. An asterisk indicates that a figure is based on fercentage may exceed the percentage of children who received any care.

 ${ }^{3}$ Any Care includes children who received care from any source outside the home (including all disaggregated source of care categories).
Table A4．Sources of care for fever by household wealth，USAID MCH priority countries
安这
产 Pharmacy

訔
锅

\footnotetext{

Table A4. - Continued

$\stackrel{\text { ¢ }}{\text { ¢ }}$	
\%	
글	
-	
총출	
촌 을	
\%	Oid
을를를노	N
z	
践	

Table A4．－Continued

产す

흔
莀
흔

[^11]

Table A4. - Continued

-	
송	
을 을	
2	
ふ	

Table A4. - Continued

Survey	Wealth Quintile	N	Disaggregated Sources of Care ${ }^{1}$													Summary Categories used throughout Report ${ }^{2}$				
			Public Hospital	Public Periph HF	Private Clinic(ian)	CHW- Public	CHW- Private	ReligiousNGO	Pharmacy	Shop	Market/ Informal Shop	Nonallopathic	Other	Pharmacy Only	Shop Only	Public	Private	Pharmacy Only	Other	Any Care ${ }^{3}$
Tanzania 2010	Middle	360	2.1	50.4	2.9	0.0	0.0	0.8	25.8	0.0	0.0	0.0	1.4	22.3	0.0	52.5	3.7	22.3	1.4	79.5
Tanzania 2010	Weathier	404	7.7	46.8	7.7	0.0	0.0	0.0	23.1	0.0	0.0	0.0	0.9	20.9	0.0	53.5	7.7	20.9	0.9	82.4
Tanzania 2010	Wealthiest	267	18.8	34.2	20.4	0.0	0.0	0.0	6.8	0.0	0.0	0.0	1.7	6.1	0.0	52.6	20.4	6.1	1.7	79.7
Tanzania 2010	All	1754	6.6	46.6	6.6	0.0	0.0	0.2	20.8	0.0	0.0	0.0	0.9	19.0	0.0	52.5	6.8	19.0	0.9	78.8
Uganda 2006	Poorest	823	3.3	34.1	39.7	3.2	2.5	0.0	6.1	1.0	0.0	0.5	0.2	5.5	0.8	40.3	41.7	5.5	1.8	84.9
Uganda 2006	Poorer	769	4.1	24.0	40.6	3.5	3.3	0.0	6.6	1.6	0.0	0.3	0.7	6.2	1.2	30.7	43.8	6.2	2.6	80.0
Uganda 2006	Middle	569	5.3	19.7	44.9	3.6	1.1	0.0	7.9	1.5	0.0	1.3	1.2	7.5	1.5	28.5	46.0	7.5	4.0	82.8
Uganda 2006	Weathier	570	6.8	17.1	49.1	1.7	1.3	0.0	6.8	2.0	0.0	0.8	1.3	6.4	1.8	25.4	50.1	6.4	4.1	81.6
Uganda 2006	Wealthiest	406	12.3	9.9	58.0	1.4	0.0	0.0	7.9	0.4	0.0	0.5	0.7	7.3	0.4	23.5	58.0	7.3	1.6	88.4
Uganda 2006	All	3138	5.6	22.8	44.9	2.9	1.9	0.0	6.9	1.3	0.0	0.7	0.8	6.4	1.1	30.9	46.6	6.4	2.8	83.2
Uganda 2011	Poorest	832	4.7	39.2	37.9	1.3	0.9	0.0	0.4	3.1	0.3	0.1	0.7	0.4	3.1	44.3	38.8	0.4	4.2	83.2
Uganda 2011	Poorer	679	4.0	32.8	45.3	0.5	0.2	0.0	0.3	3.3	0.0	0.6	0.8	0.2	2.6	37.0	45.5	0.2	4.7	83.2
Uganda 2011	Mddle	556	7.8	31.5	43.7	1.1	1.5	0.0	2.9	1.0	0.0	0.3	1.0	2.0	0.3	40.2	45.2	2.0	2.3	85.6
Uganda 2011	Weathier	542	4.9	23.9	51.2	0.2	0.5	0.0	2.9	3.6	0.0	0.2	0.3	2.7	3.5	28.9	51.7	2.7	4.2	84.1
Uganda 2011	Wealthiest	432	8.1	12.4	66.1	0.9	1.2	0.0	3.8	1.4	0.2	0.2	1.7	3.7	1.4	21.2	67.0	3.7	3.4	90.9
Uganda 2011	All	3042	5.6	29.8	47.0	0.8	0.8	0.0	1.8	2.6	0.1	0.3	0.8	1.5	2.3	35.9	47.8	1.5	3.9	84.9
Zambia 2007	Poorest	240	3.8	47.9	0.0	0.0	1.0	8.5	1.0	7.2	0.0	2.9	0.6	1.0	6.4	51.2	9.5	1.0	10.8	70.5
Zambia 2007	Poorer	251	3.7	50.3	0.0	0.0	2.6	6.7	1.5	4.2	0.0	0.8	1.9	1.0	3.8	53.1	9.2	1.0	6.8	69.5
Zambia 2007	Middle	237	4.0	47.9	1.0	0.0	2.5	5.1	2.1	4.7	0.0	1.3	1.9	2.1	4.2	51.6	8.6	2.1	7.8	68.6
Zambia 2007	Weathier	212	5.2	60.7	2.0	0.0	0.3	1.5	3.4	6.0	0.0	0.0	0.9	1.5	5.7	65.9	3.7	1.5	6.9	77.1
Zambia 2007	Wealthiest	105	8.6	48.2	5.4	0.0	0.0	1.7	1.2	1.9	0.0	0.0	0.0	0.3	1.9	56.8	7.1	0.3	1.9	66.0
Zambia 2007	All	1044	4.6	51.1	1.2	0.0	1.5	5.2	1.9	5.1	0.0	1.1	1.2	1.3	4.7	55.3	7.8	1.3	7.5	70.7
Zambia 2013-14	Poorest	687	1.7	58.8	0.0	4.1	0.3	3.8	0.2	2.4	0.0	1.1	1.3	0.0	1.6	64.5	4.1	0.0	4.8	72.1
Zambia 2013-14	Poorer	684	4.4	61.4	0.0	4.4	0.5	2.5	0.6	3.1	0.0	0.6	0.4	0.4	2.7	69.6	3.1	0.4	3.9	76.1
Zambia 2013-14	Middle	544	6.5	57.4	1.0	2.9	0.0	3.4	1.0	3.6	0.0	1.0	0.0	1.0	3.1	66.6	4.4	1.0	4.6	75.5
Zambia 2013-14	Weathier	409	6.0	66.5	1.0	0.7	0.0	1.8	2.2	3.0	0.6	0.3	0.0	2.0	2.5	73.1	2.9	2.0	3.8	79.8
Zambia 2013-14	Wealthiest	331	6.1	60.1	9.9	0.0	0.0	0.1	1.7	0.8	0.0	0.0	0.9	1.1	0.8	65.4	10.0	1.1	1.7	77.2
Zambia 2013-14	All	2655	4.6	60.5	1.6	2.9	0.2	2.6	0.9	2.7	0.1	0.7	0.5	0.7	2.2	67.7	4.4	0.7	4.0	75.7

 hospital, doctor, nurse, mobile clinic, other private sector; and Other includes any other source of care sought outside the home, induding a friend, relative, or other.
 and Other disaggregated sources of care categories. ${ }^{3}$ Any Care includes children who received care from any source outside the home (including all disaggregated source of care categories).
${ }^{4}$ Questions on care seeking for children's fever in the 2004 Malawi DHS were non-standard and results are not shown in this disaggreg

入"

Survey	Wealth Quintile	N	Public Hospital	$\begin{aligned} & \text { Public } \\ & \text { Periph } \\ & \text { HF } \end{aligned}$	Private Clinic(ian)	CHWPublic	$\begin{aligned} & \text { CHW- } \\ & \text { Private } \end{aligned}$	$\begin{aligned} & \text { Religious- } \\ & \text { NGO } \\ & \hline \end{aligned}$	Pharmacy	Shop	$\begin{aligned} & \text { Market } \\ & \text { Informal } \\ & \text { Shop } \end{aligned}$	Non- allopathic	Other	$\begin{gathered} \text { Pharmacy } \\ \text { Only } \end{gathered}$	$\begin{aligned} & \text { Shop } \\ & \text { Only } \\ & \hline \end{aligned}$
Bangladesh 2007	Poorest	83	0.8	11.0	13.4	0.0	0.0	0.0	29.5	0.0	0.0	22.3	8.5	29.5	0.0
Bangladesh 2007	Poorer	71	1.9	4.4	22.8	0.0	0.0	0.0	37.8	0.0	0.0	27.9	3.4	35.5	0.0
Bangladesh 2007	Mdale	44	1.5	16.1	25.5	0.0	0.0	0.0	19.7	0.0	0.0	29.7	2.7	18.2	0.0
Bangladesh 2007	Weathier	52	3.3	5.2	40.1	0.0	0.0	0.0	31.7	0.0	0.0	8.7	0.0	31.7	0.0
Bangladesh 2007	Weathiest	26	(5.1)	(17.1)	(48.4)	(0.0)	(0.0)	(2.7)	(16.4)	(0.0)	(0.0)	(2.5)	(0.0)	(16.4)	(0.0)
Bangladesh 2007	All	27	2.1	9.6	26.1	0.0	0.0	0.3	29.3	0.0	0.0	20.5	3.9	28.4	0.0
Bangladesh 2011	Poorest	143	1.4	8.2	41.8	0.0	0.6	0.0	24.3	0.0	0.0	6.3	0.0	21.9	0.0
Bangladesh 2011	Poorer	92	5.3	11.9	40.1	0.0	0.0	0.0	27.0	0.0	0.0	10.3	0.0	25.2	0.0
Bangladesh 2011	Mddle	97	2.0	5.0	48.8	0.0	0.0	1.0	16.7	0.0	0.0	3.0	4.3	14.8	0.0
Bangladesh 2011	weathier	77	4.5	12.3	52.1	0.0	0.0	0.0	18.2	0.0	0.0	4.0	0.0	14.2	0.0
Bangladesh 2011	Weathiest	76	6.5	5.0	57.9	0.0	0.0	0.5	23.3	0.0	0.0	0.7	0.8	23.3	0.0
Bangladesh 2011	All	486	3.6	8.4	47.0	0.0	0.2	0.3	22.2	0.0	0.0	5.1	1.0	20.1	0.0
Congo DR 2007	Poorest	27	2.9	22.9	6.9	0.0	8.7	0.0	14.7	1.0	0.0	5.1	1.1	13.5	1.0
Congo DR 2007	Poorer	270	3.5	28.7	6.2	0.0	6.3	0.0	11.7	0.6	0.0	2.1	1.6	10.3	0.6
Congo DR 2007	Middle	268	3.7	24.4	3.5	0.0	5.4	0.0	12.0	0.5	0.0	6.1	1.5	10.9	0.5
Congo DR 2007	weathier	282	7.1	12.3	16.6	0.0	7.9	0.0	25.2	1.7	0.0	2.8	2.9	22.7	1.7
Congo DR 2007	Weathiest	139	8.7	8.5	38.4	0.0	0.9	0.0	24.5	0.5	0.0	4.5	1.3	23.6	0.5
Congo DR 2007	Al	1237	4.8	20.4	11.8	0.0	6.4	0.0	17.0	0.9	0.0	4.0	1.7	15.5	0.9
Congo DR 2013-14	Poorest	266	0.7	30.9	5.5	0.3	0.0	0.0	8.2	0.8	0.3	6.0	0.2	7.3	0.8
Congo DR 2013-14	Poorer	255	1.6	32.4	6.6	0.0	0.0	0.0	10.3	0.3	0.8	8.3	0.0	10.0	0.3
Congo DR 2013-14	Midale	254	1.8	36.4	11.3	0.0	0.0	0.0	11.6	0.0	0.0	4.2	0.0	11.6	0.0
Congo DR 2013-14	Weathier	214	5.2	27.3	6.7	0.2	0.0	0.0	14.0	0.0	0.4	2.1	2.8	12.9	0.0
Congo DR 2013-14	Weathiest	146	2.3	17.0	24.6	0.0	0.0	0.0	29.9	0.0	0.0	1.9	0.3	25.8	0.0
Congo DR 2013-14	All	1133	2.2	30.0	9.7	0.1	0.0	0.0	13.3	0.3	0.3	4.9	0.6	12.3	0.3
Ethiopia 2005	Poorest	272	5.2	11.3	0.9	0.0	0.0	1.2	0.1	0.0	0.0	0.0	0.0	0.1	0.0
Ethiopia 2005	Poorer	241	4.4	5.6	1.0	1.3	0.0	0.0	0.8	0.0	0.2	0.0	0.1	0.8	0.0
Enhiopia 2005	Midale	323	2.4	13.8	3.1	0.0	0.0	1.4	3.1	0.0	0.0	0.5	0.0	2.0	0.0
Ethiopia 2005	Weathier	265	3.6	8.9	0.7	0.0	0.0	0.0	2.7	0.3	0.0	0.0	0.0	1.9	0.3
Ethiopia 2005	Weathiest	167	4.3	19.3	8.3	0.0	0.0	2.8	1.8	0.0	0.5	1.0	0.1	1.7	0.0
Enhiopia 2005	All	1269	3.9	11.4	2.4	0.2	0.0	1.0	1.8	0.1	0.1	0.3	0.0	1.3	0.1
Ethiopia 2011	Poorest	188	0.0	12.4	3.1	0.0	0.0	0.0	0.4	0.8	0.0	0.1	0.0	0.4	0.8
Ethiopia 2011	Poorer	148	0.0	19.7	5.6	0.0	0.0	0.0	1.6	0.0	0.0	0.0	0.0	1.6	0.0
Enhiopia 2011	Midale	197	0.1	15.8	6.1	0.0	0.1	0.2	0.0	1.3	0.0	0.9	0.0	0.0	1.3
Ethiopia 2011	Weathier	173	4.0	25.0	6.6	0.0	0.0	2.5	4.4	0.0	0.0	0.0	0.1	3.5	0.0
Ethiopia 2011	weathiest	67	5.8	29.0	27.4	0.0	0.0	3.5	4.2	0.1	0.0	0.0	0.0	3.7	0.1
Ethiopia 2011	All	773	1.4	18.9	7.2	0.0	0.0	0.9	1.8	0.5	0.0	0.2	0.0	1.5	0.5
Ghana 2003	Poorest	98	13.8	13.7	4.1	0.0	0.0	0.0	23.2	0.0	0.0	2.0	3.4	22.7	0.0
Ghana 2003	Poorer	73	22.1	10.9	8.6	0.0	0.0	0.0	30.7	0.0	0.0	0.0	2.3	27.7	0.0
Ghana 2003	Middle	68	33.0	11.3	2.9	0.0	0.0	0.0	22.6	0.0	0.0	1.3	0.0	22.6	0.0
Ghana 2003	Weathier	59	35.2	16.1	3.8	0.0	0.0	0.0	30.2	2.2	0.0	1.9	0.0	29.5	0.0
Ghana 2003	Weathiest	37	(41.6)	(14.1)	(13.3)	(0.0)	(0.0)	(0.0)	(14.7)	(0.0)	(0.0)	(0.0)	(3.6)	(14.7)	(0.0)
Ghana 2003	All	335	26.3	13.1	5.8	0.0	0.0	0.0	25.0	0.4	0.0	1.2	1.9	24.1	0.0
Ghana 2008	Poorest	43	8.0	26.4	2.1	0.0	0.0	0.0	10.2	2.5	5.3	2.8	0.0	8.0	25
Ghana 2008	Poorer	34	(16.0)	(22.1)	(12.4)	(0.0)	(0.0)	(0.0)	(18.9)	(0.0)	(0.0)	(0.0)	(0.0)	(17.9)	(0.0)
Ghana 2008	Middle	23				*		*	*	*			*		
Ghana 2008	Weathier	39.0	(40.4)	(15.3)	(7.5)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(4.1)	(0.0)	(0.0)
Ghana 2008	Weathiest	11	*	*	*	*	*	*	*	*	*	*	*	*	*
Ghana 2008	Al	150	21.7	21.7	8.2	0.0	0.0	0.0	10.6	0.7	2.0	0.8	2.1	9.8	0.7
Haiti 2005-6	Poorest	158	0.6	4.3	11.3	0.0	0.0	4.6	0.5	1.2	0.0	3.8	1.3	0.5	1.2
Haiti 2005-6	Poorer	137	3.8	5.6	8.1	0.0	0.0	11.3	0.0	2.6	1.7	1.1	9.0	0.0	2.6
Haiti 2005-6	Middle	115	1.2	10.7	19.3	0.0	0.0	15.1	0.9	0.0	0.0	2.1	1.3	0.9	0.0
Haiti 2005-6	Weathier	93	0.8	19.3	14.2	0.0	0.0	0.5	0.4	1.2	1.9	6.8	3.7	0.4	1.2
Haiti 2005-6	Weathiest	43	(5.1)	(4.2)	(21.7)	(0.0)	(0.0)	(6.1)	(0.0)	(0.0)	(0.0)	(0.0)	(9.5)	(0.0)	(0.0)
Haiti 2005-6	Al	546	1.9	8.5	13.5	0.0	0.0	7.9	0.4	1.2	0.8	3.0	4.3	0.4	1.2

Summary Categories used throughout

Table A5. -Continued

	の

Survey	Wealth Quintile	N	Public Hospital	Public Periph HF	Private Clinic(ian)	$\begin{aligned} & \text { CHW- } \\ & \text { Public } \end{aligned}$	CHWPrivate	Religious- NGO	Pharmacy	Shop	Market/ Informal Shop	Non- allopathic	Other	$\begin{gathered} \text { Pharmacy } \\ \text { Only } \end{gathered}$	$\begin{aligned} & \text { Shop } \\ & \text { Only } \\ & \hline \end{aligned}$
Ngeria 2008	Poorest	216	4.2	8.9	7.3	2.1	0.6	0.0	26.8	14.1	0.0	0.2	0.0	26.1	14.1
Ngeria 2008	Poorer	200	10.5	15.2	5.7	0.4	0.2	0.0	26.1	7.5	0.0	4.7	0.2	25.1	7.3
Ngeria 2008	Midale	118	5.0	16.9	11.7	0.6	0.0	0.0	39.0	4.7	0.0	0.5	0.7	38.2	1.9
Ngeria 2008	Weathier	97	22.8	9.8	7.6	0.0	0.0	0.0	34.8	0.5	0.0	2.3	0.0	33.8	0.5
Ngeria 2008	weathiest	59	(29.1)	(1.6)	(17.2)	(0.0)	(0.0)	(0.0)	(30.1)	(0.0)	(0.0)	(2.8)	(0.0)	(28.5)	(0.0)
Ngeria 2008	All	690	10.9	11.6	8.5	0.9	0.3	0.0	30.1	7.5	0.0	2.1	0.2	29.2	6.9
Ngeria 2013	Poorest	140	8.9	16.4	1.6	0.0	0.0	0.0	31.8	11.8	5.5	9.7	1.4	30.2	11.8
Ngeria 2013	Poorer	189	11.5	11.3	4.6	0.3	0.0	0.0	32.2	3.9	1.5	6.1	0.0	32.2	3.9
Ngeria 2013	Middle	114	22.6	15.2	2.9	0.0	0.0	0.0	35.8	1.3	0.0	0.6	0.0	35.8	0.6
Ngeria 2013	weathier	72	13.7	13.8	9.4	0.0	0.0	0.0	42.0	0.0	3.8	0.0	0.0	38.0	0.0
Ngeria 2013	Weathiest	50	(24.0)	(19.7)	(23.5)	(0.0)	(0.0)	(0.0)	(18.0)	(0.0)	(0.0)	(2.4)	(5.3)	(18.0)	(0.0)
Ngeria 2013	All	565	14.5	14.4	5.8	0.1	0.0	0.0	32.8	4.5	2.3	4.8	0.8	31.9	4.3
Pakistan 2006-7	Poorest	281	6.5	2.3	58.7	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.2	0.0	3.0
Pakistan 2006-7	Poorer	250	8.0	0.8	66.6	0.0	0.0	0.0	0.9	1.5	0.0	1.6	0.0	0.9	1.5
Pakistan 2006-7	Midale	217	11.2	1.1	71.1	1.1	0.0	0.0	0.0	1.6	0.0	4.5	0.9	0.0	1.6
Pakistan 2006-7	weathier	237	10.4	1.8	74.0	0.0	0.0	0.0	0.0	2.1	0.0	2.7	0.0	0.0	2.1
Pakistan 2006-7	weathiest	192	3.9	1.6	84.1	0.0	0.0	0.0	1.1	0.9	0.0	4.5	0.0	1.1	0.9
Pakistan 2006-7	Al	1178	8.0	1.5	69.9	0.2	0.0	0.0	0.4	1.9	0.0	2.5	0.2	0.4	1.9
Pakistan 2012-13	Poorest	345	10.8	0.6	69.2	0.0	0.0	0.0	0.0	0.6	0.0	0.3	0.5	0.0	0.6
Pakistan 2012-13	Poorer	417	7.1	1.6	69.0	1.1	0.0	0.0	0.3	3.0	0.0	0.0	0.0	0.3	3.0
Pakistan 2012-13	Mddle	385	9.3	0.6	72.3	0.0	0.0	0.0	1.8	1.7	0.0	0.3	0.0	1.3	1.7
Pakistan 2012-13	weathier	356	9.7	0.5	75.7	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.7	0.0
Pakistan 2012-13	Weathiest	248	4.1	0.0	83.0	0.0	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.3	0.1
Pakistan 2012-13	All	1751	8.4	0.7	73.1	0.3	0.0	0.0	0.7	1.3	0.0	0.1	0.1	0.5	1.2
Rwanda 2005	Poorest	291	1.8	19.7	1.2	0.5	0.0	0.0	15.3	2.0	0.0	7.2	13.1	15.1	2.0
Rvanda 2005	Poorer	261	2.4	23.0	1.5	0.0	0.0	0.0	10.6	4.4	0.0	7.8	13.6	10.6	4.4
Rwanda 2005	Midale	275	3.3	16.4	3.6	1.3	0.0	0.0	16.8	2.4	0.0	10.1	14.1	16.8	2.4
Rwanda 2005	Weathier	255	0.8	20.9	1.0	0.2	0.0	0.0	18.3	1.7	0.0	8.9	10.4	18.2	1.7
Rvanda 2005	Weathiest	249	4.1	26.5	13.1	0.2	0.0	0.0	19.5	1.5	0.0	3.3	8.3	19.1	1.1
Rvanda 2005	All	1332	2.5	21.2	3.9	0.5	0.0	0.0	16.1	2.4	0.0	7.5	12.0	15.9	23
Rwanda 2010	Poorest	101	1.0	29.8	0.0	12.4	0.0	0.0	0.9	0.0	0.0	2.0	8.9	0.9	0.0
Rvanda 2010	Poorer	64	3.3	36.3	0.0	15.2	0.0	0.0	4.9	0.0	0.0	0.0	7.7	4.9	0.0
Rwanda 2010	Midale	54	0.0	36.4	0.0	16.6	0.0	0.0	4.1	0.0	0.0	2.2	11.1	4.1	0.0
Rwanda 2010	weathier	50	(1.9)	(35.3)	(0.0)	(9.4)	(0.0)	(0.0)	(2.5)	(0.0)	(0.0)	(0.0)	(6.5)	(2.5)	(0.0)
Rvanda 2010	Weathiest	53	1.4	42.9	21.1	11.1	0.0	0.0	7.8	0.0	0.0	0.0	2.1	7.8	0.0
Rwanda 2010	Al	322	1.5	35.2	3.5	13.0	0.0	0.0	3.6	0.0	0.0	1.0	7.5	3.6	0.0
Senegal 2005	Poorest	223	1.1	31.8	8.4	0.0	0.4	0.3	1.4	2.9	0.0	0.7	0.8	1.4	29
Senegal 2005	Poorer	239	1.3	34.0	4.6	1.5	0.6	0.5	1.6	6.4	0.0	3.0	1.8	1.3	6.4
Senegal 2005	Midale	276	2.6	34.9	4.7	0.1	0.0	3.5	5.3	3.0	0.0	1.7	0.7	5.3	3.0
Senegal 2005	Weathier	303	3.7	43.5	12.6	25	0.5	3.4	10.3	1.7	0.0	3.0	0.0	7.9	0.9
Senegal 2005	Weathiest	239	9.4	29.9	18.6	1.5	0.0	0.8	12.5	1.4	0.0	2.5	0.0	10.5	1.4
Senegal 2005	All	1279	3.6	35.3	9.8	1.2	0.3	1.8	6.4	3.0	0.0	2.2	0.6	5.5	2.8
Senegal 2010-11	Poorest	115	1.3	29.3	0.6	0.6	0.2	0.0	1.6	0.7	0.6	8.9	3.6	1.6	0.7
Senegal 2010-11	Poorer	74	2.0	33.6	1.7	1.0	0.0	0.0	5.5	2.5	2.3	2.8	3.8	5.5	2.5
Senegal 2010-11	Middle	105	12.8	41.0	0.4	1.6	0.0	0.0	4.3	1.5	0.0	3.4	0.8	3.0	1.5
Senegal 2010-11	Weathier	156	13.4	27.6	7.2	1.0	0.0	0.0	6.4	0.0	0.0	0.7	1.3	6.4	0.0
Senegal 2010-11	Weathiest	140	9.3	42.0	11.4	3.3	3.0	0.0	6.3	0.0	0.0	1.9	0.0	6.3	0.0
Senegal 2010-11	Al	589	8.5	34.5	5.0	1.6	0.8	0.0	5.0	0.7	0.4	3.3	1.7	4.7	0.7
Tanzania 20045	Poorest	162	3.6	42.7	4.0	0.0	0.0	6.4	19.8	0.0	0.0	0.0	2.4	19.2	0.0
Tarzania 20045	Poorer	124	6.9	54.0	0.0	0.0	0.0	3.9	27.5	0.0	0.0	0.0	0.5	26.6	0.0
Tarzania 20045	Midale	140	4.5	51.4	6.2	0.0	0.0	8.9	19.2	0.0	0.0	0.0	1.3	19.2	0.0
Tarzania 20045	weathier	130	10.0	40.5	5.6	0.0	0.0	5.7	23.6	0.0	0.0	0.0	3.3	22.8	0.0
Tarzania 20045	Weathiest	91	22.6	28.0	19.0	0.0	0.0	4.0	19.1	0.0	0.0	0.0	2.2	16.6	0.0
Tarzania 20045	Al	648	8.4	44.2	6.1	0.0	0.0	6.0	21.8	0.0	0.0	0.0	2.0	21.0	0.0

Table A5．－Continued

	安菏苞	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{0} \\ & 0 \\ & 0 \\ & 0 . \\ & 0.0 \\ & 0 \end{aligned}$		
	定交膏	
	z	
	$\stackrel{\text { d }}{\text { ® }}$	

[^12]完慈
突
言
镸

Religious-
NGO

 Bangladesh 2007

Survey

 Bangladesh 2007Bangladesh 2007
 Bangladesh 2007
Bangladesh 2007

 Bangladesh 2011 Bangladesh 2011 Bangladesh 2011 Congo DR 2007 Congo DR 2007
Congo DR 2007

 Ethiopia 2011
Ghana 2003 $\begin{array}{cc}8 \\ 8 \\ 8 \\ 0 \\ 0 & 0 \\ \frac{0}{0} \\ \frac{0}{0}\end{array}$

 Ghana 2003 Shana 2008 Ghana 2008

Table A6. - Continued

言


```
o으응
```


Survey	Wealth Quintile	N	Public Hospital
Hait 2012	Poorest	264	3.2
Heitit 2012	Poorer	317	0.8
Haitit 2012	Middle	311	5.9
Heitit 2012	Wealthier	286	10.3
Haiti 2012	Wealthiest	156	14.2
Haitit 2012	All	1334	6.1
India 20056	Poorest	1166	3.6
India 2005-6	Poorer	1046	4.0
India 2005-6	Middle	978	7.2
India 2005-6	Weathier	915	5.7
India 2005-6	Weathiest	649	7.0
India 2005-6	Al	4755	5.3
Indonesia 2007	Poorest	642	1.6
Indonesia 2007	Poorer	454	1.1
Indonesia 2007	Middle	393	1.6
Indonesia 2007	wealthier	399	0.7
Indonesia 2007	Weathiest	291	2.4
Indonesia 2007	Al	2180	1.4
Indonesia 2012	Poorest	598	1.7
Indonesia 2012	Poorer	491	1.7
Indonesia 2012	Midale	479	1.8
Indonesia 2012	Wealthier	447	2.7
Indonesia 2012	Weathiest	325	0.7
Indonesia 2012	All	2341	1.8
Kerrya 2003	Poorest	245	4.1
Kerya 2003	Poorer	202	1.3
Kerrya 2003	Middle	158	6.0
Kerrya 2003	Weathier	124	8.8
Kerya 2003	Weathiest	159	2.4
Kerrya 2003	All	888	4.2
Kerya 2008-9	Poorest	265	6.8
Kerya 2008-9	Poorer	175	5.0
Kerya 2008-9	Middle	153	11.4
Kerya 2008-9	Weathier	188	15.3
Kerya 2008-9	Weathiest	128	11.2
Kerya 2008-9	All	909	9.6
Liberia 2007	Poorest	218	2.4
Liberia 2007	Poorer	237	5.9
Liberia 2007	Middle	233	5.3
Liberia 2007	Wealthier	208	12.3
Liberia 2007	Weathiest	119	3.9
Liberia 2007	All	1014	6.1
Liberia 2013	Poorest	370	9.8
Liberia 2013	Poorer	307	9.1
Liberia 2013	Middle	246	11.8
Liberia 2013	Wealthier	251	6.8
Liberia 2013	Weathiest	157	13.2
Liberia 2013	All	1330	9.8
Madagascar 2003-4	Poorest	228	3.2
Madagascar 2003-4	Poorer	104	0.9
Madagascar 2003-4	Midale	98	1.1
Madagascar 2003-4	Weathier	76	1.9
Madagascar 2003-4	Weathiest	64	2.9
Madagascar 2003-4	Al	570	2.2

Table A6. - Continued

产

Table A6. - Continued

Survey	Wealth Quintile	N	Disaggregated Sources of Care ${ }^{1}$													Summary Categories used throughout Report ${ }^{2}$				$\begin{gathered} \text { Any } \\ \text { Care }^{3} \end{gathered}$
			Public Hospital	Public Periph HF	Private Clinic(ian)	CHW- Public	CHW- Private	$\begin{aligned} & \text { Religious- } \\ & \text { NGO } \end{aligned}$	Pharmacy	Shop	Market/ Informal Shop	Nonallopathic	Other	Pharmacy Only	Shop Only	Public	Private	Pharmacy Only	Other	
Tanzania 2010	Poorest	238	1.7	47.8	0.6	0.0	0.0	0.0	13.1	0.0	0.0	0.0	1.9	12.5	0.0	48.9	0.6	12.5	1.9	63.9
Tanzania 2010	Poorer	232	1.3	47.7	2.8	0.0	0.0	0.0	15.7	0.0	0.0	0.0	1.1	15.7	0.0	49.0	2.8	15.7	1.1	67.4
Tanzania 2010	Middle	243	3.6	34.8	1.4	0.0	0.0	0.0	21.4	0.0	0.0	0.0	2.7	20.9	0.0	38.4	1.4	20.9	2.7	62.4
Tanzania 2010	Wealthier	226	5.0	36.6	7.0	0.0	0.0	0.0	16.7	0.0	0.0	0.0	1.5	13.0	0.0	41.3	7.0	13.0	1.5	62.7
Tanzania 2010	Weathiest	170	9.9	34.7	13.0	0.0	0.0	0.0	6.2	0.0	0.0	0.0	0.2	6.2	0.0	43.5	13.0	6.2	0.2	62.2
Tanzania 2010	Al	1109	4.0	40.6	4.4	0.0	0.0	0.0	15.1	0.0	0.0	0.0	1.6	14.2	0.0	44.3	4.4	14.2	1.6	63.8
Uganda 2006	Poorest	573	3.9	38.0	37.3	1.2	1.3	0.0	3.4	0.6	0.0	2.9	1.0	3.3	0.6	42.3	38.5	3.3	4.5	84.2
Uganda 2006	Poorer	469	3.9	28.4	38.4	0.6	0.8	0.0	5.9	0.3	0.0	2.2	0.4	5.8	0.3	32.6	39.2	5.8	2.9	76.8
Uganda 2006	Middle	362	3.9	20.6	38.8	0.4	0.6	0.0	3.5	0.2	0.0	9.5	0.4	3.0	0.2	24.9	39.2	3.0	10.1	71.7
Uganda 2006	Wealthier	344	10.9	11.7	48.1	0.2	0.0	0.0	5.1	1.7	0.0	3.9	1.3	5.1	1.7	22.8	48.1	5.1	6.9	77.3
Uganda 2006	Wealthiest	226	7.8	9.7	55.9	0.7	0.0	0.0	5.3	1.0	0.0	1.4	1.0	5.3	1.0	18.2	55.9	5.3	3.4	79.2
Uganda 2006	Al	1974	5.6	24.7	41.9	0.7	0.7	0.0	4.5	0.7	0.0	4.0	0.8	4.4	0.7	30.7	42.4	4.4	5.4	78.4
Uganda 2011	Poorest	481	3.9	35.8	34.9	1.0	1.0	0.0	0.3	0.9	0.2	1.4	0.6	0.3	0.9	40.3	35.9	0.3	3.2	76.0
Uganda 2011	Poorer	402	4.3	24.9	44.5	0.0	0.4	0.0	2.4	2.6	0.0	1.1	2.0	1.7	2.5	29.2	44.9	1.7	5.8	79.8
Uganda 2011	Middle	329	5.3	27.7	43.8	1.2	0.4	0.0	1.7	1.8	0.0	0.6	0.6	1.4	1.1	34.1	44.1	1.4	3.0	77.4
Uganda 2011	Wealthier	274	7.4	23.5	45.1	0.8	0.5	0.0	2.0	1.5	0.0	1.2	1.2	1.7	1.5	29.9	45.6	1.7	3.9	78.3
Uganda 2011	Wealthiest	279	6.7	11.8	47.6	0.1	1.9	0.0	2.1	1.0	0.0	0.0	0.4	1.9	1.0	18.6	49.5	1.9	1.3	70.3
Uganda 2011	All	1766	5.2	26.1	42.3	0.7	0.8	0.0	1.6	1.6	0.1	0.9	1.0	1.3	1.4	31.6	43.1	1.3	3.6	76.6
Zambia 2007	Poorest	200	1.7	53.4	0.0	0.0	1.2	4.9	0.8	0.0	0.0	11.2	4.9	0.0	0.0	55.1	6.1	0.0	15.3	69.9
Zambia 2007	Poorer	220	1.2	51.0	0.3	0.0	2.2	7.2	0.0	2.6	0.0	4.6	0.5	0.0	2.6	52.2	9.8	0.0	7.2	67.6
Zambia 2007	Middle	168	3.3	45.2	1.0	0.0	3.6	2.8	0.0	3.9	0.0	5.3	1.4	0.0	3.9	48.5	7.3	0.0	9.5	64.1
Zambia 2007	Wealthier	196	4.3	50.5	3.0	0.0	0.0	0.7	3.5	2.5	0.0	0.0	0.3	2.6	2.5	54.8	3.7	2.6	2.8	62.5
Zambia 2007	Weathiest	127	7.3	45.1	6.8	0.0	0.0	0.0	1.3	0.5	0.0	0.0	2.1	1.3	0.5	52.2	6.8	1.3	2.5	60.1
Zambia 2007	Al	911	3.2	49.5	1.8	0.0	1.5	3.5	1.1	1.9	0.0	4.5	1.8	0.7	1.9	52.7	6.8	0.7	7.8	65.3
Zambia 2013-14	Poorest	453	2.4	54.0	0.6	4.5	0.7	1.6	0.2	0.9	0.0	3.3	1.5	0.2	0.7	60.7	2.9	0.2	5.7	67.0
Zambia 2013-14	Poorer	445	1.7	62.4	0.0	1.9	0.6	1.5	0.6	1.3	0.0	3.2	1.6	0.6	1.0	65.6	2.1	0.6	6.1	70.6
Zambia 2013-14	Middle	413	6.5	58.2	1.2	0.2	0.0	2.4	0.4	1.8	0.0	1.2	0.9	0.4	1.2	64.8	3.5	0.4	3.9	70.9
Zambia 2013-14	Wealthier	428	4.9	58.6	2.1	0.2	0.0	1.1	1.5	1.7	0.0	0.3	0.3	1.5	1.2	63.6	3.1	1.5	2.3	70.1
Zambia 2013-14	Weathiest	291	6.5	49.0	6.0	0.0	0.0	0.4	0.6	1.2	0.1	0.0	0.2	0.6	0.5	55.3	6.4	0.6	1.5	62.9
Zambia 2013-14	Al	2030	4.2	56.9	1.7	1.5	0.3	1.5	0.7	1.4	0.0	1.8	1.0	0.7	0.9	62.4	3.4	0.7	4.1	68.7

 so the total percentage may exceed the percentage of children who received any care.
${ }^{1}$ The following Disaggregated Sources of Care categories include multiple standard re
 hospital, doctor, nurse, mobile clinic, other private sector, and Other includes any other source of care sought outside the home, including a friend, relative, or other.
${ }^{2}$ The public summary category combines the Public Hospital, Public Peripheral HF, and Public C-WW disaggregated sources of care categories; the private summ

Alopathic, and Other disaggregated sources of care categories.
${ }^{3}$ Any Care includes children who received care from any source outside the home (including all disaggregated source of care categories).

Country/Survey	Place of Residence	Fever												Symptoms of ARI												Diarrhea											
		Public			Private			Pharmacy Only			Other			Public			Private			Pharmacy Only			Other			Public			Private			Pharmacy Only			Other		
		\%	LB	UB	\%	B	UB	\%	LB	UB	\%	B	UB																								
Bangladesh 2007	Uiban	12.0	8.9	15.9	25.2	21.4	29.5	23.9	20.3	27.9	15.3	12.4	18.9	26.1	13.6	44.2	30.6	19.7	44.0	20.6	10.2	37.1	10.3	3.6	26.0	11.3	6.8	18.2	19.0	13.9	25.3	24.3	16.9	33.6	19.7	13.1	28.5
Bangladesh 2007	Rura	8.3	6.3	10.8	12.6	10.6	15.0	28	19.8	26.2	29.4	26.2	32.7	9.1	5.5	4.6	5.7	8.8	34.0	9.7	23.4	36.9	26.7	20.6	33.9	9.4	6.2	3.9	8.4	5.9	11	27.7	21.5	34.9	28.6	23.3	34.7
Bangladesh 2011	Urban	10.9	8.6	13.7	45.3	40.5	50.2	18.5	15.2	22.2	3.1	2.0	4.9	11.5	6.3	20.0	58.4	48.1	68.1	1.0	13.5	31.1	4.0	1.1	12.7	14.5	7.9	25.0	45.9	32.8	59.6	14.6	8.4	24.2	1.1	0.2	4.8
Bangladesh 2011	Rura	8.3	7.0	9.9	. 1	. 1	6.1	19.1	17.3	21.1	5.1	4.0	6.4	12.1	8.9	16.1	4.8	3.1	51.6	19.9	15.0	25.8	6.6	4.1	10.6	10.3	7.1	14.9	40.4	34.5	46.5	23.7	18.4	29.9	. 0	1.9	. 0
Congo DR 2007	Urban	21.4	16.9	26.8	27.0	22.7	31.9	17.6	13.4	22.8	4.5	3.1	6.5	23.4	8.3	29.3	23.5	17.6	30.7	25.0	18.3	33.1	4.0	2.3	7.1	. 3	25	40.1	3.8	2.0	7.1	2.0	0.9	4.2	3.1	1.4	6.8
Congo DR 2007	Rural	27.3	21.9	33.4	16.9	11.8	23.5	9.2	6.8	12.3	7.1	5.1	9.7	6.0	18.9	34.7	. 1	1.3	19.9	10.3	7.4	14.2	7.9	5.2	11.8	5.4	18.7	33.6	6.8	4.2	10.9	4.0	1.7	8.9	3.0	1.5	5.7
Congo DR 2013-14	Urban	20.0	17.0	23.5	17.9	14.9	21.3	19.2	15.4	23.7	3.4	2.4	4.8	21.6	16.2	28.3	17.2	11.6	24.8	19.9	11.1	33.2	3.5	1.4	8.1	18.3	15.1	22.1	13.9	10.9	17.5	18.5	14.7	23.1	4.5	2.8	7.2
Congo DR 2013-14	Rural	32.4	29.0	36.1	8.6	6.5	11.3	13.4	10.2	17.5	5.1	3.9	6.7	36.2	28.3	44.9	6.8	4.0	11.3	9.3	6.4	13.4	7.0	4.5	10.6	34.9	31.1	38.8	8.2	6.4	10.5	12.1	8.6	16.6	6.9	5.3	8.9
Ethiopia 2005	Urban	30.3	19.3	44.2	15.7	9.0	26.0	0.8	0.3	1.9	0.3	0.1	1.7	29.5	15.3	49.2	16.7	6.5	36.7	0.4	0.1	2.1	1.3	0.2	7.9	28.8	21.	37.	7.1	3.5	14.0	3.4	0.7	14.	0.4	0.0	2.6
Ethiopia 2005	Rur	13.1	10.	16	2.7	1.5	4.8	1.0	0.6	1.8	0.7	0.3	. 7	14.8	11.6	18.7	2.7	1.4	5.4	1.4	0.7	2.8	0.4	0.1	1.6	18.3	15.5	21.	3.3	1.9	5.5	1.3	0.7	2.3	2.2	4	3.3
Ethiopia 2011	Urban	22.2	15.2	31.4	16.4	10.9	23.9	3.4	1.4	7.9	0.0	0.0	0.1	8.9	9.6	34.0	28.1	11.4	54.2	3.3	1.0	10.1	0.1	0.0	0.5	35.4	26.3	45.8	23.1	14.6	34.6	3.6	1.8	7.4	0.9	0.2	3.6
Ethiopia 2011	Rural	16.0	13.5	18.9	6.7	4.7	9.4	0.6	0.2	1.4	1.2	0.7	2.3	9.9	15.5	25.2	5.6	3.7	8.5	1.4	0.5	3.5	0.9	0.3	2.6	22.7	19.2	26.7	7.1	4.8	10.4	1.7	0.9	3.3	2.1	1.3	3.6
Ghana 2003	Urban	5.4	. 3	53.7	10.9	6.8	17.1	16.2	11.8	21.8	2.0	0.7	5.3	8.5	37.4	59.7	5.5	2.3	12.6	22.8	13.8	35.5	2.6	0.7	10.1	28.1	19.9	38.0	7.4	3.6	14.7	17.7	11.8	25.8	2.2	0.6	7.6
Ghana 2003	Rural	36.9	31.7	42.3	4.9	3.1	7.6	25.6	21.0	30.7	6.0	4.0	8.9	34.2	27.7	41.4	5.9	3.2	10.7	24.6	18.3	32.2	3.8	1.9	7.4	19.3	14.6	25.0	1.9	0.9	4.1	20.9	16.4	26.2	6.2	4.1	9.1
Ghana 2008	Uiban	41.6	34.0	49.6	18.5	13.2	25.2	19.6	13.5	27.5	2.3	1.0	5.4	(37.7)	21.7	56.9	(15.4)	7.1	30.3	(10.1)	3.8	24.0	(2.8)	0.4	19.3	29.4	22.8	37.1	8.1	4.6	13.8	25.2	18.0	34.0	3.6	1.5	8.6
Ghana 2008	Rural	40.5	34.0	47.2	5.2	3.1	8.6	10.0	6.5	15.0	8.1	5.3	12.1	45.4	34.4	56.9	4.3	0.9	18.3	9.6	4.2	20.4	7.2	3.2	15.1	38.6	32.7	45.0	4.9	2.8	8.4	11.9	8.1	17.0	8.0	5.4	11.7
Haiti	Unba	17.3	2.8	22.9	23.4	18.9	28.7	3.9	2.3	6.5	10.4	7.0	15.0	13.2	8.0	21.0	21.0	13.4	31.3	1.2	0.2	5.4	6.7	3.1	14.0	17.8	13.2	23.5	14.6	10.2	20.	7.1	4.3	11.5	8.8	5.6	3.7
Haiti 2005-6	Rural	12.9	10.2	16.3	22.4	17.9	27.5	1.1	0.4	2.8	6.8	4.8	9.6	9.6	5.9	15.1	21.5	14.4	30.9	0.2	0.0	0.8	8.8	5.7	13.4	10.7	6.8	16.4	19.2	13.9	25.8	0.9	0.4	2.2	7.0	4.7	10.1
Haiti 2012	Uiban	15.4	12.1	19.3	31.7	26.0	37.9	1.2	0.5	3.0	5.3	3.5	7.8	10.9	7.6	15.3	34.5	28.8	40.7	1.7	0.5	4.9	7.7	5.0	11.7	17.5	14.0	21.6	22.6	18.0	27.9	0.8	0.2	2.8	8.8	6.2	12.3
Haiti 2012	Rural	. 9	11.0	17.5	25.1	21.8	28.8	0.2	0.0	0.6	8.7	6.6	11.2	14.5	10.8	19.2	22.0	17.8	26.9	0.9	0.2	3.5	78	5.5	10.8	14.6	11.5	18.3	19.5	16.1	23.	0.1	0.0	0.7	9.5	7.0	12.8
India 2005-6	Urban	12.5	10.6	14.6	65.7	62.9	68.4	2.8	2.0	3.9	4.6	3.5	6.0	13.4	10.7	16.7	5.0	60.3	69.4	3.3	1.9	5.6	3.7	2.0	6.8	13.4	11.1	16.	51.	47.	55	7.2	5.5	9.	5.0	3.5	7.1
India 2005-6	Rural	13.5	12.2	14.8	53.4	51.3	55.5	6.0	4.9	7.2	6.1	5.1	7.2	12.0	10.1	14.2	54.0	51.0	57.0	5.2	3.9	6.9	5.9	4.6	7.6	14.2	12.7	16.0	43.9	41.4	46.	5.6	4.6	6.8	6.3	5.0	7.8
Indonesia 2007	Urban	27.1	24.1	30.5	47.9	43.9	51.9	11.0	8.9	13.6	11.1	8.8	13.8	25.1	20.1	31.0	49.9	42.9	56.9	14.2	10.1	19.6	9.7	6.7	13.9	19.2	14.8	24.5	37.5	32.5	42.8	8.8	6.2	12.3	15.3	11.7	19.7
Indonesia 2007	Rural	25.0	22.5	27.7	2.3	39.3	45.4	7.1	5.9	8.6	19.6	17.5	21.9	24.6	21.3	28.3	42.5	37.7	47.5	8.2	6.0	11.0	20.2	17.0	23.9	20.3	17.	23.9	30.8	27.	34.5	4.3	3.0	6.2	19.8	16.8	23.2
Indonesia 2012	Urba	27.7	25.0	30.6	52.1	48.7	55.5	12.4	10.5	14.6	6.7	5.3	8.3	29.7	22.9	37	53.4	45.9	60.7	11.1	7.3	16.4	9.0	5.5	14.	24.0	20.	28	42.6	38.2	47	11.	8.3	14.4	8.2	6.1	0.9
Indonesia 2012	Rural	23.0	20.9	25.4	52.3	49.5	55.0	6.9	5.6	8.6	14.3	12.3	16.4	25.2	20.6	30.4	54.7	49.2	60.2	4.9	3.2	7.7	13.7	10.4	17.7	23.3	19.9	27.0	45.7	41.7	49.8	4.4	3.1	6.1	12.8	10.7	15.3
Kenya 2003	Uiban	29.2	25.1	33.6	24.7	20.7	29.2	15.5	11.5	20.6	7.1	4.5	11.0	37.1	30.8	43.9	26.8	21.6	32.7	15.8	10.1	23.8	6.9	3.9	12.0	16.6	12.2	22.0	14.2	10.1	19.5	3.8	1.8	8.1	6.1	3.3	11.1
Kerya 2003	Rural	29.0	25.2	33.1	6.6	14.0	19.6	13.0	10.9	15.5	10.3	8.6	12.3	30.6	26.4	35.2	16.5	13.2	20.3	12.7	10.1	15.7	8.7	6.6	11.	21	17.	25.3	8.4	5.4	12.8	2.9	1.8	4.7	5.7	3.8	8.5
Kerya 2008-9	Un	40.6	29.4	52.8	12.2	6.9	20.7	8.4	3.9	16.9	2.8	1.3	6.1	47.3	30.4	64.8	20.0	8.1	41.6	13.2	3.5	39.0	0.3	0.0	2.5	32.4	24.2	41.9	16	5.9	37.1	7.1	2.	16.	4.0	0.9	6.1
Kerya 2008-9	Rural	38.	34.4	43.1	9.8	7.5	12.	7.7	5.2	11.2	7.6	5.3	10.7	44	36.8	51.7	11	7.5	16.2	8.7	4.5	16.2	6.7	3.5	12.6	40	34.9	45	9.1	6.7	12	4.4	3.0	6.4	8.8	6.2	12.3
Liberia 2007	Urban	46.0	38.8	53.3	22.7	17.3	29.1	10.4	7.2	14.6	6.3	4.0	9.7	57.6	42.2	71.6	16.4	8.5	29.2	8.5	4.0	17.0	1.7	0.5	5.9	39.2	31.3	47.6	14.9	10.8	20.2	15.9	12.0	20.7	11.6	7.7	17.2
Liberia 2007	Rural	31.8	26.5	37.6	21.2	16.4	26.9	7.4	5.6	9.8	20.6	16.8	25.0	41.8	35.2	48.6	17.9	13.3	23.7	9.9	6.5	15.0	11.7	8.0	16.7	25.6	20.1	32.1	22.6	17.0	29.4	9.6	5.9	15.3	29.2	23.0	36.4
Liberia	Urba	6. 6	29.0	44.9	25.3	19.	32.2	15.2	10.9	20.7	5.4	3.1	9.2	25.	15.6	38.9	23.9	15.4	35.1	24.1	13.3	39.7	4.0	1.7	9.3	31.1	23.1	40.5	17.5	11.8	25.1	17.2	13.3	21.9	8.7	5.8	12.9
Liberia 2013	Rural	44.8	38.	51	9.4	7.0	12.6	7.9	5.6	11.2	16.7	12.9	21.2	2.7	34.6	. 2	9.6	6.2	14.6	5.7	3.4	9.4	15.2	10.0	22.4	39	33.	45	7.3	4.9	10	6.4	4.5	9.0	22.1	17.5	27.5
Madagascar 2003-4	Urban	30.3	23.8	37.6	29.6	24.5	35.2	1.0	0.4	2.6	2.3	0.8	6.2	38.0	29.3	47.5	25.4	19.0	33.1	0.5	0.1	3.6	1.4	0.4	4.9	20.5	14.4	28.4	20.9	15.3	28.0	0.0			1.6	0.6	4.0
Madagascar 2003-4	Rural	25.5	19.9	32.0	8.3	5.3	12.7	0.9	0.2	3.8	5.6	3.4	9.1	33.7	25.7	42.7	10.3	5.9	17.3	2.1	0.6	7.4	5.9	3.1	11.1	21	15.5	28.0	9.1	5.3	15.0	2.0	0.8	5.2	5.3	2.5	10.8
Madagascar 2008-9	Urban	23.6	6.9	31.9	39.7	32.8	7.0	1.1	0.3	4.6	0.3	0.0	2.3	25.2	6.9	35.7	36.5	24.2	51.0	1.0	0.1	7.3	0.0			27.	20.	36.2	23.5	18.5	29.5	1.	0.	3.6	6.2	3.	12.2
Madagascar 2008-9	Rural	30.3	26.2	34.7	9.1	6.7	12.1	0.5	0.2	1.2	5.8	4.3	7.9	30.1	24.0	37.0	10.8	7.0	16.4	0.8	0.3	2.5	7.7	4.5	12.8	25.9	22.4	29.6	6.7	4.8	9.4	0.3	0.1	0.7	5.5	3.8	8.0
Mali 2006	Uiban	40.5	34.9	46.3	6.1	3.5	10.4	10.6	6.3	17.2	15.8	11.2	21.7	43.0	35.6	50.7	8.0	4.1	14.9	9.6	5.3	16.7	9.0	5.3	14.8	27.7	20.4	36.4	5.0	2.8	8.8	0.0	0.	0.2	10.9	6.9	16.8
Mali 2006	Rural	25.5	22.0	29.4	2.8	1.9	4.1	0.7	0.4	1.4	24.5	21.1	28.3	32.4	26.9	38.3	1.2	0.5	2.9	0.4	0.1	1.4	22.1	17.0	28.3	13.5	10.9	16.7	0.8	0.4	1.	0.0			13.7	11.3	16.5
Mali 2012-13	Uiban	41.5	34.5	48.9	7.4	4.2	12.8	9.8	5.7	16.3	12.5	7.4	20.2	(27.9)	14.6	46.9	(10.5)	2.6	34.3	(13.0)	3.0	41.6	(9.2)	1.8	36.1	31.6	25.	39.	4.8	2.7	8.	7.2	4.2	12.2	20.8	15.3	27.7
Mali 2012-13	Rural	22.2	17.7	27.4	1.5	0.7	3.1	2.4	1.3	4.3	19.5	15.6	24.0	24.6	16.6	34.9	0.4	0.0	2.7	3.2	1.1	9.3	30.3	21.1	41.4	24.5	20.8	28.7	1.9	1.1	3.4	2.5	1.3	5.0	24.1	20.3	28.3
Malawi 2004	Uiban	52.5	45.2	59.7	4.5	2.1	9.6	23.4	16.4	32.3	1.0	0.2	4.1	40.6	32.9	48.8	6.2	2.9	13.0	0.4	0.0	2.9	19.3	12.0	29.7	33.2	25.3	42.2	5.5	2.3	12.6	0.0			10.8	7.4	15.5
Malavi 2004	Rural	33.3	30.6	36.0	6.6	5.5	8.0	37.0	34.4	39.6	1.3	1.0	1.9	27.9	24.9	31.2	8.0	6.5	9.8	0.0			34.0	31.1	37.	28.	25.5	31.	7.8	6.2	9.8	0.0	0.0	0.2	23.1	20.7	25.6
Malawi 2010	Uiban	53.1	47.2	59.0	17.0	12.2	23.3	0.0			4.1	2.3	7.0	54.4	37.5	70.3	13.8	6.8	25.9	0.0			2.0	0.5	7.4	49.6	43.	56.1	7.6	3.	15.8	0.0			8.6	5.4	13.4
Malawi 2010	Rural	50.3	47.9	52.8	14.7	12.9	16.6	0.0	0.0	0.2	9.8	8.6	11.1	54.5	50.4	58.5	18.2	15.0	21.9	0.0			8.0	6.1	10.4	51.7	48.9	54.5	13.0	11.0	15.2	0.0			10.6	9.0	12.4
Mozambique 2003	Uiban	63.3	58.9	67.6	1.9	0.9	4.0	1.3	0.7	2.7	4.7	3.1	7.0	58.0	50.4	65.2	2.0	1.0	3.9	1.6	0.7	3.5	4.8	2.5	9.1	52.5	43.8	61.0	0.6	0.1	2.8	1.4	0.6	3.4	3.2	1.2	7.9
Mozambique 2003	Rural	45.0	40.8	49.2	2.0	1.1	3.8	0.2	0.1	0.7	9.2	7.4	11.4	52.3	46.1	58.5	1.8	0.9	3.6	0.3	0.0	1.9	8.3	5.3	12.8	45.6	40.3	51.0	1.5	0.6	3.7	0.0			8.1	5.5	11.8
Mozambique 2011	Uiban	71.1	65.5	76.1	1.5	0.7	3.0	0.8	0.2	2.7	1.4	0.6	3.2	64.4	50.2	76.5	0.0			1.4	0.2	10.0	3.9	0.9	15.6	65.8	58.9	72.0	1.1	0.4	3.3	1.2	0.4	3.3	3.	1.5	6.5
Mozambique 2011	Rural	53.7	49.0	58.5	0.0			0.1	0.0	0.6	5.6	3.3	9.3	47.0	35.5	58.8	0.0			0.0			4.8	1.7	12.6	53.9	48.3	59.4	0.9	0.3	2.4	0.1	0.0	0.8	7.3	4.6	11.4
Nigeria 2008	Urban	28.6	24.7	32.9	12.6	9.9	15.9	28.8	24.8	33.2	4.6	3.0	6.9	24.4	18.0	32.1	9.1	4.9	16.3	37.7	27.8	48.7	7.1	3.4	14.4	28.2	23.3	33.6	12.5	9.6	16.3	23.0	18.6	27.9	6.9	4.6	10.1
Nigeria 2008	Rural	25.3	23.0	27.9	8.6	7.3	10.1	26.6	24.2	29.1	8.7	7.4	10.2	22.8	18.1	28.3	8.6	5.7	12.7	26.3	21.9	31.3	10.6	7.8	14.4	22.1	19.5	24.8	7.4	5.9	9.2	20.3	18.0	22.8	14.0	11.8	16.6
Nigeria 2013	Urban	27.5	24	31.3	9.0	6.9	11	35.5	31.	39.	3.2	2.0	5.1	35.1	25.5	46	12.6	8.0	19	31.	23.3	41.8	3.7	1.2	10	27.8	24.1	32.0	7.5	5.5	10.2	8	27.1	36.8	3.7	2.3	5.9

Table A7. - Continued

Country/Survey	Place of Residence	Fever												Symptoms of ARI												Diarrhea											
		Public			Private			Pharmacy Only			Other			Public			Private			Pharmacy Only			Other			Public			Private			Pharmacy Only			Other		
		\%	LB	UB																																	
Nigeria 2013	Rural	24.	22.2	27.5	3.9	3.0	5.2	35.4	32.1	38.8	10.1	8.2	12.3	26.7	22.0	2.1	3.2	1.8	5.6	31.9	26.8	37.	14	10.3	21.0	22.3	19.7	25.2	3.0	2.2	4.0	32.	29	35.	15.3	13.2	7.6
Nepal 2006	Urban	19.8	13.2	28.7	21.6	14.8	30.4	23.1	16.5	31.4	3.0	1.2	7.5	15.8	7.3	31.1	39.3	20.9	61.2	17.9	9.4	31.4	0.3	0.0	2.0	13.2	8.0	21.0	15.4	8.6	26.1	21.6	12.0	35.6	5.5	1.1	23.6
Nepal 2006	Rural	23.7	19.2	28.9	9.2	6.6	12.8	24.5	20.3	29.1	2.0	1.0	3.8	28.2	21.0	36.7	14.5	9.7	21.3	22.9	16.3	31.1	2.0	0.8	4.9	21.7	16.8	27.6	5.1	3.3	8.0	22.0	16.7	28.2	1.5	0.6	4.0
Nepal 2011	Urban	19.0	12.9	27.1	36.6	29.4	44.5	24.5	18.1	32.4	1.9	0.7	4.8	33.5	20.1	50.3	35.5	21.9	52.0	20.3	12.0	32.1	0.0			14.9	9.4	22.8	28.5	20.4	38.4	24.9	16.3	36.2	0.7	0.1	5.0
Nepal 2011	Rural	18.9	15.8	22.4	22.3	18.3	26.9	28.7	24.4	33.4	2.0	1.1	3.6	24.1	17.6	32.2	25.1	17.7	34.2	28.1	19.8	38.1	3.0	1.1	8.0	24.9	20.2	30.3	13.5	9.8	18.4	21.8	18.0	26.1	2.3	1.2	4.5
Pakistan 2006-7	Urban	9.1	6.8	12.0	70.0	64.9	74.7	0.5	0.2	1.3	5.1	3.2	8.0	9.9	6.6	14.6	76.3	70.0	81.7	0.0			4.9	2.4	9.8	7.9	5.1	12.1	65.6	58.8	71.8	1.1	0.4	3.0	8.7	4.2	16.9
Pakistan 2006-7	Rural	10.7	8.8	12.9	64.9	61.8	67.9	0.7	0.3	1.5	4.8	3.6	6.5	9.7	7.5	12.3	67.4	63.5	71.1	0.5	0.1	1.8	4.5	2.8	7.2	9.0	6.7	11.9	54.9	50.3	59.5	0.0			6.0	4.1	8.5
Pakistan 2012-13	Urban	10.4	8.2	13.2	72.8	68.1	77.0	0.6	0.2	1.6	1.9	1.0	3.7	9.4	7.0	12.5	77.6	72.7	81.9	0.3	0.1	1.1	0.2	0.0	0.7	7.6	5.3	10.8	70.3	65.3	74.9	0.6	0.	1.8	1.7	0.7	3.7
Pakistan 2012-13	Rural	8.3	6.7	10.2	70.0	67.1	72.8	0.4	0.2	0.9	2.9	1.8	4.7	9.4	7.3	11.9	71.4	67.0	75.4	0.6	0.2	1.6	2.0	1.0	3.7	10.4	8.4	12.9	64.1	60.4	67.8	0.6	0.2	1.8	1.3	0.7	2.4
Rwanda 2005	Urban	31.5	26.1	37.4	13.8	9.4	19.8	18.9	14.9	23.7	14.7	11.1	19.1	26.7	21.9	32.2	14.6	10.2	20.4	18.3	13.3	24.5	17.5	12.7	23.6	11.1	7.2	16.6	5.2	2.5	10.5	9.6	6.2	14.6	8.2	5.2	12.7
Rwanda 2005	Rural	23.6	21.2	26.2	2.2	1.4	3.4	15.5	13.3	17.9	17.6	15.5	20.0	23.6	20.7	26.7	1.9	1.2	3.1	15.5	13.0	18.4	22.3	19.5	25.3	12.2	10.1	14.8	1.6	0.9	2.9	6.4	4.9	8.2	9.0	7.1	11.3
Rwanda 2010	Urban	44.0	36.9	51.4	12.7	6.8	22.7	7.3	4.2	12.6	2.1	0.7	6.2	54.8	41.5	67.5	21.0	11.1	36.0	5.8	1.7	17.5	1.9	0.2	14.3	28.	22.	35.9	4.9	2.	8.9	7.9	4.5	13.4	7.2	3.7	13.6
Rvanda 2010	Rural	40.3	37.2	43.5	0.6	0.3	1.4	2.6	1.7	3.9	5.3	4.2	6.9	45.1	38.6	51.9	0.0			3.2	1.5	6.7	9.5	6.3	14.0	36.6	33.4	39.9	1.2	0.6	2.5	3.3	2.3	4.7	10.0	8.0	12.3
Senegal 2005	Urban	39.4	32.8	46.5	16.2	9.8	25.5	9.8	7.2	13.2	4.2	2.5	6.9	41.1	34.2	48.4	17.8	10.3	29.0	7.7	4.7	12.5	4.9	2.3	10.1	16.9	12.1	23.1	5.1	2.8	9.2	1.9	0.8	4.4	13.3	8.5	20.2
Senegal 2005	Rural	32.5	29.4	35.8	8.3	6.6	10.3	2.0	1.3	3.1	9.9	8.0	12.0	38.9	33.5	44.6	6.9	4.8	10.0	3.5	2.1	5.7	6.7	4.7	9.4	17.7	15.2	20.5	1.2	0.7	2.1	0.2	0.1	0.6	14.1	11.9	16.6
Senegal 2010-11	Urban	43.6	37.5	49.9	7.1	4.5	11.0	8.3	5.4	12.4	5.0	3.3	7.5	51.7	39.1	64.1	8.9	4.2	17.9	7.2	3.8	12.9	3	3	5.3	30.7	26.2	35.6	4.4	2.7	7.2	5.4	3.5	8.2	8.6	5.5	13.1
Senegal 2010-11	Rural	34.5	31.5	37.6	2.5	1.4	4.3	2.7	1.6	4.5	6.5	5.1	8.3	35.8	29.9	42.2	2.3	0.8	6.9	2.0	0.9	4.4	10.9	8.0	14.7	32.9	30.0	36.0	1.7	1.0	2.7	1.0	0.6	1.9	12.4	10.3	14.9
Tanzania 2004.5	Urban	55.9	47.0	64.5	23.0	16.7	30.6	15.1	11.4	19.7	0.0			56.0	42.2	68.9	18.1	10.3	29.9	13.6	7.3	24.0	0.3	0.0	2.2	34.3	23.2	47.5	12.2	7.0	20.6	11.4	6.4	19.5	0.0		
Tarzania 2004.5	Rural	47.4	43.3	51.5	10	9.1	13.3	22.2	19.1	25.6	2.1	1.4	3.1	51.4	45.2	57.5	10.8	7.9	14.5	22.4	18.1	27.4	2.3	1.2	4.3	40.1	35.5	44.7	7.1	5.0	10.0	13.4	10.2	17.5	2.1	1.2	3.4
Tanzania 2010	Urban	50.2	40.9	59.5	16.6	12.2	22.1	12.2	6.0	23.2	1.5	0.5	4.5	70.0	53.9	82.3	11.3	5.1	23.5	4.3	1.1	15.5	2.5	0.3	17.6	39.1	31.0	47.8	12.3	7.5	19.5	12.3	6.8	21.4	0.2	0.0	0.7
Tanzania 2010	Rural	53.3	48.7	57.8	3.4	2.1	5.4	21.4	17.4	26.0	0.7	0.3	1.7	56.5	47.8	64.8	4.3	2.1	8.4	16.2	9.9	25.3	1.4	0.3	5.4	46.0	41.0	51.0	1.8	0.8	3.8	14.8	11.6	18.6	2.0	1.1	3.7
Uganda 2006	Urban	34.5	24.7	45.9	44.5	35.2	54.3	8.3	4.1	16.0	0.0			25.4	13.8	42.1	45.1	27.6	63.9	9.0	3.4	22.1	0.2	0.0	1.4	28.7	19.7	39.8	41.0	33.3	49.1	5.4	2.6	10.9	3.3	1.7	6.6
Uganda 2006	Rural	30.7	27.6	33.9	46.8	43.6	50.0	6.3	5.1	7.7	3.0	2.2	4.0	33.6	28.8	38.7	43.3	38.5	48.2	7.1	5.3	9.4	3.8	2.5	5.5	30.9	27.8	34.1	42.6	39.1	46.1	4.3	3.4	5.4	5.6	4.3	7.4
Uganda 2011	Urban	28.3	22.0	35.5	63.6	57.8	69.0	3.3	1.7	6.3	2.9	1.4	5.9	28.3	20.0	38.4	57.0	45.5	67.8	3.3	1.4	7.4	6.8	1.9	21.4	25.1	18.3	33.4	48.2	41.7	54.9	2.9	1.3	6.2	1.2	0.5	2.9
Uganda 2011	Rural	36.8	32.7	41.2	45.8	41.6	50.2	1.3	0.8	2.3	4.0	3.0	5.2	32.9	29.0	37.1	49.9	45.1	54.8	1.5	0.7	3.1	3.2	2.0	5.1	32.6	28.7	36.8	42.3	38.5	46.3	1.0	0.6	1.9	3.9	3.0	5.1
Zambia 2007	Urban	63.1	56.5	69.2	2.7	1.2	5.8	1.3	0.4	4.1	4.6	2.4	8.9	66.2	52.9	77.4	0.7	0.2	3.0	3.3	1.1	9.3	2.5	0.5	11.5	53.7	46.0	61.2	3.4	1.6	6.9	2.1	0.6	6.8	2.6	0.9	7.1
Zambia 2007	Rural	52.5	47.2	57.6	9.7	6.4	14.4	1.3	0.5	3.0	8.5	6.4	11.2	58.6	49.7	67.0	10.5	5.8	18.2	1.9	0.4	7.6	6.9	3.8	12.2	52.3	46.3	58.2	8.4	5.7	12.2	0.1	0.0	0.7	10.3	7.5	13.8
Zambia 2013-14	Urban	70.6	66.2	74.6	6.1	3.9	9.4	1.3	0.6	2.9	2.9	1.6	5.1	74.3	64.2	82.3	7.2	3.1	15.9	0.9	0.2	3.3	5.7	1.7	17.2	59.8	55.5	64.0	4.6	3.0	7.0	1.1	0.4	2.8	2.0	1.1	3.5
Zambia 2013-14	Rural	66.5	63.3	69.5	3.7	2.5	5.5	0.5	0.2	1.1	4.5	3.4	5.9	63.7	56.6	70.2	2.3	1.2	4.3	0.0			3.7	2.0	6.9	64.0	60.4	67.5	2.7	1.7	4.1	0.4	0.2	1.0	5.4	4.0	7.2

[^13]
Table A8. Use of public, private, pharmacy, and other sources of care for fever, symptoms of ARI, and diarrhea by household wealth, with confidence

Country/Survey	Household Wealth Quintile	Fever															Symptoms of ARI															Diarrhea													
		Public			Private			Pharmacy Only						ny Care			Public						Pharmacy Only			Other						ublic			riva			harmacy O			Othe			ny	
		\%	LB	UB	\%	18	UB	\%	LB	UB	\%	LB	UB \%	\%	1 B	UB	\%	LB	UB \%	\%	13	UB	\%	LB	UB	\%	LB	UB \%	\% L	LB	UB	\%	LB	UB		1 B UB									
Bangladesh 2007	Poorest	6.8	4.1	10.9	6.8	4.4	10.3	23.0	18.2	28.6	28.2	23.9	32.9	63.5	57.5	69.1	11.8	5.4	24.0	13.4	7.3	23.4	29.5	19.0	42.8	30.9	20.0	44.48	82.5	728			1.6	11.1	6.4	29	13.9	35.5		48.2	24.5	16.3	35.1	70.4	
Bangladesh 200	Poorer	7.1	4.5	10.9	11.9	9.0	15.7	20.6	16.4	25.6	28.8	24.1	34.0	6.3	60.8	71.4	5.6	20	14.8	22.8	12.1	38.8	35.5	23.1	50.3	31.4	20.0	45.68	89.7	76.2	96.0	11.1	5.9	19	5.6	26	2	29.	20.4	40.3	30.	21.1	41.0	73.4	61.
Bangladesh 2007	Mddle	10.2	7.0	14.7	12.6	8.9	17.4	21.1	16.8	26.3	33.2	27.7	39.1	75.8	70.7	80.4	17.6	8.0	34.3	25.5	12.0	46.2	18.2	9.5	32.1	32.4	17.8	51.5	90.9	78.6	5.4	7.9	3.9	15.7	12.9	8.0	2	27.1	17.5	39.3	31.9	23	41.4	76.9	66.784 .8
Bangladesh 2007	wealthie	11.7	8.2	16.5	19.9	16.0	24.6	25.8	19.7	33.0	23.9	18.0	31.0	78.5	73.6	82.7	8.6	29	22.6	40.1	25.6	56.6	317	17.3	50.8	8.7	2.5	26.0	87.5	70.1	95.4	15.5	8.7	26.2	12.1	6.5	21	16.2	7.7	30.9	29.8	19.4	42.9	71.9	58.8
Bangladesh 2007	wealthies	10.2	7.3	14.	28	23.6	34.4	25.5	1.4	30.1	16.5	12.	21.7	79.9	75.3	83.7	(22.2)	7.6	50.0 (5	(51.1)	28.7	73.11	(16.4)	6.3	36.4	(25)	0.3	17.7 (89)	(89.7)	69.1	97.2	12.1	5.6	24.	20.0	13.9	27.9	23.3	14.5	35.2	13.	7.3	23.5	65.	50.5
Bangladesh 2011	Poorest	9.0	6.7	11.9	40.4	35.2	45.9	17.8	14.7	21.3	5.1	3.6	7.2	70.3	65.3	74.9	9.5	5.4	16.2	42.4	33.3	52.0	21.9	14.9	31.0	6.3	3.0	1297	77.2	68.1	84.3	13.1	7.2	22.8	35.9	25.5	47.8	22.4	13.2	35.3	3.2	0.7	14.2	73.4	62.082 .4
Bangladesh 2011	Poorer	8.1	6.1	10.9	42.0	37.4	46.8	22.8	19.2	26.9	4.4	3.0	6.6	76.4	720	80.3	17.2	11.	26.0	40.1	29.4	51.8	25.2	16.1	37.0	10.3	5.0	19.7	87.5	78.5	93.0	8.4	3.9	17.4	36.0	25.1	48.4	36.2	25.3	48.7	3.0	0.4	19.8	80.6	68.4
Bangladesh 2011	Midale	10.6	7.9	14.1	42.3	37.7	47.0	19.5	16.0	23.4	5.6	3.8	8.2	76.4	721	80.2	7.0	3.1	15.2	48.8	37.2	60.6	4.8	7.7	26.4	7.3	2.9	16.8	728	58.5	83.5	12.3	6.7	21.6	39.6	27.4	53.2	23.	13.8	36.9	4.6	1.5	12.9	7	65.786 .2
Bangladesh 2011	Wealthie	8.0	5.8	10.8	46.1	0.5	51.8	17.5	4.0	21.6	4.7	2.9	7.5	75.0	69.9	79.5	6.8	8.8	29.9	52.1	38.2	65.8	14.2	6.8	27.2	4.0	0.9	16	84.9	72.4	92.4	. 9	2.7	25.6	47.9	34.4	61.7	8.1	2.8	20.9	3.8	0. 8	16.8	68	54.679 .9
Bangladesh 2011	weathies	8.3	5.8	11.8	49.5	44.0	54.9	17.3	13.3	22.2	3.0	1.6	5.3	77.6	73.1	81.6	11.5	5.3	23.2	58.4	43.2	72.1	23.3	12.0	40.3	1.5	0.4	6.29	93.0	81.9	97.5	10.4	4.0	24.7	55.9	41.1	69.8	12.7	6.6	23.1	2.2	0.3	15.0	79.1	65.3
Congo DR 2007	Poorest	25.2	19.9	31.5	13.4	9.9	17.9	10.2	6.0	6.7	9.6	6.2	14.6	54.5	46.9	61.9	25.9	19.6	33.3	15.1	10.7	21.0	13.5	7.2	23.9	6.6	28	14.8	57.7	46.0	68.6	26.2	18.3	36.2	12.5	7.6	19.9	2.4	1.2	5.0	4.5	2.2	9.1	41.8	33.0
Congo DR 2007	Poorer	30.0	21.5	40.2	17.1	12.2	23.5	8.8	5.4	13.9	5.2	3.2	8.3	58.1	51.4	64.5	31.8	22.	43.4	125	8.3	18.3	10.3	6.0	17.0	4.3	2.2	8.1	56.5	47.5	65.0	26	17.8	36.5	4.6	20	10.2	3.4	1.1	9.6	3.0	1.2	7.6	35	26.646 .5
Congo DR 2007	Mid	26.5	20.4	33.6	17.2	10.3	27.4	10.2	6.8	15.1	5.6	3.1	10.0	\% 3	49.1	. 1	8.1	9.1	39.2	8.9	5.4	14.3	10.9	6.4	17.9	8.1	4.0	15.6	51.	40.5	61.6	26.8	16.0	41.2	5.8	22	14.4	5.5	1.7	16.2	2.3	0.8	6.4	39.5	29.1
Congo DR 2007	wealthie	20.9	14.5	29.2	22.0	16.7	28.3	20.6	15.3	27.1	5.0	2.6	9.3	66.2	59.8	72.2	19.5	11.5	31.1	24.5	17.2	33.7	22.7	14.8	33.2	7.3	4.0	13.0	69.7	60.7	77.4	27.9	20.8	36	3.1	1.4	6.7	2.7	0.9	8.1	4.0	1.5	10.0	33.7	27.440 .5
Congo DR 2007	wealthies	21.6	16.1	28.4	42.3	5.2	49.7	21	8.5	6.9	3.9	2.2	6.9	77.5	71.6	82.5	6.4	10.2	25.2	39.3	31.9	47.3	23.6	14.3	36.3	6.3	3.0	12.6	81	73.7	87.	35	24.6	48	1.1	0.3	4.4	1.7	0.6	5.0	0.5	0.1	2.5	38.9	27.551 .6
Congo DR 2013-14	Poc	28.5	24.7	32.7	9.1	6.1	13.4	11.0	8.7	13.8	6.8	5.0	9.3	54.3	49.4	59.1	1.9	22.2	43.3	5.5	2.4	11.8	7.3	3.7	14.0	7.3	3.9	13.3	50.4	39.6	61.3	28.4	23.3	34.	8.9	6.6	12.0	11.9	8.8	5.8	8.2	6.1	10.9	55.9	50.161 .7
Congo DR 2013-14	Poorer	35.1	29.6	41.0	9.6	7.1	127	12.7	9.7	16.5	3.7	2.6	5.3	59.8	54.8	64.6	33.5	25.4	427	6.6	3.1	13.3	10.0	4.9	19.4	9.2	3.8	20.7	58.6	47.7	68.6	34.0	28.	40	10.7	6.8	16.	7.6	4.3	12.9	8.2	5.4	12.3	58.4	50.965 .6
Congo DR 2013-14	Midlle	28.5	23.6	34.0	9.0	6.5	12.2	15.9	11.1	22.3	5.4	3.5	8.4	57.5	52.2	62.7	38.0	28.0	49.1	11.3	6.1	20.0	11.6	7.3	17.	4.2	1.8	9.3	64.	51.9	75.1	35.9	30.6	41.	6.0	3.9	8.9	16.3	11.9	21.8	5.3	3.6	7.9	62.	56.868 .1
Congo DR 2013-1	Wealthie	28.5	23.8	33.	10.8	7.8	14.7	17.1	12.6	22.8	3.5	2.2	5.5	9. 1	51.8	66.0	32.6	22.9	44.1	6.7	3.7	11.8	12.9	6.6	23.8	5.3	2.4	1.5	56.9	43.9	69.	29.7	23.5	36.	10.1	6.9	14.	19.6	14.0	26.7	4.5	2.7	7.6	61.8	53.669 .4
Congo DR 2013-1	wealthie	19.1	13.7	26.2	22.4	17.7	27.8	21.7	15.9	28.8	2.7	1.3	5.6	64.9	58.2	71.1	19.3	11.8	30.1	24.6	13.8	39.9	25.8	9.7	53.0	22	0.4	10.2	714	48.5	86.	17.8	13.	23.0	15.0	11.0	20.2	16.3	11.1	23.3	3.6	15	8.3	52.0	44.3
Ethiopia 2005	Poorest	9.3	5.9	14.6	1.5	0.5	4.4	0.0	0.0	0.3	0.2	0.0	1.3	11.1	7.2	16.7	16.5	10.5	24.9	21	0.7	6.5	0.1	0.0	0.5	0.0			18.6	12.4	27.1	13.	8.1	21.	1.0	0.3	3.8	16	0.5	5.2	2.9	1.3	6.5	18.	2.8
Ethiopia 2005	Poorer	13.1	8.8	19.1	1.1	0.3	4.4	0.3	0.0	2.0	1.4	0.4	4.6	15.9	11.1	22.3	1.3	5.6	21.6	1.0	0.1	6.9	0.8	0.2	3.6	0.3	0.1	1.6	13.4	7.3	23.	13.2	9.4	18.3	3.9	1.6	9.2	0.2	0.1	0.9	2.9	1.3	6.5	20	15.426 .3
Ethiopia 2005	Mddle	11.3	7.5	16.7	5.4	2.2	12.6	18	0.8	4.3	0.4	0.1	2.6	18.5	13.4	24.9	16.2	10.7	23.7	4.5	13	14.7	20	0.7	5.4	0.5	0.1	3.5	227	16.0	31.1	22.8	16.5	30	4.3	1.9		2.2	0.9	5.4	1.6	0.7	4.0	30.6	24.0
Ethiopia 2005	wealthie	13	9.0	19.7	3.0	1.3	6.6	0.8	0.1	4.2	0.6	0.2	2.7	17.9	12.8	24.4	12.4	8.1	18.5	0.8	0.1	4.7	19	0.5	6.6	0.3	0.0	2.1	15.4	10.3	22.5	18.7	13.4	25	3.2	1.3	7.5	2.0	0.8	5.1	0.7	0.2	2.9	24.5	18.5
Ethiopia 2005	Wealthies	29.6	21.3	39.5	8.6	5.2	14.0	2.4	1.0	5.6	0.8	0.2	3.9	40.2	30.6	50.6	3.6	15.4	34.5	11.1	5.3	21.9	1.7	0.4	6.6	1.5	0.3	6.0	36.	25.0	49.4	31.8	25.1	39.	5.8	3.0	10.8	0.9	0.3	3.4	2.1	0.6	7.6	40	32.
Ethiopia 2011	Poorest	12	8.8	17.7	4.0	2.2	7.3	0.5	0.2	1.2	0.9	0.3	2.5	17.4	12.9	22.9	125	7.4	20.1	3.1	13	7.2	0.4	0.1	2.0	0.8	0.1	5.0	16.7	10.5	25.7	17.8		24.0	5.6	27	11.2	0.	. 2		1.2	0.3	5.1	24.0	18.
Ethiopia 2011	Poorer	16	11.8	22.1	4.7	2.4	9.0	0.1	0.0	0.2	1.7	0.4	6.2	22.7	17.5	28.8	19.7	11.7	31.3	5.6	20	14.6	1.6	0.3	9.4	0.0			26.9	17.4	39.1	22.8	16.	30	2.6	0.9	7.2	2.5	1.0	6.3	1.7	0.5	5.2	29.5	22.
Ethiopia 2011	Midale	15.9	11.6	21.4	7.3	4.2	12.3	0.4	0.1	1.8	1.7	0.6	5.2	25.2	19.6	31.8	5.9	0.0	24.3	6.2	27	13.8	0.0			2.2	0.5	9.0	24.3	15.9	35.2	26.0	19.	33.	10.1	5.7	17.	0.7	0.2	2.9	4.3	2.0	9.0	39.9	31.948 .5
Ethiopia 2011	Wealthier	18.0	11.9	26.1	11.0	6.8	17.3	14	0.4	5.2	0.5	0.1	3.1	30.1	23.2	37.9	27.3	16.5	41.8	7.5	3,	16.0	3.5	1.0	11.7	0.1	0.0	0.4	36.8	25.1	50.2	2.	16.4	20,	11.3	6.4	178.	1.0	0.3	4.0	2	0.6	6.5	35.9	
Ethiopia 2011	weathies	24.7	17.7	33.5	16.3	11.3	23.0	3.1	1.3	7.1	0.3	0.0	1.6	43.5	34.9	52.4	32.7	19.5	49.4	29.1	15.0	48.9	3.7	1.3	10.3	0.1	0.0	0.5	65.5	49.0	79.0	38.5	30.	47	18.7	12.	27.8	6.9	3.4	3.6	0.6	0.2	25	60.2	48.5
Ghana 2003	Poorest	38.6	31.3	46.5	2.7	0.9	8.2	22.9	17.2	29.8	10.9	6.6	17.5	73.9	67.2	79.7	27.0	19.2	36.5	4.1	1.4	11.2	22.7	15.3	2.4	5.4	20	13.6	58.9	48.5	68.5	20.4	14.0	28.	0.6	0.2	2.4	16.4	10.6	24.3	10.2	6.6	15.4	47.1	40.2
Ghana 2003	Poorer	28.0	20.8	36.	5.5	2.2	127	32.2	24.2	41.4	3.3	1.4	7.4	68.9	59.4	77.0	1.4	21.2	43.7	8.6	29	22.9	27.7	16.4	42.9	2.3	0.5	9.3	7.	55.9		12.8	12.5		4.0	,	9.8	22.	15.0		3.7	1.6	8.3	49.3	
Ghana 20	Mddle	36.1	27.8	45.4	6.4	3.4	11.8	23.9	16.3	33.8	1.8	0.4	7.1	68.3	57.6	77.3	44.3	31.5	57.8	2.9	0.6	13.5	22.6	13.0	36.3	1.3	0.2	9.5	71.1	55.6	82.8	22.3	4.1	33.4	20	0.4	8.7	25.9	16.1	39.0	2.9	0.6	12.3	53.	41.6
Ghana 2003	weathier	45.0	33.7	56.8	10.0	5.0	19.1	16.6	9.4	27.7	3.7	1.3	9.9	72.8	62.6	81.1	48.7	33.2	64.4	3.8	0.9	15.1	29.5	14.8	50.2	4.1	0.9	16.1	80.3	66.1	89.5	23.9	15.7	34.7	3.4	1.0	10.3	20.9	13.1	31.7	0.9	0.1	6.6	48.2	38.
Ghana 2003	wealthies	56.4	42.7	69.3	13.7	7.4	23.9	128	7.0	22.4	0.4	0.0	2.7	83.3	74.1		(55.6)	35.8	73.8		5.5	28.8	(4.7)	5.1	35.7	(3.6)	0.4	24.4	(87.2)	70.8	95.0	2.9	13.8		4.6	6.6	,	15.4	8	27.4	1.4	0.2	10.7	58.4	
Ghana 2008	Poore	37.4	27.7	48.3	3.	1.2	8.0	8.7	4.3	16.7	12.7	7.6	20.5	62.0	51.2	71.8	34.4	21.3	50.4	21	0.3	14.7	8.0	1.7	30.5	10.6	3.7	26.7	55.1	36.2	72.5	40.2	31.2	49.9	0.9	0.2	3.8	9.4	4.7	18.	9.6	5.9	15.3	60.2	50.6
Ghana 2008	Poorer	38.4	29.1	48.6	6.8	2.9	15.2	13.0	7.2	22.2	2.6	0.8	8.0	60.8	49.3	71.2	(36.9)	21.7	55.2 (12	(12.4)	2.3	45.6 (17	(17.9)	7.7	36.4	(0.0)			(66.2)	45.4	82.2	325	24.5	41.7	6.5	28	14.3	19.9	10.7	34.0	9.0	4.8	16.4	66.3	55.475 .7
Ghana 2008	Middle	41.9	32.0	52.5	4.3	1.5	11.7	,	12.5	29.2	7.5	3.9	13.8	72.7	61.8	81.5																36.6	27.0	4.	4.9	1.9	,	22.9	14.6	34.1	3.3	1.1	9.7	65.2	53.1
Ghana 2008	weathie	41.5	30.0	54.1	19.6	12.1	30.3	16.7	10.2	26.1	3.2	0.9	10.3	80.6	69.0	88.6	5.7)	327	6.5	(7.)	2.2	22.5	(0.0)			4.1)	0.4			43.8	84.5	29.7	19.6	42.3	13.2	6.9	23.9	14.9	8.3	25.	3.6	0.9	12.8	61.4	48.5
Ghana 2008	wealthies	52.0	35.6	68.1	27.8	16.2	43.5	8.3	29	21.4	0.0			88.2	73.8	95.2																(34.9)	21.8	50.8	(13.1)	5.1	29.8 (19	19.7)	9.0	37.8	(0.0)			(67.7)	49.681
Haiti 2005-6	Poorest	9.9	6.8	14.2	18.6	13.3	25.3	0.2	0.0	0.9	5.9	3.6	9.6	34.1	28.1	40.6	4.9	1.9	11.9	16.0	8.4	28.3	0.5	0.1	2.2	6.2	3.3	11.5	26.3	18.0	36.6	6.3	.	10.2	19.3	11.9	29.7	0.6	0.1	2.2	0.0	5.4	12.3	33.7	23.7
Haiti 2005-6	Poder	9.5	6.2	14.4	23.2	17.4	30.3	1.5	0.5	4.7	8.4	5.4	13.0	40.9	35.2	46.9	9.4	4.9	17.5	19.5	9.8	35.2	0.0			13.3	7.6	22.2	36.1	26.3	47.3	9.8	6.1	15.4	20.1	13.9	28.2	0.3	0.0	2.1	8.2	4.8	13.6	36.8	30.0
Haiti 2005-6	Middle	18.3	12.5	26.0	25.6	17.8	35.4	16	0.5	4.7	5.4	2.6	10.7	47.0	38.9	55.2	119	6.8	20.1	34.5	21.3	50.6	0.9	0.1	6.8	3.4	1.3	9.0	49.8	37.7	62.0	17.8	11.4	26.	17.2	117	24.	4.2	1.6	10.7	6.5	3.	11.9	44.	35.4
Haiti 2005-6	wealthier	23.5	16.4	32.3	18.5	13.3	25.1	21	0.9	5.0	11.6	7.7	17.1	50.4	41.3	59.6	20.0	10.1	35.9	14.7	7.3	27.4	0.4	0.1	3.1	10.0	3.5	25.1	43.2	30.6	56.7	18.2	11.6	27.3	12.2	7.6	19,	6.1	3.3	10,	8.9	5.4	14.	44.4	35.6
Haiti 2005-6	wealthies	9.8	5.7	16.2	32.6	23.2	43.6	6.6	25	16.7	9.0	3.3	22.4	54.3	45.4	62.9	(9.4)	3.7		(26.9)	14.2	45.0	(0.0)			(9.5)	1.5	41.2 (432)	(43.2)	24.3	64.3	15.8	7.3	30.7	20.6	12.2	32.	5.1	1.8	13.3	4.3	1.6	11.5	44.5	31.5
Hati 2012	Poorest	12.8	9.7	16.7	16.5	12.5	21.3	0.0			8.8	6.0	12.6	36.0	30.5	41.8	13.4	9.1	19.4	11.6	7.5	17.6	0.0			8.7	5.2	14.1	328	25.5	41.0	15.4	10.8	21.	14.9	11.1	19	0.0			7.3	4.8	11.1	36.7	30.1
Haiti 2012	Poorer	8.6	5.0	14.4	25.7	20.5	31.8	0.0			7.1	4.7	10.8	39.9	34.0	46.0	125	6.5	22.8	21.0	14.1	30.2	0.0			6.6	3.8	11.3	38.1	28.4	48.8	11.2	7.6	16.4	17.5	13.2	23.0	0.0			7.7	4.0	14.	34.9	28.4421
Hati 2012	Mddle	16.1	11.2	22.4	30.0	23.7	37.1	1.1	0.3	3.9	8	5.0	12.5	54.1	47.4	60.6	11.2	7.4	16.6	27.8	21.5	35.1	1.2	0.2	5.3	9.2	5.8	14.3	48.1	40.8	55.5	14.5	10.2	20.1	21.2	16.6	26.7	1.3	0.4	4.5	9.8	6.6	14.2	45.5	39.851 .3
Hatit 2012	wealthier	18.3	13.0	25.2	32.4	25.7	40.0	0.8	0.2	3.1	8.4	5.1	13.5	55.6	48.6	62.5	16.2	9.7	25.8	37.3	27.9	47.8	22	0.4	10.1	3.5	1.1	10.3	56.0	46.2	65.4	19.3	13.7	26.6	24.1	17.3	32	0.0			13.8	8.7	21.2	51.8	42.4
Hati 2012	wealthies	18.2	11.9	26.7	36.2	28.2	45.0	0.8	0.2	3.1	3.6	1.6	7.9	57.8	50.3	65.0	122	6.4	22.0	39.0	30.2	48.6	3.0	0.7	12.1	12.0	6.2	22.1	60.4	50.2	69.8	21.1	14.1	30.3	29.6	21.1	39.	0.6	0.1	4.1	5.9	2.5	13.4	55.3	46.563.
India 2005-6	Poorest	12.4	10.1	15.0	49.0	45.4	52.5	5.5	3.6	8.2	6.7	5.0	8.8	71.2	68.2	74.1	11.1	7.8	15.6	49.8	45.0	54.7	3.6	2.1	. 2	6.9	4.7	10.0	66.8	62.1	71.2	15.7	12.8	19.0	35.5	31.3	39.9	5.9	4.2	8.	5.7	4.1	7.8	60.0	55.764 .3
India 2005-6	Poorer	13.6	11.5	16.0	51.6	48.0	55.2	6.0	4.6	7.9	7.7	5.7	10.3	76.2	73.3	78.9	10.4	7.8	13.7	55.9	51.0	60.7	4.9	3.1	7.4	7.2	4.7	10.8	75.1	70.6	79.2	13.2	10.6	16.2	418	37.6	46.	5.7	4.0	8.1	7.8	5.3	11.3	66.9	62.8
India 2005-6	Midale	16.7	14.4	19.3	54.7	51.3	58.1	5.3	3.9	7.2	5.2	3.8	7.0	79.9	76.9	82.6	18.3	14.6	22.7	52.9	47.4	58.3	6.0	3.8	9.2	3.8	2.1	6.7	77.0	72.2	81.2	15.6	13.1	18.6	46.0	41.5	50.	7.0	5.0	9.6	5.2	3.6	7.5	70.2	65.674.
India 2005-6	wealthier	12.6	10.6	15.0	63.3	59.7	66.7	5.2	3.6	7.6	3.3	2.3	4.6	81.2	78.2	84.0	11.0	8.3	14.6	65.0	58.4	71.0	6.4	3.5	11.4	3.2	1.7	5.7	829	76.8	87.6	13.6	11.1	16.6	51.0	46.8	55.	6.4	4.5	9.1	6.0	4.1	8.7	73.8	69.4
India 2005-6	wealthies	9.8	7.9	12.0	70.9	67.5	74.1	3.0	20	4.7	4.6	3.3	6.5	86.9	84.1	89.2	9.6	6.9	13.3	68.2	61.8	74.0	26	1.1	6.2	4.1	2.2	7.4	83.2	77.1	87.8	10.6	8.1	13.7	63.6	58.6	68	4.7	3.0	7.3	4.4	2.8	6.9	80.6	76.3
Indonesia 2007	Poorest	25.6	22.2	29.3	29.2	25.8	32.9	5.0	3.9	6.4	26.3	23.2	29.6	82.5	79.0	85.6	25.9	21.3	30.9	320	26.4	38.1	5.9	4.1	8.5	23.9	19.4	29.2	83.4	76.6	88.5	19.8	15.9	24.4	19.8	16.2	24.0	3.0	2.1	4.4	23.2	18.5	28.7	¢3.8	58.768
Indonesia 2007	Poder	29.3	25.0	34.0	40.9	36.5	45.5	9.4	6.9	12.5	19.0	15.6	23.0	92.5	90.1	94.4	27.6	21.6	34.5	38.6	31.7	46.0	12.3	7.7	19.0	22.3	15.8	30.6	94.6	92.4	96.2	21.4	16.2	27.6	27.3	22.3	33.	6.7	4.1	10.7	24.1	19.0	30.1	7.1	70.2
Indonesia 2007	Midale	27.2	23.3	31.4	48.0	42.7	53.4	7.8	5.6	10.8	15.3	12.1	19.3	93.9	91.4	95.7	25.1	19.2	32.2	54.1	44.9	63.1	7.0	3.8	12.3	16.2	10.6	23.9	95.5	90.2	98.0	22.6	16.8	29.	40.1	32.6	48.	3.2	1.4	6.9	16.3	11.4	22.7	78.3	70.884
Indonesia 2007	weathier	27.6	23.4	32.3	51.5	45.8	57.2	10.4	7.4	14.5	8.4	6.1	11.5	94.1	91.4	96.0	23.7	17.5	31.3	54.4	44.8	63.7	16.6	10.3	25.6	7.2	4.0	125	96.3	90.7	98.6	22.3	15.9	30.4	39.	31.	48.1	9.5	5.6	15.5	9.8	5.6	16.	75.	67.882
Indonesia 2007	wealthies	16.7	12.7	21.7	62.1	55.5	68.4	128	9.2	17.6	6.3	3.8	10.1	94.0	90.3	96.4	19.6	12.2	29.9	59.8	50.1	68.7	14.3	7.9	24.5	2.4	1.2	4.6	94.4	88.4	97.4	10.6	6.1	17.8	54.5	43.2	65.3	10.2	5.5	18.0	11.7	7.4	18.0	83.6	74.290
Indonesia 2012	Poorest	33.7	2.5	37.0	35.0	31.5	38.6	5.4	4.0	7.2	20.1	17.3	23.3	85.8	83.2	88.1	32.	25.3	39.4	32.6	26.	39.	6.0	3.3	10.8	20.4	15.1	26.	81.	73.5	86.	34	29	39.5	31.6	26.8	36.7	3.7	2.5	5.5	15.0	12	18.2	78.6	74.7
Indonesia 2012	Poorer	29.2	25.4	33.2	49.1	44.9	53.2	9.6	7.2	12.7	10.9	8.5	13.9	90.7	87.6	93.0	31.0	229	40.4	617	54.6	68.4	5.1	3.1	8.5	8.4	4.9	14.0	94.2	86.8	97.6	25.7	19.9	32.5	43.4	37.8	49.1	4.8	2.9	7.8	11.2	8.2	15.3	79.4	74.283

Table A8. - Continued

¢
м

м

○○

ऽ

و

-

 Hillin

 11 E II In I

SN

و

و

凹

м

м

و \ddagger

-

و

و

Table A8. - Continued

Country/Survey	Household wealth Quintile	Fever															Symptoms of ARI															Diarrhea													
		Public			Private			Pharmacy Only			Other			Any Care			Public			Private			Pharmacy Only			Other			Any Care			Public			Private			Pharmacy Only			Other			Any Care	
		\%	LB	UB	\%	1 B	UB	\%	LB	UB	\%	B	UB	\%	B	UB	\%	$1 B$	UB	\%	LB																								
Uganda 2006	weathier	25.4	21.0	30.4	50.1	44.6	55.7	6.4	4.3	9.4	4.1	2.4	6.9	81.6	77.7	85.0	27.8	20.2	36.9	47.2	37.7	56.9	8.9	5.6	13.9	5.4	2.6	10.9	84.2	76.0	90.0	22.8	17.5	29.2	48.1	41.1	55.1	5.1	3.2	8.0	6.9	4.4	10.7	77.3	71.88
Uganda 2006	Wealthiest	23.5	17.8	30.3	58.0	51.4	64.3	7.3	4.4	118	1.6	0.6	4.2	88.4	83.8	918	15.2	8.6	25.3	65.4	52.5	76.3	6.6	2.1	18.8	0.1	0.0	11	84.3	75.6	90.2	18.2	12.3	26.0	55.9	49.0	62.5	5.3	2.9	9.6	3.4	1.5	7.5	79.2	71.085
Uganda 2011	Poorest	44.3	37.3	51.6	38.8	32.2	45.9	0.4	0.1	13	4.2	2.6	6.8	83.2	78.6	87.0	38.1	31.2	45.6	44.3	35.3	53.6	0.2	0.0	1.7	2.5	12	5.3	80.2	729	86.0	40.3	328	48.3	35.9	29.4	42.9	0.3	0.1	13	3.2	1.8	5.4	76.0	70.381
Uganda 2011	Poorer	37.0	31.3	43.0	45.5	39.1	520	0.2	0.0	13	4.7	2.9	7.6	83.2	79.1	86.6	33.7	27.4	40.5	49.4	42.0	56.8	2.0	0.6	6.3	3.4	16	7.1	829	75.5	88.5	29.2	23.5	35.6	44.9	33.8	51.2	17	0.7	4.2	5.8	3.6	9.1	79.8	74.384
Uganda 2011	Mddle	40.2	34.4	46.3	45.2	39.1	51.5	2.0	0.8	4.7	2.3	1.1	4.8	85.6	81.4	89.0	30.2	22.5	39.3	524	43.3	61.4	1.6	0.4	6.5	4.2	15	11.2	83.1	74.5	89.2	34.1	26.8	423	44.1	37.3	51.1	1.4	0.5	3.8	3.0	1.4	6.2	77.4	70.783
Uganda 2011	weathier	28.9	23.2	35.5	51.7	45.2	58.1	2.7	1.2	6.3	4.2	2.4	7.1	84.1	79.8	87.6	323	23.2	42.8	517	40.5	62.8	3.6	1.0	12.6	3.1	11	8.5	83.9	76.4	89.4	29.9	23.7	37.0	45.6	38.5	52.9	17	0.6	4.5	3.9	1.9	7.7	78.3	72.08
Uganda 2011	Wealthiest	21.2	16.4	26.9	67.0	60.9	725	3.7	2.1	6.6	3.4	1.8	6.7	90.9	87.2	93.6	213	13.5	31.9	63.5	52.6	73.1	2.4	1.0	5.5	6.2	23	15.7	90.1	83.4	94.2	18.6	13.8	24.7	49.5	42.2	56.7	19	0.6	5.7	1.3	0.5	3.7	70.3	62.077
Zambia 2007	Poorest	51.2	42.8	59.5	9.5	5.2	16.9	1.0	0.3	3.1	10.8	6.7	16.9	70.5	62.7	77.3	64.8	50.6	76.8	13.1	6.5	24.5	0.0			14.0	6.0	29.5	86.2	75.9	925	55.1	44.7	65.1	6.1	3.0	12.1	0.0			15.3	10.0	22.8	69.9	60.178
Zambia 2007	Poorer	53.1	45.2	60.8	9.2	5.2	16.0	1.0	0.2	4.3	6.8	3.8	118	69.5	62.0	76.1	54.9	41.3	67.7	9.3	3.4	23.1	1.8	0.2	13.1	2.6	0.7	9.6	67.7	54.5	78.6	52.2	428	61.	9.8	5.7	16.4	0.0			7.2	3.7	13.8	67.6	59.774
Zambia 2007	Mddle	51.6	44.3	58.8	8.6	5.3	13.6	2.1	0.7	6.5	7.8	4.5	13.2	68.6	61.4	75.1	58.6	43.8	72.1	5.6	1.4	19.9	5.7	1.1	24.0	6.2	2.1	16.9	74.6	59.7	85.3	48.5	39.7	57.4	7.3	3.8	13.5	0.0			9.5	5.5	15.8	64.1	56.970
Zambia 2007	weathier	65.9	58.3	727	3.7	1.7	8.1	1.5	0.4	5.4	6.9	3.8	123	77.1	68.7	83.8	74.8	57.8	86.5	4.8	1.2	17.2	1.6	0.4	6.0	4.4	0.7	22.4	83.4	71.6	90.9	54.8	47.3	62.2	3.7	1.9	7.1	26	0.6	10.1	2.8	1.1	6.6	625	55.968
Zambia 2007	Weathiest	56.8	43.0	69.6	7.1	3.5	14.0	0.3	0.0	20	1.9	0.6	5.9	66.0	53.2	76.9	(54.3)	34.6	72.7	(1.8)	0.2	13.6	(3.2)	0.4	20.5	(0.0)			(59.3)	35.9	79.1	52.2	37.6	66.4	6.8	3.1	14.2	1.3	0.5	3.7	2.5	0.7	9.4	60.1	45.772
Zambia 2013	Poorest	64.5	59.7	69.1	4.1	25	6.5	0.0			4.8	3.1	7.2	72.1	67.6	76.2	65.1	53.5	75.1	19	0.6	5.6	0.0			6.7	28	14.8	73.6	62.8	82.2	60.7	54.8	66.3	29	1.6	5.3	0.2	0.0	1.3	5.7	3.8	8.4	67.0	61.572
Zambia 2013	Poorer	69.6	65.4	73.5	3.1	18	5.1	0.4	0.1	1.4	3.9	2.6	5.8	76.1	72.4	79.4	64.2	53.1	73.9	26	1.0	6.5	0.1	0.0	0.7	4.0	15	10.4	69.7	58.5	79.0	65.6	60.6	70.2	2.1	1.0	4.1	0.6	0.2	20	6.1	3.7	9.8	70.6	65.775
Zambia 2013	Mddle	66.6	61.0	718	4.4	23	8.3	1.0	0.3	29	4.6	2.7	7.8	75.5	70.3	80.1	65.3	51.8	76.8	24	0.6	8.2	0.0			2.7	0.4	14.7	70.1	56.9	80.6	64.8	59.2	70.0	3.5	1.8	6.8	0.4	0.1	18	3.9	2.3	6.7	70.9	65.675
Zambia 2013-14	weathier	73.1	67.1	78.4	29	15	5.5	2.0	0.7	5.2	3.8	1.9	7.5	79.8	74.5	84.2	70.7	57.6	81.1	7.0	2.1	20.5	0.0			3.3	0.6	15.1	75.7	63.5	84.8	63.6	57.5	69.2	3.1	1.7	5.7	15	0.5	4.9	2.3	1.2	4.7	70.1	64.075.
Zambia 2013-14	Weatthest	65.4	56.9	73.1	10.0	5.7	16.9	1.1	0.3	3.7	1.7	0.5	5.5	77.2	70.1	83.1	721	53.9	85.1	7.4	2.0	24.5	1.8	0.4	8.1	4.4	0.8	217	85.8	70.5	93.8	55.3	47.7	62.6	6.4	3.6	11.3	0.6	0.2	18	1.5	0.4	4.8	629	55.

[^14]
Table A9. Trend in coverage of care seeking among rural children and urban children and rural-urban gap in care seeking equity, USAID MCH priority countries

Country	$\begin{aligned} & \text { Survey } \\ & \text { Year } \end{aligned}$	Fever											Symptoms of ARI											Diarrhea											
		Care seeking from any source				Care seeking from public sources				Care seeking from private sources			Care seeking from any source				Care seeking from public sources				Care seeking from private sources			Care seeking from any source				Care seeking from public sources				Care seeking from private sources			
		Rural	Urban	Diff.'	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff.' Sig. ${ }^{\text {2 }}$	Rural	Urban	Diff.'	Sig. ${ }^{2}$	Rural	Urban	Diff.'	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{\text {S }}$ Sig. ${ }^{2}$	Rural	Urban	Diff.'	Sig. ${ }^{2}$	Rural	Urban	Diff.'	Sig. ${ }^{2}$	Rural	Urban	Diff.' S	Sig. ${ }^{2}$
Bangladesh	2007	71.4	74.8	3.4		8.3	12.0	3.7		12.6	25.3	127	87.6	85.9	-1.7		9.1	26.1	17.0		25.7	30.6	4.9	72.5	70.4	-2.1		9.4	11.3	1.9		8.4	19.0	10.5	
	2011	74.3	76.3	20		8.4	10.9	25		43.1	45.3	2.2	79.9	91.4	11.5		121	11.5	-0.6	*	44.8	58.4	13.7	76.4	74.9	-1.5		10.3	14.5	4.1		40.4	45.9	5.6	
DRCongo	2007	57.6	67.8	10.2		27.3	21.5	-5.8		16.9	27.0	10.1												37.3	38.6	1.3		25.4	32.3	6.8		6.8	3.8	-3.0	
	201314	58.5	59.2	0.8		32.4	20.0	-12.4		8.6	17.9	9.3												60.1	54.4	-5.7		34.9	18.3	-16.5	**	8.2	13.9	5.7	*
Etriopia	2005	17.3	46.4	29.1		13.1	30.3	17.2		2.7	15.7	13.0												25.0	38.7	13.7		18.3	23.8	10.5		3.3	7.1	3.8	
	2011	24.2	41.2	17.0		16.1	22.2	6.2		6.7	16.4	9.7												32.9	58.0	25.2		22.7	35.4	12.7		7.1	23.1	16.0	
Ghana	2003	72.6	73.6	1.0		36.9	45.4	8.5		4.9	11.0	6.1												48.0	54.9	6.9		19.3	28.1	8.8		2.0	7.4	5.5	
	2008	${ }_{6}^{63.7}$	81.5	17.8	*	40.5	41.6	1.1		5.2	18.5	13.3												620	66.3	4.3		38.6	29.4	-9.2	*	4.9	8.1	3.2	
Hatit	$2005-6$	41.4	49.8	8.5		129	17.3	4.4		22.4	23.4	1.1	37.5	39.5	21		9.6	13.2	3.6		21.5	21.0	-0.6	36.8	46.6	9.8		10.7	17.8	7.1		19.2	14.6	-4.6	
	2012	45.8	51.5	5.8		13.9	15.4	1.4		25.1	$\stackrel{31.7}{\star}$	6.5	43.0	51.9	8.9		14.5	10.9	-3.6		22.0	34.5	12.5	41.9	46.7	4.8		14.6	17.5	3.0		19.5	226	3.1	
Indonesia	2007	89.6	928	3.2		25.0	27.2	2.2		42.3	47.9	5.6												723	77.2	4.9		20.3	19.2	-1.1		30.9	37.5	6.6	
	2012	88.8	$\stackrel{90.4}{*}$	1.6		23.1	27.7	4.7		523	52.1	-0.2									*			80.1	80.1	0.0		23.3	24.0	0.8		45.7	42.6	-3.1	
Kerra	2003	66.9	75.2	8.3		29.0	29.2	0.1		16.6	24.7	8.1												37.1	39.5	24		21.1	16.6	-4.5		8.4	14.2	5.8	
	2008.9	62.2	63.0	0.8		38.7	40.6	1.9		9.8	$\stackrel{12.2}{*}$	2.5												60.3	59.3	-1.0		$\frac{40.1}{404}$	324	-7.7		9.2	16.1	6.9	
Liberia	2007	74.4	80.9	6.5		31.8	46.0	14.2	*	21.2	22.	1.5	78.4	83.1	4.7		41.8	57.6	15.8		17.9	16.4	-1.5	78.8	77.0	-1.8		25.6	39.2	13.6		22.6	14.9	-7.7	
	2013	76.8	82.0	5.2		44.8	36.6	-8.2		9.4	25.3	15.9	71.0	76.6	5.6		42.7	25.5	-17.2	*	9.6	23.9	14.2	73.3	73.5	0.2		39.1	31.1	-7.9	*	$\begin{aligned} & 7.4 \\ & \times \end{aligned}$	17.5	10.2	**
Madagascar	$2003-4$	40.0	61.8	21.8		25.5	30.3	4.8		8.3	29.6	21.3												37.3	42.7	5.4		21.1	20.5	-0.6		9.1	21.0	11.9	
	2008-9	44.7	63.3	18.6		30.3	23.6	-6.7		9.1	39.7	30.6												37.7	57.1	19.4		25.9	27.6	1.8		6.7	23.5	16.8	
Mai	2007	52.6	71.9	19.3		25.5	40.5	14.9		28	6.1	3.3												27.9	42.3	14.4		13.5	27.7	14.2		0.8	5.0	4.2	
	2013	$\stackrel{44.2}{ }$	70.8	26.7		222	41.5	19.3		1.5	7.4	5.9												51.4	62.5	11.1		$\underset{4}{24.5}$	31.6	7.1		1.9	4.8	2.9	
Malawi	2004	77.0	80.9	4.0		33.3	52.5	19.3	*	6.6	4.5	-2.1												58.5	49.5	-8.9		28.4	33.2	4.9		7.8	5.5	-2.3	
	2010	72.9	723	-0.6		50.3	53.2	28		$\begin{aligned} & 14.7 \\ & \end{aligned}$	17.1	2.4												$\begin{aligned} & 72.9 \\ & \end{aligned}$	63.0	-10.0		51.7	49.6	-2.1		${ }^{13.0}$	7.6	-5.4	
Mczambique	2003	56.0	70.8	14.8		45.0	63.3	18.4		2.0	1.9	-0.2												54.7	57.5	28		45.6	52.5	6.9		1.5	0.6	-0.8	
	2011	58.4	74.0	15.6		53.8	71.1	17.3		0.0	1.5	1.5												60.7	${ }^{71.2}$	10.4		53.9	65.8	11.9		0.9	1.2	0.3	
Nigeria	2008	68.1	73.9	5.8		25.4	28.6	3.3		8.6	12.6	4.0	66.2	76.8	10.6		228	24.4	1.6		8.6	9.1	0.6	628	69.6	6.9		22.1	28.2	6.1		7.4	12.6	5.2	
	2013	73.8	74.2	0.4		24.8	27.5	28		3.9	9.0	5.1	75.8	79.5	3.7		26.8	35.1	8.3		3.2	127	9.5	71.2	70.3	-1.0	*	22.3	27.9	5.5		3.0	7.5	4.5	
Nepal	2006	58.1	66.0	8.0		23.7	19.8	-3.9		9.2	21.6	12.4	65.2	71.9	6.7		28.2	15.9	-123		14.5	39.3	24.7	50.2	54.2	4.0		21.7	13.2	-8.5		5.1	15.4	10.3	
	2011	70.5	81.5	11.0		18.9	19.0	0.2		22.3	36.6	14.3	76.7	89.3	12.6		24.1	33.5	9.4		25.1	35.5	10.4	61.4	68.9	7.5		24.9	14.9	-10.0		13.5	28.5	15.0	
		**	*							**	*		*								*			*								**			
Pabistan	2006.7	80.2	83.3	3.1		10.7	9.1	-1.6		64.9	70.0	5.1	813	88.5	7.1		9.7	9.9	0.2		67.4	76.3	8.9	68.9	78.3	9.3		9.0	8.0	-1.0		54.9	65.6	10.7	
	2012-13	80.8	85.0	4.2		8.3	10.4	22		70.0	728	2.8	82.2	86.7	4.5		9.4	9.4	0.0		71.4	7.6	6.2	75.2	79.3	4.1		10.4	7.6	-2.8		$\stackrel{64.2}{\substack{4 \\ \# 2}}$	70.3	6.2	
Rwanda	2005	58.1	7.2	19.1		23.6	31.5	7.9		22	13.8	11.6												28.7	33.7	5.1		12.3	11.1	-1.2		1.6	5.2	3.6	
	2010	48.7	65.3	16.7		40.3	44.0	3.7		0.6	127	12.1												50.0	$\begin{aligned} & 48.2 \\ & 4.2 \end{aligned}$	-1.9		36.6	$\begin{aligned} & 28.6 \\ & 28.6 \end{aligned}$	-8.0		1.2	4.9	3.7	
Senegal	2005	51.0	67.3	16.3		326	39.5	6.9		8.3	16.2	7.9												32.6	36.1	3.5		17.7	16.9	-0.8		1.2	5.1	3.9	
	2010-11	45.5	62.1	16.7		34.5	43.6	9.1		$\begin{aligned} & 25 \\ & 4 \end{aligned}$	7.1	4.6												47.2	$\begin{gathered} 48.2 \\ \# \end{gathered}$	1.0		$\begin{aligned} & 32.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.7 \\ & \hline \end{aligned}$	-2.2		1.7	4.4	2.7	
Tarzania	20045	82.0	92.8	10.8		47.4	55.9	8.5		11.0	23.0	11.9												62.3	58.0	-4.3		40.1	34.3	-5.7		7.1	12.2	5.2	
	2010	78.4	$\underset{*}{79.9}$	1.4		53.3	50.2	-3.1		$\begin{aligned} & 3.4 \\ & 4 \end{aligned}$	16.6	13.2	*								*			63.9	63.5	-0.4		46.0	39.1	-6.9		$\underset{*}{1.8}$	12.3	10.5	

Table A9. - Continued

Country	Survey Year	Fever												Symptoms of ARI												Diarrhea											
		Care seeking from any source				Care seeking from public sources				Care seeking from private sources				Care seeking from any source				Care seeking from public \qquad				Care seeking from private sources				Care seeking from any source				Care seeking from public \qquad				Care seeking from private sources			
		Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff. ${ }^{1}$	Sig. ${ }^{2}$	Rural	Urban	Diff.1	Sig. ${ }^{2}$
Uganda	2006	83.0	85.1	2.1		30.7	34.5	3.9		46.8	44.6	-2.2		83.4	77.5	-5.9	*	33.6	25.4	-8.2		43.3	45.1	1.8		78.6	75.8	-2.8		30.9	28.7	-2.2		42.6	41.0	-1.6	
	2011	84.0	92.7	8.7	*	36.8	28.3	-8.6		45.9	63.6	17.7	**	82.4	89.9	7.4		32.9	28.3	-4.6		50.0	57.0	7.1		77.0	74.3	-2.7		32.6	25.1	-7.5		42.4	48.3	5.9	
Zambia	2007	70.6	71.1	0.5		52.5	63.1	10.6		9.7	2.7	-7.0		74.9	72.5	-2.4	*	58.6	66.2	7.7		10.5	0.7	-9.8		68.0	59.7	-8.2		52.3	53.7	1.4		8.4	3.4	-5.1	
	2013-14	74.0	79.4	5.4		66.5	70.6	4.1		3.7	6.1	2.4	**	69.3	76.2	6.9		63.7	74.3	10.6		2.3	7.2	4.9	**	70.0	66.5	-3.4		64.0	59.9	-4.2		2.7	4.6	2.0	*
			+			**				**												***	*							**				***			
For symptoms of ARI, the table is restricted to USAD MCH priority countries with complete information on symptoms of ARI.																																					

Table A10. Trend in coverage of care seeking among children in poorest and wealthiest quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{Country} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { Survey } \\
\& \text { Year }
\end{aligned}
\]} \& \multicolumn{12}{|l|}{Fever} \& \multicolumn{12}{|l|}{Symptoms of ARI} \& \multicolumn{12}{|l|}{Diarrhea} \\
\hline \& \& \multicolumn{4}{|l|}{Care seeking from any source} \& \multicolumn{4}{|l|}{Care seeking from public sources} \& \multicolumn{4}{|l|}{Care seeking from private sources} \& \& \multicolumn{3}{|l|}{Care seeking from any source} \& \multicolumn{4}{|l|}{Care seeking from public sources} \& \multicolumn{4}{|l|}{Care seeking from private sources} \& \multicolumn{4}{|l|}{Care seeking from any source} \& \multicolumn{4}{|l|}{Care seeking from public sources} \& \multicolumn{4}{|l|}{Care seeking from private sources} \\
\hline \& \& \[
\begin{gathered}
\text { Poor- } \\
\text { est }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Wealth } \\
\& \text {-iest }
\end{aligned}
\] \& Diff.' \& Sig. \({ }^{2}\) \& \[
\begin{array}{|}
\hline \begin{array}{l}
\text { Poor- } \\
\text { ent }
\end{array}
\end{array}
\] \& \[
\begin{gathered}
\text { Wealth } \\
\text {-iest }
\end{gathered}
\] \& Diff.' \& Sig. \({ }^{2}\) \& \[
\begin{aligned}
\& \text { Poor } \\
\& \text { at }
\end{aligned}
\] \& Wealth -iest \& Diff.' \& Sig. \({ }^{2}\) \& \& Poor- W
est \& Wealth -iest \& Diff.' Sig. \({ }^{\text {a }}\) \& \& \[
\begin{aligned}
\& \text { Poor- } \\
\& \text { est }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Wealth } \\
\& \text {-iest }
\end{aligned}
\] \& Diff.' Sig.' \& \[
\begin{aligned}
\& \text { Poor- } \\
\& \text { est }
\end{aligned}
\] \& \[
\underset{\text { Wealth }}{\substack{\text {-iest }}}
\] \& Diff.' \& Sig. \({ }^{2}\) \& Poor-
est \& \[
\begin{aligned}
\& \text { Wealth } \\
\& \text { - }
\end{aligned}
\] \& Diff.' \& Sig. \({ }^{2}\) \& est
\[
\begin{aligned}
\& \text { Poor- } \\
\& \text { oct }
\end{aligned}
\] \& Wealth \& Diff.' \& Sig. \({ }^{2}\) \& Poor-
est \& \[
\begin{gathered}
\text { Wealth } \\
\text {-iest }
\end{gathered}
\] \& Diff.' Sig. \& \\
\hline Bangladesh \& \[
\begin{aligned}
\& 2007 \\
\& 2011
\end{aligned}
\] \& \[
\begin{aligned}
\& 63.5 \\
\& 70.3 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 79.9 \\
\& 7.6
\end{aligned}
\] \& 16.3
7.3 \& \& 6.8
9.0 \& \[
\begin{gathered}
10.2 \\
8.3
\end{gathered}
\] \& \[
\begin{gathered}
3.4 \\
-0.6
\end{gathered}
\] \& \& \[
\begin{array}{r}
6.8 \\
40.4
\end{array}
\] \& \[
\begin{aligned}
\& 287.7 \\
\& 49.5
\end{aligned}
\] \& \(\stackrel{219}{9.0}\) \& \& \(\cdots\) \& \[
\begin{aligned}
\& 825 \\
\& 77.2
\end{aligned}
\] \& \[
\begin{gathered}
(89.9) \\
98.0
\end{gathered}
\] \& \[
\begin{gathered}
7.2 \\
15.9
\end{gathered}
\] \& \& \[
\begin{aligned}
\& 11.8 \\
\& \hline 9.6
\end{aligned}
\] \& \[
\begin{aligned}
\& (222) \\
\& 115
\end{aligned}
\] \& \[
\begin{aligned}
\& 10.4 \\
\& 2.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 13.4 \\
\& 42.4
\end{aligned}
\] \& \[
\begin{aligned}
\& (51.1) \\
\& 58.4
\end{aligned}
\] \& \[
\begin{aligned}
\& 37.7 \\
\& 16.0
\end{aligned}
\] \& \& 70.4
73.4 \& \[
\begin{aligned}
\& 65.4 \\
\& \begin{array}{l}
69.4
\end{array}
\end{aligned}
\] \& -5.0
5.7 \& \& \[
\begin{gathered}
4.3 \\
13.1
\end{gathered}
\] \& \[
\begin{aligned}
\& 12.1 \\
\& 10.4 \\
\& 10
\end{aligned}
\] \& 7.8
-2.7 \& \& \[
\begin{aligned}
\& 6.5 \\
\& 35.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 20.0 \\
\& 56.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 13.5 \\
\& 20.1
\end{aligned}
\] \& \\
\hline DRCongo \& \[
\begin{gathered}
2007 \\
2013-14
\end{gathered}
\] \& \[
\begin{aligned}
\& 54,5 \\
\& 544,3
\end{aligned}
\] \& \[
\begin{aligned}
\& 77.5 \\
\& 65.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 23.0 \\
\& 10.7
\end{aligned}
\] \& \& \[
\begin{gathered}
25.2 \\
28.5
\end{gathered}
\] \& \[
\begin{aligned}
\& 2126 \\
\& 19.2
\end{aligned}
\] \& \[
\begin{aligned}
\& -3.6 \\
\& -9.4
\end{aligned}
\] \& \& \[
\begin{gathered}
13.4 \\
9.1
\end{gathered}
\] \& \[
\begin{aligned}
\& 42.3 \\
\& 2.4
\end{aligned}
\] \& \[
\begin{aligned}
\& 28.9 \\
\& 13.3
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& 55.9 \& 38.9
52.0 \& 38.9
-3.9 \& \& \[
\begin{aligned}
\& 26.2 \\
\& 28.4
\end{aligned}
\] \& \[
\begin{aligned}
\& 35.5 \\
\& 17.8
\end{aligned}
\] \& 9.3
-10.6 \& \& \[
\begin{gathered}
12.5 \\
{ }_{8.9}
\end{gathered}
\] \& \[
\begin{gathered}
1 . \\
{ }_{15.0}
\end{gathered}
\] \& \[
\begin{gathered}
-11.4 \\
6.1
\end{gathered}
\] \& ** \\
\hline Eriopia \& \[
\begin{aligned}
\& 2005 \\
\& 20011
\end{aligned}
\] \& \[
\begin{aligned}
\& 11.1 \\
\& 17.4
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.2 \\
\& 43.5
\end{aligned}
\] \& \[
\begin{gathered}
20.1 \\
20.1
\end{gathered}
\] \& \& 9.3
12.6 \& \[
\begin{aligned}
\& 29.6 \\
\& 24.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 20.2 \\
\& 122
\end{aligned}
\] \& \& 15
4.0 \& \[
\begin{array}{r}
8.6 \\
16.3 \\
\hline
\end{array}
\] \& \(\begin{array}{r}7.2 \\ 12.3 \\ \hline\end{array}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& 18.8
24.0 \& \[
\begin{aligned}
\& 40.2 \\
\& 60.2
\end{aligned}
\] \& 214
36.2 \& \& 13.3
17.8 \& \[
\begin{aligned}
\& 3.1 .8 \\
\& 38.5
\end{aligned}
\] \& 18.5
20.8 \& \& \[
\begin{aligned}
\& 1.0 \\
\& 5.6
\end{aligned}
\] \& \[
\begin{gathered}
5.8 \\
187 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
4.8 \\
132
\end{gathered}
\] \& \\
\hline Ghana \& 2003
2008 \& \[
\begin{aligned}
\& 73.9 \\
\& 62.0 \\
\& \hline
\end{aligned}
\] \& \({ }_{882}^{883}\) \& 9.4
26.2 \& \& 33.6
37.4 \& \[
\begin{aligned}
\& 56.4 \\
\& 520
\end{aligned}
\] \& 17.8
14.6 \& \& 27
3 \& 13.7
27.8 \& \({ }_{24.7}^{10.9}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \(\stackrel{47.1}{60.2}\) \& \[
\begin{gathered}
58.4 \\
(67.7
\end{gathered}
\] \& \({ }_{7.5}^{11.3}\) \& \& \[
\begin{aligned}
\& 20.4 \\
\& 40.2 \\
\& 4.0
\end{aligned}
\] \& \[
\underset{(34.9)}{26.9}{ }_{(3,9}^{2}
\] \& \({ }_{5.3}^{6.6}\) \& \& 0.6
0.9 \& \[
\begin{array}{r}
14.6 \\
(13.1)
\end{array}
\] \& \[
\begin{aligned}
\& 14,0 \\
\& 12
\end{aligned}
\] \& \\
\hline Hatio \& \[
\begin{aligned}
\& 2005-6 \\
\& 2012
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.1 \\
\& 360.0
\end{aligned}
\] \& \[
\begin{gathered}
54,3 \\
5: 9
\end{gathered}
\] \& \[
\begin{gathered}
20.3 \\
21.9
\end{gathered}
\] \& \& \[
\begin{aligned}
\& 9.9 \\
\& 12.8
\end{aligned}
\] \& \[
\begin{gathered}
9.8 \\
182 \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
-0.1 \\
5.4
\end{array}
\] \& \& \[
\begin{aligned}
\& 18.6 \\
\& 16.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 32.6 \\
\& 36.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 14.0 \\
\& 19.7
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 26.3 \\
\& 32.8
\end{aligned}
\] \& \[
\left(\begin{array}{l}
4.22) \\
60.4
\end{array}\right.
\] \& \[
\begin{aligned}
\& 16.9 \\
\& 27.6
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 4.9 \\
\& 13.4
\end{aligned}
\] \& \[
\begin{aligned}
\& (9.4) \\
\& 122
\end{aligned}
\] \& \[
\begin{gathered}
4.5 \\
-1.2
\end{gathered}
\] \& \[
\begin{aligned}
\& 1600 \\
\& 11
\end{aligned}
\] \& \[
\begin{array}{r}
(26.9) \\
39.0
\end{array}
\] \& \[
\begin{aligned}
\& 10.9 \\
\& 27.4
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 33,7 \\
\& 36.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 44.5 \\
\& 55.3
\end{aligned}
\] \& \[
\begin{aligned}
\& 10.8 \\
\& 18.7
\end{aligned}
\] \& \& \[
\begin{array}{r}
6.3 \\
15.4
\end{array}
\] \& \[
\begin{aligned}
\& 15.5 \\
\& 20.1
\end{aligned}
\] \& \({ }^{9.5}\) \& \& \[
\begin{aligned}
\& 19.3 \\
\& 14.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 20.6 \\
\& 29.6
\end{aligned}
\] \& \[
\begin{gathered}
14 \\
14.8
\end{gathered}
\] \& \\
\hline Indonesia \& \[
\begin{aligned}
\& 2007 \\
\& 20012
\end{aligned}
\] \& \[
\begin{aligned}
\& 88.5 \\
\& 85.8
\end{aligned}
\] \& 92.3 \& -82.5
6.4 \& \& \& \[
\begin{aligned}
\& 16.6 \\
\& { }_{14}
\end{aligned}
\] \& -8.9
-19.4 \& \& \[
\begin{aligned}
\& 29.2 .2 \\
\& 350
\end{aligned}
\] \& 62.1
69.1 \& 32.9
34.1 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \begin{tabular}{l}
639 \\
78.6 \\
\hline
\end{tabular} \& 83.6
80.8 \& 19.8
22 \& \& \[
\begin{aligned}
\& 19.8 \\
\& 34.2
\end{aligned}
\] \& 10.6
14.8 \& -9.2
-19.4 \& \& \[
\begin{aligned}
\& 19.9 \\
\& 31.6
\end{aligned}
\] \& 54.5
50.1 \& \[
\begin{aligned}
\& 34,7 \\
\& 18.6
\end{aligned}
\] \& \\
\hline Kerya \& \[
\begin{array}{r}
2003 \\
20089 \\
2008
\end{array}
\] \& \[
\begin{aligned}
\& 64,9.9 \\
\& 644,
\end{aligned}
\] \& \[
\begin{gathered}
73.4 \\
60.1
\end{gathered}
\] \& \[
\begin{array}{r}
8.6 \\
-4.0
\end{array}
\] \& \& \[
\begin{array}{r}
27.3 \\
46.1 \\
46
\end{array}
\] \& \[
\] \& \[
\begin{gathered}
-16 \\
-6.9
\end{gathered}
\] \& \& \[
\begin{array}{r}
15.0 \\
6.2
\end{array}
\] \& \[
\begin{gathered}
29.6 \\
13.4 \\
4
\end{gathered}
\] \& \begin{tabular}{|c}
14.6 \\
7.2 \\
\hline
\end{tabular} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \(\begin{array}{r}40.8 \\ 618 \\ \hline\end{array}\) \& 44.0
55.3 \& 3.2
-6.5 \& \& \begin{tabular}{l}
22.2 \\
42.7 \\
\hline
\end{tabular} \& 16.0
23.6 \& - 6.2
-19.1 \& \& \[
\begin{aligned}
\& 7.6 \\
\& 6.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 218 \\
\& 229
\end{aligned}
\] \& \[
\begin{aligned}
\& 14,2, \\
\& 168
\end{aligned}
\] \& \\
\hline Lberia \& \[
\begin{aligned}
\& 200013 \\
\& 2013
\end{aligned}
\] \& \[
\begin{aligned}
\& 63.2 \\
\& 73.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 83.2 \\
\& 80.2
\end{aligned}
\] \& 20.1
6.5 \& \& 20.7
43.2
4.4 \& \[
\begin{aligned}
\& 427 \\
\& 223
\end{aligned}
\] \& \({ }_{-20.9}^{219}\) \& \& \[
\begin{gathered}
21.5 \\
7.5 \\
\hline
\end{gathered}
\] \& 24.4
39.9 \& \({ }_{32}^{2.9}\) \& \& \(\cdots\) \& \[
\begin{aligned}
\& 79.2 \\
\& 6.12
\end{aligned}
\] \& \[
(9,96)
\] \& \[
\begin{aligned}
\& 14.6 \\
\& 25.0
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 40.3 \\
\& 42.5
\end{aligned}
\] \& \[
\begin{gathered}
(61.9) \\
(7.9)
\end{gathered}
\] \& \[
\begin{gathered}
24.5 \\
-24.6
\end{gathered}
\] \& 182
7.1 \& \[
{ }_{(36.1)}^{(29.1)}
\] \& \({ }_{28.9}^{110}\) \& \& \({ }_{717}^{691}\) \& 84.2
73.2 \& 150
16 \& \& 23.9
36.9

, \& 38.4
24.0 \& ${ }_{-13.0}^{14.4}$ \& \& 13.5
6.5 \& 225

25.3 \& $$
\begin{gathered}
9.0 \\
18.8
\end{gathered}
$$ \&

\hline Madagascar \& $$
\begin{aligned}
& 2003.4 \\
& 20089
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 39.7 \\
& 42 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 60.5 \\
& 66.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.8 \\
& 23.5
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 24,5.5 \\
& 28,1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 27.0 \\
& 24.6
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
2.6 \\
-3.6
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& 7.7 \\
& 6.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 33.4 \\
& 41.8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25.6 \\
& 35.4
\end{aligned}
$$
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& 39.1

35.3 \& $$
\begin{aligned}
& 38.4 \\
& 59.4 \\
& 59
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& -0.7 \\
& 24.0
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 24.2 \\
& 23.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.5 \\
& 20.9
\end{aligned}
$$

\] \& | -13.8 |
| :---: |
| 6.2 | \& * \& \[

$$
\begin{aligned}
& 6.6 \\
& 3.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 27.9 \\
& 25.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 214 \\
& 222
\end{aligned}
$$
\] \&

\hline Mai \& $$
\begin{aligned}
& 2007 \\
& 2013 \\
& 2013
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 52.6 \\
& 41.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 73.2 \\
& 74.1
\end{aligned}
$$
\] \& 20.6

32.4 \& \& 20.7

17.2 \& $$
\begin{aligned}
& 44.9 \\
& 47.9
\end{aligned}
$$ \& 24.1

30.7 \& \& 27 \& 8.1
6.9 \& 5.5

6.9 \& \& \& \& \& \& \& \& \& \& \& \& \& \& | 30.1 |
| :--- |
| 425 | \& 42.3

60.3 \& ${ }_{17.8}^{122}$ \& \& 12.7
14.0 \& 28.2
38.1 \& 15.5

19.1 \& \& ${ }_{3.2}^{1.3}$ \& \begin{tabular}{l}
8.3

3.5

\hline

\end{tabular} \& \[

$$
\begin{aligned}
& 7.0 \\
& 0.3
\end{aligned}
$$
\] \&

\hline Malawi \& $$
\begin{aligned}
& 2000 \\
& 2010 \\
&
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 75.0 \\
& 68.6
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
7.9 \\
76.4
\end{gathered}
$$
\] \& 2.9

7.8 \& \& $\stackrel{31.0}{46.8}$ \& \[
$$
\begin{aligned}
& 416 \\
& 48.4
\end{aligned}
$$

\] \& $\underset{16}{10.6}$ \& \& $\begin{array}{r}5.4 \\ 14.5 \\ \hline 20\end{array}$ \& \[

$$
\begin{array}{r}
8.8 \\
\begin{array}{c}
85.5 \\
\hline . .
\end{array}{ }^{2}
\end{array}
$$
\] \& 3.4

11.0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \begin{tabular}{l}
56.6

714

\hline

 \&

52.4

66.1

\hline
\end{tabular} \& -4.2

-5.4 \& \& | 28.8 |
| :--- |
| $\substack{23.1 \\ \hline \\ \hline}$ | \& $\stackrel{28.5}{47.8}$ \& -0.4 \& \& $\begin{array}{r}5.7 \\ 11.8 \\ 10 \\ \hline 0.0\end{array}$ \& 125

13.1 \& $$
\begin{aligned}
& 6.8 \\
& 13
\end{aligned}
$$ \&

\hline Mceandique \& $$
\begin{aligned}
& 20003 \\
& 2011
\end{aligned}
$$ \& \[

$$
\begin{gathered}
53.0 \\
5.6
\end{gathered}
$$
\] \& ${ }_{71.1}^{73.7}$ \& 20.7

13.6 \& \& | 40.2 |
| :--- |
| 53.8 |
| at | \& \[

$$
\begin{aligned}
& 65.0 \\
& 65.8
\end{aligned}
$$
\] \& 24.8

121 \& \& 26 \& 3.6
2.9 \& 1.0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{60.3}^{511}$ \& \& 27

124 \& \& | 40.6 |
| :--- |
| 53.5 | \& \[

$$
\begin{aligned}
& 46.5 \\
& 64.8
\end{aligned}
$$
\] \& 15.9 \& \& 1.0 \& 1.6

0.3 \& $$
\begin{gathered}
0.6 \\
-0.9
\end{gathered}
$$ \&

\hline Ngeria \& $$
\begin{aligned}
& 20008 \\
& 2013
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 62.1 \\
& 70.3 \\
& \hline 7 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 74.8 \\
& 73.2
\end{aligned}
$$
\] \& 12.7

3.0 \& \& 20.3

22.3 \& $$
\begin{aligned}
& 29.2 \\
& 28 .
\end{aligned}
$$ \& 8.9

6.2 \& \& | 6.9 |
| :--- |
| 28 | \& 18.4

15.3 \& ${ }_{12.6}^{11.6}$ \& \& \& $$
\begin{aligned}
& 63,1 \\
& 81.3 \\
& 8.1
\end{aligned}
$$ \& 76.5

81.7 \& 13.4

0.4 \& \& $$
\begin{aligned}
& 15.2 \\
& { }_{25.3}
\end{aligned}
$$ \& 30.8

43.7 \& 15.6
18.4 \& 7.9
16 \& 17.3
23.5 \& 9.3
219 \& \& $\stackrel{58.4}{67.1}$ \& 67.4
67.4 \& 9.0
0.4 \& \& 16.9
15.8 \& 31.4

28.1 \& ${ }_{12.3}^{14.5}$ \& \& $$
\begin{aligned}
& 6.3 \\
& 2.4 \\
& \hline 4
\end{aligned}
$$ \& 20.5

10.8 \& $$
\begin{gathered}
14.1 \\
8.4
\end{gathered}
$$ \&

\hline Nepal \& 2006

2011 \& $$
\begin{aligned}
& 42.0 \\
& 49.5
\end{aligned}
$$ \& ${ }_{69.4}^{79.4}$ \& ${ }_{24.9}^{27.5}$ \& \& 20.6

23.2 \& $$
\begin{gathered}
18.7 \\
9.6
\end{gathered}
$$ \& -13.6

-13 \& \& ${ }_{7.3}^{3.2}$ \& ${ }_{38.3}^{26.1}$ \& ${ }_{31.0}^{22.9}$ \& \& \& \[
$$
\begin{gathered}
5.2 \\
55.7
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& (71.5) \\
& (87.6)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 18.3 \\
& 31.9
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 26.9 .9 \\
& 30.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (16.2) \\
& (29.3)
\end{aligned}
$$
\] \& ${ }_{-1.4}^{-10.7}$ \& ${ }_{6}^{9.1}$ \& (45.7) \& 29.1

39.6 \& \& $\underset{\substack{29.9 \\ 515}}{\substack{\text { che }}}$ \& | 62.2 |
| :--- |
| 62.1 | \& 324

10.6 \& \& 21.4
28.6 \& 13.7
11.3 \& -7.7

-17.4 \& \& $$
\begin{aligned}
& 0.1 \\
& 4.8 \\
& .
\end{aligned}
$$ \& 18.7 \& \[

$$
\begin{aligned}
& 18.6 \\
&
\end{aligned}
$$
\] \& *

\hline Pabistan \& $$
\begin{gathered}
2006-7 \\
2012-13
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 75.0 \\
& 7.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 85.2 \\
& 85.9
\end{aligned}
$$
\] \& 10.2

9.2 \& \& 10.0

8.6 \& $$
\begin{aligned}
& 6.9 \\
& 8.6
\end{aligned}
$$ \& -3.1

0.0 \& \& $$
\begin{aligned}
& 59.4 \\
& 67.3
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 72.6 \\
& 75.8
\end{aligned}
$$

\] \& | 13.1 |
| :---: |
| 8.6 |
| 1 | \& \& \& \[

$$
\begin{gathered}
7.5 \\
81.0
\end{gathered}
$$

\] \& \[

{ }_{87.5}^{93,8}

\] \& \[

$$
\begin{gathered}
23,3 \\
6.4
\end{gathered}
$$

\] \& * \& \[

$$
\begin{gathered}
8.6 \\
11.4
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 5.5 \\
& 4.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& -3.1 \\
& -7.4 \\
& \hline
\end{aligned}
$$
\] \& 58.7

69.2 \& 84.1

830 \& $$
\begin{aligned}
& 254.4 \\
& 13.8
\end{aligned}
$$ \& \& 66.7

730 \& ${ }_{81.7}^{81.7}$ \& 14.9
87 \& \& 7.5
12.5 \& 5.7

7.0 \& $\begin{array}{r}-1.8 \\ -5.5 \\ \hline\end{array}$ \& \& \[
$$
\begin{aligned}
& 55.2 .2 \\
& 61.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.9 .9 \\
& 7.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.7 \\
& 128
\end{aligned}
$$
\] \&

\hline Ruanda \& 2005

2010 \& $$
\begin{aligned}
& 54.8 \\
& 4.7
\end{aligned}
$$ \& \[

$$
\begin{gathered}
76.4 \\
65.4
\end{gathered}
$$

\] \& ${ }_{223}^{21.7}$ \& \& $\underset{\substack{21.5 \\ 35.1 \\ \hline .4}}{ }$ \& \[

$$
\begin{aligned}
& 34.0 \\
& 47.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.6 \\
& 124
\end{aligned}
$$
\] \& \& 1.5 \& 11.0 \& 10.5 \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{\substack{26.4 \\ 40.7 \\ 3}}$ \& 35.6

66.9
3 \& 9.2

23.2 \& \& $\xrightarrow{12.6}$ \& $$
\begin{aligned}
& 13.7 \\
& 4.1
\end{aligned}
$$ \& 11.1 \& \& 0.7 \& 4.6

7.7 \& 3.9
7.7 \&

\hline Senegal \& $$
\begin{gathered}
2005 \\
2010-11
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 4.9 .9 \\
& 39.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 71.4 \\
& 67.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 24.5 \\
& 28.8
\end{aligned}
$$

\] \& \& ${ }_{28.6}^{20.4}$ \& \[

$$
\begin{aligned}
& 40.5 \\
& 45.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 111 \\
& 17.2
\end{aligned}
$$
\] \& \& 7.9

15 \& \[
$$
\begin{aligned}
& 14,6 \\
& 11.4
\end{aligned}
$$

\] \& ${ }_{9.1}^{6.7}$ \& \& * \& \& \& \& \& \& \& \& \& \& \& \& | 328 |
| :--- |
| 45.1 | \& \[

$$
\begin{aligned}
& 34.0 \\
& 53.8
\end{aligned}
$$
\] \& 12

8.7 \& \& $$
\begin{aligned}
& 17.0 \\
& \begin{array}{l}
\text { an } \\
30.0
\end{array}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 16.9 \\
& 34.7
\end{aligned}
$$
\] \& $\stackrel{-0.1}{4.7}$ \& \& ${ }_{0.8}^{1.1}$ \& 5.0

7.5 \& $$
\begin{aligned}
& 39 \\
& 6.8
\end{aligned}
$$ \&

\hline Tarzania \& $$
\begin{gathered}
20045 \\
2010
\end{gathered}
$$ \& \[

$$
\begin{gathered}
76.5 \\
72.5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
93.9 \\
99.7
\end{gathered}
$$
\] \& 17.1

7.2 \& \& 46.9

49.5 \& $$
\begin{aligned}
& 54,2 \\
& 526
\end{aligned}
$$ \& 7.3

3.1 \& \& 6.6
19

19 \& $$
\begin{aligned}
& 20.0 \\
& 20.4
\end{aligned}
$$ \& 22.4

18.5 \& \& \& \& \& \& \& \& \& \& \& \& \& \& 63.1
63.9 \& 63.8
62.2 \& 0.7
-1.7 \& \& 40.7
48.9 \& 34.7

43.5 \& -6.0 \& \& $$
\begin{aligned}
& 4.6 \\
& 0.6
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 20.2 \\
& 13
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.6 \\
& 12.4
\end{aligned}
$$
\] \&

\hline Uganda \& $$
\begin{aligned}
& 2006 \\
& 2001 \\
& 201
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 84.9 \\
& 88,3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 88.4 \\
& 90.9
\end{aligned}
$$
\] \& 3.4

7.7 \& \& 40.3

44.3 \& $$
\begin{aligned}
& 23.5 \\
& 21.2
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& -26.8 \\
& -2,1
\end{aligned}
$$
\] \& \& 417

388 \& $$
\begin{aligned}
& 5.0 \\
& 67.0
\end{aligned}
$$ \& ${ }_{28.2}^{16.2}$ \& \& \& \[

$$
\begin{aligned}
& 85.1 \\
& 80.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 88.3 .3 \\
& 90.1
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
-0.8 \\
9.8
\end{gathered}
$$
\] \& \& 44.5

38.1 \& 15.2

213 \& $$
\begin{aligned}
& -20.4 \\
& -26.9
\end{aligned}
$$ \& 39.2

44.3 \& 65.4
63.5 \& 26.2

19.2 \& \& | 84.2 |
| :---: |
| 76.0 | \& 79.2

70.3 \& -5.0
-5.7 \& \& 42.4
40.3 \& 18.2
18.6 \& -24.2
-21.7 \& \& 38.5
35.9 \& 55.9

49.5 \& $$
\begin{aligned}
& 17.4 \\
& 136
\end{aligned}
$$ \&

\hline Zambia \& $$
\begin{gathered}
2007 \\
2013-14
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 70.5 \\
& 72.1
\end{aligned}
$$

\] \& \[

{ }_{7,2}^{66.0}
\] \& 4.5

5.1 \& \& $\underset{\substack{51.2 \\ 684 \\ 4}}{ }$ \& $$
\begin{aligned}
& 56.8 \\
& 65.5
\end{aligned}
$$ \& 5.6

0.9 \& \& ${ }_{4}^{9.5}$ \& $\begin{array}{r}7.1 \\ 10.0 \\ \hline\end{array}$ \& -2.4

5.9 \& \& * \& $$
\begin{aligned}
& 86.2 \\
& 73.6
\end{aligned}
$$ \& \[

\underset{85.8}{(59.3)}

\] \& \[

$$
\begin{gathered}
-26.9 \\
12.2
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& 6.4 . \\
& 65.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (54,3) \\
& 721
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
-10.5 \\
7.0
\end{array}
$$
\] \& 13.1

19
4 \& ${ }_{(1.8)}^{7.5}$ \& -113
5.6 \& \& 69.9
67.0 \& 60.1
629 \& -9.9
-4.1 \& \& 55.1
60.7 \& 52.2
55.3 \& -2.9
-5.4 \& \& 6.1
2.9 \& 6.8

6.4 \& $$
\begin{aligned}
& 0.7 \\
& 3.5
\end{aligned}
$$ \&

\hline
\end{tabular}

Figures in parentheses are based on $25-49$ unveighted cases. For symptoms of ARI, the table is restricted to USAD MCH priority countries with complete information on symptoms of ARI.
1' Percentage point difference between care seeking coverage between children in the poorest and wealthiest wealth quintiles.

[^15]Table A11. Background characteristics among children with recent diarrhea by intervention coverage area, Nepal 2006 and 2011 DHS

	2006 NDHS				2011 NDHS			
	NonPOUZN Districts	POUZN Districts	Total	N	\qquad	POUZN Districts	Total	N
Any private care sought								
No	96.7	90.6	93.6	584	90.4	80.6	85.1	605
Yes	3.3	9.4	6.4	40	9.6	19.4	14.9	106
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Any public care sought								
No	78.2	80.4	79.3	495	74.7	77.1	76.0	540
Yes	21.8	19.6	20.7	129	25.3	22.9	24.0	171
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Any care sought								
No	53.0	45.9	49.4	308	42.1	34.4	37.9	270
Yes	47.0	54.1	50.6	316	57.9	65.6	62.1	441
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Child was given ORS								
No	74.5	67.1	70.7	441	62.8	59.4	61.0	433
Yes	25.5	32.9	29.3	183	37.2	40.6	39.0	278
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Child was given zinc 100 100.0 100.0								
No	99.2	100.0	99.6	620	93.4	94.2	93.8	663
Yes	0.8	0.0	0.4	3	6.6	5.8	6.2	44
Total	100.0	100.0	100.0	622	100.0	100.0	100.0	707
Child was given ORS and zinc								
No	100.0	100.0	100.0	623	95.2	95.1	95.2	673
Yes	0.0	0.0	0.0	0	4.8	4.9	4.8	34
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	707
Place of residence 100.0								
Urban	5.2	18.6	12.0	75	6.3	11.5	9.1	65
Rural	94.8	81.4	88.0	548	93.7	88.5	90.9	646
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Household wealth quintile								
Poorest	43.6	13.9	28.4	177	31.6	16.6	23.5	167
Poorer	23.1	19.1	21.0	131	26.0	19.9	22.7	162
Middle	16.6	19.6	18.1	113	21.9	28.4	25.4	181
Wealthier	12.0	22.4	17.3	108	14.2	18.0	16.2	116
Wealthiest	4.8	25.0	15.1	94	6.3	17.1	12.1	86
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Maternal age								
19 yrs or younger	7.0	11.8	9.5	59	8.1	8.3	8.2	58
20-34	78.3	78.5	78.4	489	80.1	82.6	81.4	579
35-49	14.6	9.6	12.1	75	11.9	9.2	10.4	74
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Mother's education level 100.0								
None	65.9	52.2	58.9	367	47.2	50.2	48.8	347
Primary	15.5	19.8	17.7	110	25.6	15.6	20.2	144
secondary or higher	18.6	28.0	23.4	146	27.2	34.3	31.0	220
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
$\begin{array}{lllll}\text { Mother's media exposure } & 100.0 & 100.0 & 100.0 & \\ & & & \end{array}$								
Listens to the radio or watches television less than once per week, if at all $\begin{array}{llllllll} 40.3 & 33.3 & 36.7 & 229 & 48.1 & 47.6 & 47.8 & 340 \end{array}$								
television at least once per week	59.7	66.7	63.3	395	51.9	52.4	52.2	371
	100.0	100.0	100.0	623	100	100	100	711
Child's age								
Less than 1 year	23.1	29.5	26.4	164	25.7	26.7	26.3	187
1-2 years	32.6	29.2	30.9	193	36.5	31.0	33.5	239
2-3 years	18.3	20.7	19.5	121	20.0	20.4	20.2	144
3-4 years	15.0	11.2	13.1	81	10.5	14.6	12.7	90
4-5 years	11.0	9.4	10.2	64	7.3	7.3	7.3	52
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711
Sex of child								
Female	48.2	42.1	45.1	281	39.2	44.6	42.1	299
Male	51.8	57.9	54.9	342	60.8	55.4	57.9	412
Total	100.0	100.0	100.0	623	100.0	100.0	100.0	711

Table A12. Background characteristics among children with recent fever by intervention coverage area, Liberia 2007 DHS and 2011 MIS

	2007 LDHS				2011 LMIS			
	Non-EQUIP Counties	EQUIP Counties	Total		Non-EQUIP Counties	EQUIP Counties	Total	
	\%	\%	\%	N	\%	\%	\%	N
Any public care sought								
No	60.5	78.6	64.2	1,012	69.7	56.9	67.4	955
Yes	39.5	21.4	35.8	565	30.3	43.1	32.6	461
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1416
Any private care sought								
No	82.2	62.9	78.4	1,236	74.9	85.8	76.8	1088
Yes	17.8	37.1	21.6	341	25.1	14.2	23.2	328
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1416
Any care sought								
No	25.4	17.3	23.7	374	22.3	25.3	22.8	323
Yes	74.6	82.7	76.3	1,203	77.7	74.7	77.2	1093
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1416
Place of Residence								
Urban	34.5	4.8	28.6	450	44.4	26.0	41.1	583
Rural	65.5	95.2	71.4	1,127	55.6	74.0	58.9	833
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1,416
Wealth Index								
Poorest	18.8	22.9	19.6	309	28.9	7.1	25.1	355
Poorer	22.7	34.0	24.9	393	23.3	38.0	25.8	366
Middle	19.9	26.8	21.3	336	15.1	42.4	19.8	281
Wealthier	23.8	12.3	21.5	339	19.2	11.0	17.7	251
Wealthiest	14.9	3.9	12.7	200	13.6	1.4	11.5	162
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1,416
Maternal Age								
19 years or younger	7.0	9.7	7.6	119	7.2	3.9	6.6	93
20-34 years	66.3	62.0	65.5	1,033	68.5	72.4	69.2	980
35-49 years	26.6	28.3	27.0	425	24.3	23.7	24.2	343
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1,416
Maternal Education								
None	47.5	38.2	45.6	719	48.8	33.0	46.1	652
Primary	33.8	46.7	36.4	574	30.3	37.2	31.5	446
secondary or higher	18.6	15.1	17.9	282	20.8	29.9	22.4	317
Total	100.0	100.0	100.0	1,575	100.0	100.0	100.0	1416
Child's Age								
Less than 1 year	21.6	17.2	20.8	327	20.7	14.9	19.6	278
1-2 years	23.4	17.0	22.1	349	24.8	23.0	24.5	347
2-3 years	23.0	27.3	23.9	376	21.3	21.2	21.2	301
3-4 years	17.7	22.7	18.7	295	16.6	18.9	17.0	241
4-5 years	14.3	15.9	14.6	230	16.6	22.0	17.6	249
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1,416
Sex of Child								
Female	49.0	46.2	48.4	763	47.0	49.8	47.5	672
Male	51.0	53.8	51.6	814	53.0	50.2	52.5	744
Total	100.0	100.0	100.0	1,577	100.0	100.0	100.0	1,416

Figure A4. Trend in coverage of any care seeking for fever among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries

Figure A5. Trend in coverage of any care seeking for symptoms of ARI among children in rural households and rural-urban equity gap in care seeking

Note: Countries are included only if (1) a significant change in care seeking coverage between surveys was observed in rural houseohlds , or (2) a significant change in urban-rural equity in care seeking coverage was observed between surveys.

Figure A6. Trend in coverage of any care seeking for diarrhea among children in rural households and rural-urban gap in care seeking equity, USAID MCH priority countries

Figure A7. Trend in coverage of any care seeking for fever among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

Figure A8. Trend in coverage of any care seeking for symptoms of ARI among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

For the following countries, care seeking estimates for children in the wealthiest quintile are based on 25-49 unweighted cases and should be interpreted with caution: Liberia 2007, Liberia 2013, Nigeria 2008, Nigeria 2013, Zambia 2007.

Figure A9. Trend in coverage of any care seeking for diarrhea among children in poorest-quintile households and poorest-wealthiest quintile gap in care seeking equity, USAID MCH priority countries

For Ghana 2008, care seeking estimates for children in the wealthiest quintile are based on $25-49$ unweighted cases and should be interpreted with caution.

[^0]: ${ }^{1}$ Note on terminology. In the report we use the term "pneumonia" carefully and sparingly: only in the context of discussing the global burden of this childhood ailment based on findings from other studies and when discussing illness symptoms or standard treatment recommendations. Using DHS data we cannot assess whether a child had recent pneumonia. Instead, we know whether he or she had symptoms of acute respiratory infection (ARI), which are not specific to pneumonia. Similarly, we do not know whether a child had recent malaria - instead we know whether the child had fever. All discussion of study results uses the terms fever and symptoms of ARI. Section 2.1 provides a more detailed discussion of the limitations of these non-specific proxy measures.

[^1]: ${ }^{2}$ Note on Mali surveys: The 2006 survey included all eight regions of Mali and Bamako (CPS/DNSI and Macro International, 2007), while for reasons of security the 2012-13 survey excluded the three northern regions of Gao, Kidal, and Timbuktu, and did not fully represent the region of Mopti (CPS et al. 2014). A strong case could be made that comparison of the two surveys should omit Gao, Kidal, Timbuktu, and Mopti from the 2006 survey and should omit Mopti from the 2012-13 survey to make the two surveys comparable. However, to avoid discarding data that have been collected and to present estimates that are as close to nationally representative as possible, this report does not omit any regions from either survey. Readers are warned that the differences between the estimates from the 2006 and 2012-13 surveys are potentially biased estimates of the differences that would have been found with complete coverage in both surveys. A separate analysis of trends in malaria prevention and care seeking for children's fever found that the direction and significance of the trend between surveys remained the same after removing the four northern regions to create comparable populations. These results are not shown.

[^2]: ${ }^{3}$ Here and throughout the report, the term level is used interchangeably with the term coverage to refer to the percentage of children with recent illness for whom care was sought.

[^3]: ${ }^{4}$ If estimates for different sub-populations have non-overlapping confidence intervals, they are necessarily significantly different. If they have overlapping confidence intervals, it is not necessarily true that they are not significantly different. In some cases where the confidence intervals between two point estimates overlap slightly, a statistical test is required to identify a significant difference between the two estimates.

[^4]: Note: Public sources include: public hospital, health center, health post, mobile clinic, community health worker, and other public sector; Private sources include: private hospital, doctor, nurse, mobile clinic, private community health worker, religious or NGO-run facilities, and other private sector; Pharmacy Only highlights children for whom care was sought only from a pharmacy; Other sources include: market/informal shop, traditional healer or other non-allopathic sources, friend, relative, or other sources. Since children for whom care was sought from multiple sources contribute to each source's total, the total percentage may exceed the percentage of children who received any care. Care seeking estimates based on fewer than 25 unweighted cases are not shown. For the following countries, estimates are based on $25-49$ unweighted cases and should be interpreted with caution: Ghana 2008 (quintiles 2,4), Liberia 2013 (quintiles 4,5), Mali 2012-13 (quintiles 1-5), Mozambique 2011 (quintiles 1,2,4,5), Nepal 2011 (quintiles 2-5), Nigeria 2013 (quintile 5), Rwanda 2010 (quintile 4). Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

[^5]: Note: Care seeking estimates for children with all three illnesses in Bangladesh 2011 and Ghana 2008, and for children with fever and symptoms of ARI only in Mali 2012-13 are based on 25-49 unweighted cases and should be interpreted with caution. Care seeking estimates for children with all three illnesses in Mali 2012-13 are based on fewer than 25 cases and are not shown. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

[^6]: Note: Care seeking estimates for children with all three illnesses in Bangladesh 2011 and Ghana 2008 are based on 25-49 unweighted cases and should be interpreted with caution. Care seeking estimates for children with all three illnesses in Mali 2012-13 are based on fewer than 25 cases and are not shown. Please refer to Table 1 for a listing of DHS country codes and corresponding country names.

[^7]: Note: A Solid line indicates a statistically significant change in coverage between surveys; a dotted line indicates no change. Due to low levels of zinc use, the figure ranges from 0 to 50 percent coverage, rather than 0 to 100 percent coverage. In the 2006 survey there was no use of zinc in POUZN districts. In order to test the significance of the change in zinc coverage between surveys in POUZN districts, we replaced the zeroes with an arbitrary small number, 0.001 . This way we were able to perform a conservative statistical test.

[^8]: ${ }^{5}$ Note on the process used to select EQUIP Liberia as an example case study: To select an example case study from among the 20 PMI-funded local MCP projects, we first eliminated 13 projects that did not have both (1) geographically identifiable project areas, and (2) DHS survey data available as of April 2015 that were appropriately timed to provide baseline and endline data on coverage of care seeking. The remaining seven projects included one in Ethiopia, two in Liberia, one in Senegal, and three in Uganda. Three of these seven projects were eliminated because the number of fever cases in intervention areas was not sufficient to conduct the analysis. In two of the three projects-one in Uganda and one in Liberia-we found no evidence of an association between program coverage and the rate of change in care seeking for fever. This case study highlights the third remaining project for which findings suggest potential impact-EQUIP Liberia.
 ${ }^{6}$ While the report relies primarily on the two most recent Liberia DHS surveys (2007 and 2013), the case study uses the 2007 DHS and the 2011 MIS since the case study is specific to malaria care seeking, and 2011 is better timed to provide endline coverage information.

[^9]: Note: This table includes all surveys with complete information on whether the child's diarrhea was bloody, and whether the child was given antibiotics for their diarrhea. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. LB and UB refer to the lower and upper bounds of the 95% confidence interval.
 $\mathrm{n} / \mathrm{a}=$ data not available

[^10]: ${ }^{7}$ Some countries, such as Malawi, are piloting integration of newborn care packages in iCCM.

[^11]: 品

[^12]:

 Allopathic，and Other disaggregated sources of care categories．
 ${ }^{3}$ Any Care includes children who received care from any source outside the home（including all disaggregated source of care categories）．

[^13]:

[^14]:

[^15]:

